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Abstract: This paper introduces a novel approach for self-supervised monocular depth estimation.
The model is trained on stereo–image (left–right pair) data and incorporates carefully designed
perceptual image quality assessment-based loss functions for image reconstruction and left–right
image difference. The fidelity of the reconstructed images, obtained by warping the input images
using the predicted disparity maps, significantly influences the accuracy of depth estimation in
self-supervised monocular depth networks. The suggested LPIPS (Learned Perceptual Image Patch
Similarity)-based evaluation of image reconstruction accurately emulates human perceptual mech-
anisms to quantify the quality of reconstructed images, serving as an image reconstruction loss.
Consequently, it facilitates the gradual convergence of the reconstructed images toward a greater
similarity with the target images during the training process. Stereo–image pair often exhibits slight
discrepancies in brightness, contrast, color, and camera angle due to factors like lighting conditions
and camera calibration inaccuracies. These factors limit the improvement of image reconstruction
quality. To address this, the left–right difference image loss is introduced, aimed at aligning the
disparities between the actual left–right image pair and the reconstructed left–right image pair. Due
to the tendency of distant pixel values to approach zero in the difference images derived from the
left and right source images of stereo pairs, this loss progressively steers the distant pixel values
of the reconstructed difference images toward a convergence with zero. Hence, the use of this loss
has demonstrated its efficacy in mitigating distortions in distant regions while enhancing overall
performance. The primary objective of this study is to introduce and validate the effectiveness of
LPIPS-based image reconstruction and left–right difference image losses in the context of monocular
depth estimation. To this end, the proposed loss functions have been seamlessly integrated into a
straightforward single-task stereo–image learning framework, incorporating simple hyperparameters.
Notably, our approach achieves superior results compared to other state-of-the-art methods, even
those adopting more intricate hybrid data and multi-task learning strategies.

Keywords: self-supervised depth; monocular depth estimation; perceptual image reconstruction loss;
left–right difference image loss; LPIPS

1. Introduction

Deep learning-based monocular depth estimation methods have gained significant
attention due to their ability to estimate depth maps from single images without relying on
expensive external sensors such as RGB-D cameras and LiDAR [1–3]. The capability of end-
to-end depth estimation from single images has profound implications for various fields,
including robotics, autonomous driving, virtual reality, augmented reality, and medical
imaging. Deep learning-based monocular depth estimation can be broadly categorized into
supervised learning, self-supervised learning, and semi-supervised learning [2,4]. While
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various supervised learning approaches achieve high-ranking results, they all require a
substantial amount of labeled datasets, which is expensive to obtain using RGB-D cameras
or LiDAR sensors. On the other hand, self-supervised learning is a more cost-effective
approach but requires additional well-designed constraints to maintain geometric con-
sistency for stereo–image data learning and photometric consistency for video sequence
learning. Semi-supervised learning combines supervised and self-supervised approaches
by utilizing a small amount of labeled dataset and the remaining unlabeled dataset.

This study introduces an innovative technique for self-supervised monocular depth
estimation. The proposed approach integrates a loss based on a perceptual image quality
assessment model, with a specific focus on enhancing image reconstruction and addressing
left–right image differences during model training. The proposed loss plays a pivotal role in
the training process, leading to refined precision in monocular depth estimation. Within this
framework, the neural network undergoes training using only paired stereo–images from
the provided dataset, enabling the prediction of depth maps from a solitary image without
reliance on ground-truth data. The primary objective involves minimizing the loss in image
reconstruction, ensuring a close correspondence between the image under reconstruction
and the respective reference image captured from an alternative viewpoint within the
dataset. Through the minimization of this loss, the model strives to establish a notable
resemblance connecting the reconstructed and referenced images. This enhancement serves
to bolster the precision of monocular depth estimation, a key aspect of the evaluation.
Throughout the training process, the network learns to predict the disparity map, which
represents a pixel-wise inverse depth map and is essential for reconstructing an image
from another viewpoint. As the training progresses, the quality of the reconstructed images
improves gradually, leading to an enhanced accuracy of the disparity map.

The image reconstruction process plays a crucial role in this approach, as the quality
of the reconstructed images affects the precision of the predicted disparity maps. There-
fore, a well-designed image reconstruction loss is essential. This loss serves as a guiding
mechanism during training, facilitating effective image reconstruction and enabling the
derivation of an accurate disparity map for the source image. Previous works in the field
have commonly used L1- and SSIM-based [5] image reconstruction loss, as proposed by [3].
While it has shown effectiveness, it may have limitations, especially in challenging areas of
an image, such as low-texture regions, homogeneous regions, and distant areas like the sky,
forest, and road. In such cases, where feature point extraction becomes difficult, the existing
losses may lack sufficient accuracy and robustness. Recently, learning-based perceptual
image quality assessment models like PieAPP (Perceptual Image-Error Assessment through
Pairwise Preference) [6] and LPIPS (Learned Perceptual Image Patch Similarity) [7] have
shown greater effectiveness compared to traditional computer vision-based algorithms
in assessing image quality, especially in images with challenging areas. In this study, we
departed from the conventional use of SSIM and instead integrated a pre-trained LPIPS
model into our image reconstruction loss. Unlike SSIM, LPIPS is a perceptual image quality
assessment algorithm trained to align with human perception based on extensive human
perceptual judgments. By incorporating LPIPS, our aim is to enhance the perceptual sim-
ilarity between the reconstructed and the target images, thus reducing artifacts even in
challenging areas of the reconstructed images. This approach utilizes the power of human
perception to improve the overall quality of the reconstructed images.

Although the integration of LPIPS-based image reconstruction loss shows an enhanced
performance compared to the conventional SSIM-based loss in experiments, it still faces
challenges in effectively addressing distortions caused by variations between the left and
right reference images. Inherent factors such as lighting conditions and camera calibration
errors lead to unavoidable slight variations in brightness, contrast, color, and camera angle
within pairs of stereo–image. These variations constrain the enhancement of reconstruc-
tion quality.

In response to this challenge, we introduce an innovative loss referred to as the “left–
right difference image loss.” Utilizing an auto-encoder network architecture, our proposed
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model primarily reconstructs both the left and right images. These reconstructed images
are also utilized to generate two distinct difference images, each serving a specific purpose:
one originates from the reconstructed left and right image pair, while the other is derived
from the corresponding target pair. The left–right difference image loss combines L1 loss
and LPIPS-based loss. This composite loss facilitates the alignment between the differ-
ence images of the reconstructed pairs and the corresponding ones from the target pairs.
Throughout the training process, it consistently aligns the pixel values of the reconstructed
difference images with those of the target difference images. Considering that pixel values
in distant regions of a reference image pair generally display minor disparities, leading to
minimal visual divergence, the proposed loss steers these remote pixel values within the
reconstructed difference image toward a convergence with zero. As a result, the incorpora-
tion of this loss effectively mitigates distortions arising from variations between the left
and right reference images, while also addressing distortions present in remote regions.

To showcase the efficacy of our proposed losses, we integrated them into a ResNet50-
based network [8]. The model was trained using stereo–image pairs from the KITTI 2015
dataset [9] to generate depth maps for 640× 192 images. Extensive experimentation demon-
strated the notable improvement of our approach. Remarkably, our method outperforms
several state-of-the-art studies employing more complex approaches, such as hybrid data
learning of stereo–image and video sequence, as well as multi-task learning of depth and
semantic segmentation. These results highlight the effectiveness and robustness of our
proposed approach in the domain of self-supervised monocular depth estimation.

2. Related Work
2.1. Monocular Depth Estimation with Stereo–Image Data Learning

Active research has been conducted in the field of supervised monocular depth es-
timation neural networks, which learn using datasets that include depth ground-truth
data since Eigen et al. [1] proposed a technique for inferring depth maps from monocular
color images using deep learning [10–12]. However, the continuous development of super-
vised monocular depth estimation faces challenges in terms of the time and cost required
to create large-scale datasets with depth maps for training [2–4]. To address this issue,
research on self-supervised depth estimation networks that do not rely on ground-truth
depth maps has emerged. These networks use unlabeled stereo–image and/or monocular
video sequence datasets and utilize geometric and photometric constraints between frames
as supervisory signals during the learning process [2,4]. Garg et al. [13] introduced a
self-supervised framework for monocular depth prediction that centers on learning from
stereo–images without necessitating a pre-training phase or annotated depth ground truth.
They adopt the L2 loss between the reconstructed and target images as a straightforward
image reconstruction loss. However, this approach leads to the generation of blurry im-
ages, as it tends to converge to a stable value without achieving precise pixel-level values.
Subsequent research introduced a more sophisticated image reconstruction loss, combining
L1 loss and SSIM-based [5] loss proposed by Godard et al. [3]. They also proposed a
disparity smoothness loss and a left–right consistency loss. SSIM-based loss has since been
widely employed in self-supervised depth estimation networks, including in works by
Pillai et al. [14–16]. Park et al. [17] proposed a self-supervised depth prediction model
using GMSD [18], a conventional IQA algorithm, as the image reconstruction loss in a
symmetric GAN [19] structure. They demonstrated that the GMSD-based loss could effec-
tively improve the accuracy of monocular depth estimation. Park et al. [20] also proposed
a self-supervised model for stereo–image learning. They introduced a specialized image
reconstruction loss based on PieAPP [6].

2.2. Monocular Depth Estimation with Video Sequence Data Learning

Zhou et al. [21] introduced a self-supervised model for depth estimation, focusing
on learning from monocular video sequences. The approach involves the joint training
of two networks on unlabeled video sequences: one dedicated to depth prediction and
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the other to estimating camera poses. L1 loss is employed for image synthesis during
this process. Mahjourian et al. [22] presented a novel self-supervised method for learning
depth and ego-motion from successive video frames. Yin et al. [23] proposed GeoNet,
a comprehensive training paradigm that employs three networks for monocular depth,
optical flow, and ego-motion estimation from consecutive video frames. This is achieved
using a robust image similarity measurement based on SSIM. Wang et al. [24] suggested
an enhancement by integrating the direct visual odometry (DVO) [25] pose predictor into
a self-supervised video sequence learning model, replacing the PoseCNN. This revised
model employs a linear combination of L1 loss and SSIM for image reconstruction loss.
EPC++ network [26] was proposed to jointly train three networks based on video se-
quences, for depth prediction (DepthNet), camera motion (MotionNet), and optical flow
(OptFlowNet). Li et al. [27] presented a method for jointly training depth, ego-motion,
and a dense 3D translation field of objects relative to the scene, using an SSIM-based
image reconstruction loss. Xiong et al. [28] proposed using robust geometric losses to
align the scales of two reconstructed depth maps estimated from adjacent video frames,
enforcing forward–backward relative pose consistency, and formulating scale-consistent
geometric constraints.

2.3. Monocular Depth Estimation with Hybrid Data and Multi-Task Learning

Godard et al. [15] extended their stereo–image learning model to propose a self-
supervised monocular depth estimation framework that encompasses learning from con-
secutive video frames. Their model incorporated a minimal reprojection loss to address
occlusion, employed a full-resolution multi-scale sampling technique to manage visual
artifacts, and integrated a straightforward auto-masking approach to exclude pixels exhibit-
ing consistent appearances across frames. Rottmann et al. [16] proposed a self-supervised
multi-task learning model that jointly trained semantic segmentation and depth estimation.
They used both stereo–image dataset and video sequence dataset for training and designed
their image reconstruction loss based on SSIM with whole-image input. SGDepth [29] also
adopted multi-task learning for semantic segmentation and depth estimation, with a focus
on dynamic-class objects such as moving cars and pedestrians. They trained their network
only on video sequence data. Similar multi-task learning approaches based on monocular
video sequence data learning were suggested in [30,31]. Guizilini et al. [32] also proposed a
multi-task learning self-supervised monocular depth estimation model with a semantic
segmentation network to guide geometric representation learning. They used a two-stage
training process to automatically detect the presence of a common bias on dynamic objects.
SceneNet [33] proposed a stereo–image multi-task learning-based cross-modal network
model that incorporated semantic information to guide disparity smoothness.

3. Proposed Model

This section presents a detailed description of the network architecture employed in the
proposed self-supervised monocular depth estimation model. Additionally, it provides a
comprehensive explanation of the training losses incorporated into the model’s framework.

3.1. Depth Estimation Network Architecture

The proposed network architecture employs a self-supervised approach for monocu-
lar depth estimation, utilizing stereo–image data for training. As illustrated in Figure 1,
the overall network architecture aims to minimize various losses for multi-scale disparity
maps, including image reconstruction loss, left–right disparity consistency loss, disparity
smoothness loss, and left–right difference image loss. These losses contribute to the effec-
tive training and optimization of the network, facilitating an improved depth estimation
performance. The network learns how to estimate disparity, i.e., inverse depth values
for reconstructing a different view image Îr (right) from a given input image Il (left) in
a self-supervised manner by training on stereo–image pairs. The depth p can be deter-
mined using the formula p = (b× f )/d, wherein b denotes the baseline distance between
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two cameras, f represents the camera’s focal length, and d stands for the disparity map.
Upon completion of the learning process, the network acquires the capability to generate
a precise reconstruction of a distinct view image by leveraging the estimated disparity
map. Consequently, it becomes proficient in estimating the disparity at a pixel-wise level
within a single-source image. This means that the network can effectively infer the relative
distances of objects in the scene based on their corresponding pixel disparities, enabling an
accurate estimation of depth information. Our approach is inspired by Godard et al. [2]
and we deploy a simple ResNet50-based auto-encoder that only trains stereo–image data
of the KITTI dataset.

Figure 1. Proposed network architecture and loss components. The schematic representation of the
proposed network architecture encompasses several key components: Il (the left (input) image), Ir

(the right image), dl (the left disparity map from the input image), dr (the right disparity map from
the input image), w+ (warping to the right), w− (warping to the left), Îl (the reconstructed left image),
Îr (the reconstructed right image), Idi f f (the difference image of left–right reference images), Îdi f f (the
difference image of reconstructed left–right images), Llpips (LPIPS-based image reconstruction loss),
LL1 (L1 image reconstruction loss), Lcon (left–right disparity consistency loss), Lsmoothness (disparity
smoothness loss), and Ldi f f (left–right difference image loss).

In the decoder component of our network, we integrate six up-convolution layers that
facilitate upsampling. This is achieved through bilinear interpolation, with a consistent
scale factor of two applied in each successive layer. This procedure generates four pairs of
left–right disparity maps, each of varying sizes. The right disparity map (dr) is employed to
synthesize a reconstructed right image ( Îr) from a source left image (Il) using the warping
process denoted as w+. Similarly, the left disparity map (dl) is utilized to synthesize a
reconstructed left image ( Îl) from a source right image (Ir) simultaneously, accomplished
through the warping process represented as w−.

By utilizing these disparity maps and the warping processes, the network simultane-
ously synthesizes both left and right images while maintaining consistency between the
disparities of the two. Since the network is trained without access to depth ground-truth
data, it determines optimal parameters by evaluating the similarity between the recon-
structed and target images. This similarity is quantified as the image reconstruction loss.
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Essentially, a strong resemblance between the reconstructed and target images indicates
accurate disparity predictions by the network.

To address this, we take into consideration the relative performance of image quality
assessment (IQA) models. Deep learning-based perceptual IQA models have consistently
demonstrated superiority over conventional computer vision-based models across various
metrics. Therefore, rather than employing the commonly used combination of SSIM and
L1 loss as the image reconstruction loss in previous studies, we opt for a combination of a
pre-trained LPIPS model (Llpips) and L1 loss (LL1) for this particular purpose.

Despite the inclusion of the left–right disparity consistency loss, as suggested in [3],
its effectiveness in addressing concurrent distortions present in both the left and right
disparity maps is found to be insufficient. This limitation arises from the aforementioned
variations and the scarcity of feature points, particularly in challenging regions. To over-
come this, the integration of the left–right difference image loss (Ldi f f ) within our model
provides a valuable mechanism to directly minimize the difference between the recon-
structed difference image and the source difference image. This approach effectively
mitigates the distortions, resulting in improved accuracy and fidelity in the reconstructed
images. Furthermore, this loss plays a crucial role in effectively enhancing the quality of
reconstruction, especially in distant regions, by gradually guiding the distant pixel values
of the reconstructed difference images toward convergence with zero.

3.2. Training Loss

Image Reconstruction Loss: Training of the monocular depth estimation network aims
to generate a disparity map that accurately synthesizes a given input image to resemble
a target image. To achieve this, an image reconstruction loss is employed to measure
the numerical discrepancy between the reconstructed and target images. By minimizing
this loss, the network finds parameters to enhance the overall quality of the synthesized
images and optimize its depth estimation capabilities. In the proposed network, we have
opted to utilize a pre-trained LPIPS [7] model as a component of our image reconstruction
loss (Llpips). This choice is motivated by the algorithm’s ability to effectively address
distortions encountered in challenging regions of the reconstructed images. By leveraging
the capabilities of LPIPS, we can better evaluate and minimize the perceptual differences
between the two images, leading to an improved image reconstruction quality. Additionally,
we integrate L1 loss (LL1) to enhance the quality of the reconstructed images. This is
achieved by minimizing the absolute pixel-wise disparity between the corresponding
reconstructed and target images. As a result, the image reconstruction loss, labeled as Lrec,
can be formulated as follows:

Îr = w+(Il , dr) (1)

Îl = w−(Ir, dl) (2)

Llpips
r = ∑ lpips(Ir, Îr) (3)

Llpips
l = ∑ lpips(Il , Îl) (4)

Llpips = Llpips
r + Llpips

l (5)

LL1
r = ∑ ‖ Ir − Îr ‖ (6)

LL1
l = ∑ ‖ Il − Îl ‖ (7)

LL1 = LL1
r + LL1

l (8)
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Lrec = Llpips + LL1 (9)

Disparity Smoothness Loss: As in [3,15], we include an edge-aware smoothness loss
(Lsmooth) to promote local depth consistency in edge boundary regions. The objective of
this loss is to encourage adjacent pixels in the edge region to have similar depth values,
based on the assumption that they likely belong to the same object or similar locations.
This principle is employed for both the left and right disparity maps generated from the
input. As a result, corresponding smoothness losses (Lsmooth

l and Lsmooth
r ) are formulated.

The disparity smoothness loss is defined as follows:

Lsmooth
r = ∑ |∂xd∗r |e−|∂x Ir | + |∂yd∗r |e−|∂y Ir | (10)

Lsmooth
l = ∑ |∂xd∗l |e

−|∂x Il | + |∂yd∗l |e
−|∂y Il | (11)

Lsmooth = Lsmooth
r + Lsmooth

l (12)

d∗ = d/d̄ represents the mean-normalized disparity obtained from [24]. The symbol ∂d
corresponds to the gradient of the disparity, while ∂I represents the gradient of the image.
The gradient is calculated for each axis in the given disparity map using partial derivatives
with respect to the x and y axes, as specified by the equation. Due to the steep gradient
variations near the edges, a weight-based exponential scaling is applied to reduce the scale.

Left–Right Disparity Consistency Loss: Furthermore, we incorporated the left–right
consistency loss proposed by Godard et al. [3] into our model. In essence, it evaluates the dif-
ference between the left disparity map and the projected right disparity map, and vice versa.
Therefore, it involves comparing the left-to-right disparity map (dl2r), obtained through the
warping process w+, with the right disparity map (dr), as well as the right-to-left disparity
map (dr2l), obtained through the warping process w−, with the left disparity map (dl). This
process is designed to ensure alignment and consistency between left and right disparity
maps, contributing to the overall accuracy and quality of the depth estimation. This loss is
defined as follows:

dl2r = w+(dl , dr) (13)

dr2l = w−(dr, dl) (14)

Lcon
r = ∑ ‖ dl2r − dr ‖ (15)

Lcon
l = ∑ ‖ dr2l − dl ‖ (16)

Lcon = Lcon
r + Lcon

l . (17)

Left–Right Difference Image Loss: Here, the term “difference image” means simply
subtracting the right image from the left image, providing another hint as to how much a
particular pixel has to move during the reconstruction process. The left–right difference
image loss serves a crucial role in guiding the pixel values of the reconstructed difference
images to closely resemble the corresponding values in the target difference images, which
complements and enhances the image reconstruction loss by further enforcing consistency.
To ensure consistency with the proposed image reconstruction loss, we formulated the left
and right difference image loss by combining L1 loss and LPIPS-based loss. The left–right
difference image loss, denoted as Ldi f f , is defined as follows:

Ldi f f
l1 = ∑ ‖ (Il − Ir)− ( Îl − Îr) ‖ (18)



Electronics 2023, 12, 3730 8 of 17

Ldi f f
lpips = ∑ lpips((Il − Ir), ( Îl − Îr)) (19)

Ldi f f = Ldi f f
l1 + Ldi f f

lpips (20)

Total training loss: The main purpose of this study is to prove the effect of the proposed
LPIPS-based image reconstruction loss and left–right difference image loss, so each loss
function is designed to contribute to the total loss with the same weight. Thus, the total
training loss, obtained by simply combining all the proposed losses, is the following:

Ltotal = Lrec + Lsmooth + Lcon + Ldi f f (21)

4. Experiments

In this section, we present a comprehensive performance analysis of our proposed
model, which has been trained on the KITTI 2015 driving dataset. To assess the performance
of our model, we conduct a thorough evaluation using standard metrics, encompassing
both quantitative and qualitative aspects. This evaluation entails comparing our model
with a range of existing studies that employ more sophisticated learning approaches, as well
as studies that utilize similar methodologies.

As described in Section 2, the learning model for the self-supervised monocular
depth estimation network is evolving from learning with stereo–image data, advancing
through monocular video sequence data, hybrid data, and recently culminating in the
integration of multi-task learning encompassing depth and segmentation. The primary
purpose of this study is to demonstrate the effectiveness of the proposed LPIPS-based
image reconstruction loss and the utilization of left–right difference image loss. To achieve
a more objective understanding of our study’s performance, we compare it with relevant
studies that employ the aforementioned learning models. This comparative approach
facilitates a more unbiased assessment of our study’s achievements.

To ensure equitable evaluations, we meticulously select models for comparison that
have been trained on the same KITTI 2015 640× 192 image dataset used in our research.
Additionally, assessments are conducted following the established norm of constraining
depth estimates to a maximum of 80 m. In cases where diverse networks were employed
in analogous studies, we enhance the comparability of the results. When feasible, we
specifically analyze and contrast outcomes derived from the application of the same ResNet
architecture used in our study.

4.1. Experimental Setup
4.1.1. Dataset

• KITTI: The proposed self-supervised monocular depth estimation network is trained
using stereo–image data from the KITTI 2015 driving dataset. The dataset consists
of 61 scenes and includes a total of 42,382 pairs of rectified stereo–images. However,
for our training, we utilize only 22,600 image pairs based on the Eigen split [1].
In addition to the image data, 3D point data are provided for each image, serving
as the ground truth for performance evaluation. To ensure a consistent evaluation
and to enable meaningful comparisons with other approaches, the resolution of the
image data and Velodyne depth map is resized to 640 × 192 during the training
process. This resizing allows us to maintain accuracy and precision while facilitating
fair comparisons in the field.

• CityScapes: To assess the generalization performance of the proposed model, we
evaluate the model on the CityScapes dataset [34]. The dataset consists of a diverse
collection of stereo video sequences recorded from street scenes in 50 different cities. It
includes high-quality pixel-level annotations for 5000 frames, as well as a larger set of
20,000 weakly annotated frames. Although our proposed model is not trained on this
dataset, we solely test it to ensure compatibility with the target studies for comparative
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analysis. This evaluation allows us to gauge the model’s ability to generalize and
perform well on unseen data from real-world street scenes, demonstrating its potential
for real-world applications beyond the training dataset.

4.1.2. Implementation Details and Parameter Setting

The proposed model is implemented using the PyTorch framework [35] and is trained
on two GeForce RTX 3090 GPUs. Throughout both training and testing, the image resolution
employed is 640× 192 pixels. The training process spans 60 epochs, with a batch size of 14.
To confine the output disparities within a suitable range, the output disparities from the
proposed model undergo a sigmoid activation function, bounding their values between
0 and dlimit. The sigmoid nonlinearity is applied using dlimit, which is set to 0.15 times
the width of the image. This bounding mechanism maintains consistency and enforces
meaningful depth values in the output.

For optimization, we employ the Adam optimizer [36] with specific parameter config-
urations. The values for β1 and β2 are established as 0.5 and 0.999, respectively. The initial
learning rate is set to 0.0001. The learning rate schedule follows a distinct pattern: it is
reduced by half from the 15th to the 29th epoch, halved again from the 30th to the 39th
epoch, and then diminished by one-fifth from the 40th epoch until the training is concluded.
This progressive learning rate schedule facilitates convergence and enables the model to
finely adjust its parameters effectively over the training period.

To counteract overfitting and enhance the richness of the training data, we apply
several data augmentation techniques during the training process. These techniques
introduce variations and augment the model’s robustness. Specifically, the following data
augmentation operations are applied with a 50 percent probability:

• Horizontal flips: Images are horizontally flipped, providing additional variations in
object orientations and viewpoints.

• Gamma transformation: Gamma values of the images are adjusted, altering the overall
brightness and contrast.

• Brightness transformation: The brightness of the images is randomly adjusted within
a range of +/− 0.15, introducing variations in lighting conditions.

• Color transformation: Color transformations are applied to the images, modifying the
color space and enhancing diversity.

The application of these data augmentation techniques in a random manner introduces
diversity into the training data, resulting in a reduction in over-fitting and an improvement
in the model’s ability to generalize to unseen data. To achieve this, the weight values
assigned to different loss components are set as follows: image reconstruction loss 1; left–
right disparity consistency loss 1; disparity smoothness loss 1; and left–right difference
loss 1, contributing to the overall total loss. The process of determining the hyperparam-
eters for the network involved an iterative approach that included the evaluation of the
network’s accuracy using randomly sampled validation data. This iterative process facili-
tated fine-tuning and enabled the identification of optimal values for the hyperparameters.
By randomly selecting validation data, we ensured a diverse and representative sample
that accurately reflected the overall dataset. Through this iterative evaluation process, we
were able to make informed decisions regarding hyperparameter values that maximize the
network’s accuracy and overall performance.

4.2. Evaluation on KITTI Dataset

To ensure fair comparisons with other studies, we have trained the proposed model
using the Eigen split methodology applied to the dataset. The Eigen split offers a standard-
ized and widely accepted data partitioning approach for evaluating the effectiveness of
monocular depth estimation models. Within this partition, a total of 22,600 image pairs
are allocated for training the proposed model, while a distinct set of 697 image pairs is
set aside for testing purposes. During testing, the available depth ground-truth data are
employed to gauge the performance of the proposed model. By adhering to the Eigen split
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and utilizing the provided ground-truth data, the performance of the proposed model can
be objectively assessed and contrasted against other studies in a uniform and fair manner.

4.2.1. Quantitative Analysis

First, we compare test results with those obtained from other models that focus on
single-task learning for depth estimation. These models are trained using either stereo–
image data (S) or monocular video sequence data (M) from the KITTI dataset. The purpose
of this comparison is to evaluate the performance of our proposed model in relation to
other models that employ different network architectures but share the same single-task
learning approach as ours. Through this comparison, we aim to assess how our model
performs compared to alternative models that have a similar learning approach but differ
in their network architectures. Table 1 shows the quantitative results.

For the quantitative analysis, the following standard evaluation metrics are employed.
Here, N, d̂i, and di denote the total number of image pixels, estimated depth, and ground-
truth depth for pixel i, respectively. For metrics (1) through (4), a lower score is indicative
of a better performance, whereas for metric (5), a higher score indicates superior results.

(1) Absolute relative error (Abs Rel):

1
N

N

∑
i=1

||d̂i − di||
di

(2) Squared relative error (Sq Rel):

1
N

N

∑
i=1

||d̂i − di||2
di

(3) Root-mean-squared error (RMSE):√√√√ 1
N

N

∑
i=1

(d̂i − di)2

(4) Mean log10 error (RMSE log):√√√√ 1
N

N

∑
i=1
||log(d̂i)− log(di)||2

(5) Accuracy with threshold t, that is, the percentage of d̂i, such that δ = max( di
d̂i

, d̂i
di
) < t,

where t ∈ [1.25, 1.252, 1.253].

The comparison conducted between the proposed model and other single-task learn-
ing models, whether utilizing monocular video sequence data or stereo–image data, clearly
demonstrates the enhanced performance of our model across all evaluated metrics. A no-
table observation in our study is the superior performance of our proposed model compared
to Monodepth2 [15], despite sharing a similar network structure. The key differentiating
factor lies in the inclusion of specifically designed losses introduced in this paper, namely
LPIPS-based image reconstruction loss instead of SSIM-based, and the left–right differ-
ence image loss. This highlights the significant impact of our well-designed losses in
enhancing the performance of stereo–image learning for a self-supervised monocular depth
estimation network.

Table 2 presents a performance comparison between our model, which exclusively
utilizes training on stereo–image data (S), and models trained through a combination
of stereo–image data and monocular video sequence data (S + M). Interestingly, despite



Electronics 2023, 12, 3730 11 of 17

being trained solely on stereo–image data, our model outperforms the models trained
using the hybrid approach. The outcomes from both Tables 1 and 2 unmistakably illus-
trate the notable performance enhancements achieved by EPC++ [26], Monodepth2 [15],
and Rottmann et al. [16] through the adoption of hybrid training strategies. This observa-
tion implies the potential for further elevating our model’s performance in future iterations
by integrating hybrid training techniques.

Table 1. Comparison with single-task learning models (M: monocular video sequence data learning,
S: stereo–image data learning, ↓: lower is better, ↑: higher is better), our results are the best for
all metrics.

Method Data Type Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
GeoNet [23]

M

0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [24] 0.151 1.257 5.583 0.228 0.810 0.933 0.974
EPC++ [26] 0.141 1.029 5.350 0.216 0.816 0.941 0.979
SGDepth [29] 0.117 0.907 4.844 0.196 0.875 0.958 0.980
Li [27] 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Xiong [28] 0.126 0.902 5.502 0.205 0.851 0.950 0.979

Garg [13]

S

0.152 1.226 5.849 0.246 0.784 0.921 0.967
Godard [3] 0.148 1.344 5.927 0.247 0.803 0.922 0.964
SuperDepth [14] 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 [15] 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Park1 [17] 0.121 0.836 4.808 0.194 0.859 0.957 0.982
Rottmann [16] 0.119 0.947 5.011 0.213 0.855 0.946 0.974
Park2 [20] 0.112 0.832 4.741 0.192 0.876 0.957 0.980
Ours 0.100 0.756 4.575 0.179 0.894 0.962 0.982

Table 2. Comparison with hybrid learning of stereo–image and monocular video sequence (S: stereo–
image data learning, S + M: hybrid data learning, ↓: lower is better, ↑: higher is better), our results are
the best for all metrics.

Method Data Type Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
EPC++ [26]

S + M

0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [15] 0.106 0.818 4.750 0.196 0.874 0.957 0.979
Rottmann [16] 0.114 0.864 4.861 0.202 0.862 0.952 0.978
Watson [37] 0.105 0.769 4.627 0.189 0.875 0.959 0.982
HRDepth [38] 0.107 0.785 4.612 0.185 0.887 0.962 0.982

Ours S 0.100 0.756 4.575 0.179 0.894 0.962 0.982

Table 3 presents a comparison with various multi-task learning models. In Table 3,
we can observe that our single-task learning model, which focuses solely on depth esti-
mation, achieves a higher performance compared to the multi-task learning models that
simultaneously tackle semantic segmentation and depth estimation. The results showcased
in Table 3 clearly demonstrate the effectiveness of the multi-task learning approach for
monocular video sequence data learning models. However, it is noteworthy that our
model outperforms the multi-task learning models in five metrics: absolute relative error,
squared relative error, root-mean-squared error, Mean log10 error, and first accuracy with
threshold t. This indicates the notable improvement of our model. On the other hand,
our model exhibits a slightly lower performance in the remaining two metrics when com-
pared to [30,32], and in the last metric when compared to [31]. The findings presented
in Tables 1–3 indicate that transitioning from stereo–image learning to hybrid learning
and from single-task training to multi-task learning results in significant improvements in
self-supervised monocular depth estimation performance. An illustrative instance show-
casing the characteristic enhancement in performance resulting from the progression of
learning types, as demonstrated by Rottmann et al. [16], has been depicted in Table 4.
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These findings indicate the substantial potential of our model for further enhancements
and improvements.

Table 3. Comparison with multi-task learning models (STL: single-task learning, MTL: multi-task
learning, M: monocular video sequence data learning, S: stereo–image data learning, S + M: hybrid
data learning, ↓: lower is better, ↑: higher is better), underlined results are better than ours.

Method Task
Type

Data
Type Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE

Log ↓
δ < 1.25

↑
δ < 1.252

↑
δ < 1.253

↑
SGDepth[29]

MTL
M

0.112 0.833 4.688 0.190 0.884 0.961 0.981
Guizilini [32] 0.113 0.831 4.663 0.189 0.878 0.971 0.983
SAFENet [30] 0.112 0.788 4.582 0.187 0.878 0.963 0.983
Xiao [31] 0.113 0.820 4.680 0.191 0.879 0.960 0.983
Rottmann [16] S + M 0.106 0.778 4.690 0.195 0.876 0.956 0.979
SceneNet [33] S 0.118 0.905 5.096 0.211 0.839 0.945 0.977

Ours STL S 0.100 0.756 4.575 0.179 0.894 0.962 0.982

Table 4. Rottmann’s [16] example of performance improvement through learning-type evolution
(S: stereo–image data learning, S + M: hybrid data learning, S + M + MTL: hybrid data and multi-task
learning ↓: lower is better, ↑: higher is better).

Learning-Type Evolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
S 0.119 0.947 5.011 0.213 0.855 0.946 0.974
S + M 0.114 0.864 4.861 0.202 0.862 0.952 0.978
S + M + MTL 0.106 0.778 4.690 0.195 0.876 0.956 0.979

4.2.2. Qualitative Analysis

Figure 2 displays the predicted depth maps of various studies for multiple images.
The comparative analysis primarily focuses on comparing our model’s results with a series
of Monodepth models that share a similar structure and employ an SSIM-based image
reconstruction loss. Two other relevant studies were also considered in this analysis.

In the first image of the top row, our depth map accurately represents the large bus,
sign, and roadside forest on the left, as well as the grass surrounding the road and the
nearby forest on the right. The second image showcases a clear depiction of a cyclist,
with well-defined boundaries between the road and the trimmed shrubbery and forest in
the distance. Our model’s superiority is evident in the third image, where the boundaries
of roads, guardrails, low shrubbery trees, and the sky are clearly visible in the distance.
The fourth image emphasizes the clear boundaries of large trucks on both sides, while the
fifth image highlights the depth of a long tram on the left and the distinct border between
the road, fence, and surrounding forest on the right. An important point to emphasize here
is the impact of object edge clarity and object geometry correctness in the depth map on
the overall depth performance. In Figure 2, the edges of objects such as cars, traffic signs,
cyclists, trains, and trees in the Monodepth2(MS) images appear clearer than in our images.
However, it can be observed that the shape accuracy of objects in our depth map images
is higher than that of Monodepth2(MS). This difference is linked to the quantitatively
enhanced performance of our model compared to Monodepth2(MS), as shown in Table 2.
This means that the precise image shape of an object generated by LPIPS-based image
reconstruction and left–right difference image loss functions adopted by our model has a
greater impact on depth map accuracy. Evidently, further improvement is also needed to
increase the accuracy of object edges in the depth map images generated by our model.

Moving to the bottom row, the first and second images provide a clearer representation
of cyclists, roadside buildings, traffic lights, and signs. The third image at the bottom further
demonstrates our model’s superiority, with a distinct figure of a cyclist on the left and a
clearly visible outline of a large building far away on the right side of the road. In the
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fourth and fifth images at the bottom, our depth map accurately portrays the signs and
their surroundings, as well as the cars and their surroundings. Visually, it is evident that
our model generates clearer depth maps compared to other studies. Particularly, our model
excels in capturing depth information for composite objects such as cyclists, large structures,
distant shrubbery trees, grassy areas around roads, borders with forests, and long-distance
roads. This superior performance can be attributed to the effectiveness of LPIPS-based
image reconstruction loss and the inclusion of the left–right difference loss in our model.

Figure 2. Qualitative comparison with other studies (M: monocular video sequence data learning,
S: stereo–image data learning, MS: hybrid data learning).

Figure 3 illustrates the impact of our model’s left–right difference image loss on the
generation of depth maps for distant regions. The first depth map, positioned at the
bottom, showcases the substantial improvement achieved when our model incorporates
the left–right difference image loss. The boundary between the road and the guardrail
is significantly clearer, even at greater distances, compared to the depth map generated
by our model without utilizing this loss function. Additionally, there is an improved
definition in depicting the demarcation between the forest surrounding the road and the
distant sky, particularly in remote areas. The second image further highlights the difference.
The model that incorporates the left–right difference image loss demonstrates enhanced



Electronics 2023, 12, 3730 14 of 17

clarity in distinguishing the spatial variation between the sign and the background, as well
as the structure and the background, in comparison to the model without the application
of this loss function. Furthermore, the third depth map reveals that the model utilizing
the left–right difference image loss effectively establishes a distinct boundary between
the distant forest and the sky. This demonstrates the ability of our model to capture
and represent the depth information accurately, particularly in remote areas. Overall,
Figure 3 emphasizes the significance of the left–right difference image loss in improving
the depiction of depth maps, especially for distant regions, by enhancing clarity, spatial
variation, and boundary delineation.

Figure 3. Qualitative comparison between our models with and without left–right difference im-
age loss.

4.2.3. Ablation Analysis

We have conducted an ablation study with a primary focus on highlighting the efficacy
of LPIPS-based image reconstruction loss and left–right difference image loss, as proposed
in this paper. The ablation study also aims to offer a comparative analysis between the
newly introduced LPIPS-based image reconstruction loss and the conventional SSIM-based
counterpart. The outcomes of the ablation study are summarized in Table 5.

Applying SSIM-based image reconstruction loss results in a noticeable enhancement
in performance compared to using only L1 loss. Notably, the adoption of the proposed
LPIPS-based image reconstruction loss yields substantial performance improvements when
contrasted with the conventional SSIM-based loss. Moreover, the inclusion of the left–right
difference image loss function further contributes to the overall performance enhancement.
Through this comprehensive ablation analysis, we successfully demonstrate the significant
effectiveness of both the proposed LPIPS-based image reconstruction loss and the left–right
difference image loss.

Table 5. Ablation analysis (L1: L1-based image reconstruction loss, SSIM: SSIM-based image recon-
struction loss, LPIPS: LPIPS-based image reconstruction loss, DIFF: left–right difference image loss,
↓: lower is better, ↑: higher is better).

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
L1 0.178 1.213 5.601 0.250 0.735 0.922 0.970
L1 + SSIM 0.112 0.790 4.687 0.195 0.871 0.955 0.979
L1 + LPIPS 0.106 0.760 4.635 0.187 0.883 0.958 0.980
L1 + LPIPS + DIFF 0.100 0.756 4.575 0.179 0.894 0.962 0.982

4.3. Evaluation on CityScapes Dataset

We extensively evaluated our proposed model using a total of 1525 test images from
the CityScapes dataset. To ensure methodological rigor, we applied a standardized process
of cropping and resizing the lower section of each image, resulting in a uniform resolution
of 640× 192, mirroring the approach used for the KITTI dataset. The qualitative outcomes
of this evaluation, focusing on the CityScapes test images, are showcased in Figure 4.
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The depth maps generated by our model exhibit remarkable precision in capturing a di-
verse array of objects within these test images, ranging from automobiles, traffic signs,
and pedestrians to trees, bicycles, and road surfaces. This impressive performance under-
scores the model’s robust generalization capabilities, enabling accurate depth predictions
across a wide spectrum of untrained image contexts.

Figure 4. Qualitative results on CityScapes dataset.

5. Conclusions

In conclusion, this paper presented a novel approach for self-supervised monocular
depth estimation by leveraging stereo–image learning. The proposed model incorporates
a perceptual assessment of reconstructed and left–right difference images, effectively
guiding the training process, particularly in challenging conditions such as low-texture
areas and distant regions. These kinds of regions have often posed challenges for methods
utilizing conventional computer vision-based IQA models like SSIM. The adoption of LPIPS
image assessment algorithm as an image reconstruction loss in our model is particularly
advantageous due to its alignment with human perception during the training process. This
characteristic ensures that the reconstructed images are perceptually aligned with the target
images, reducing artifacts even in challenging regions. Consequently, the use of LPIPS-
based loss function enhances the overall quality and visual fidelity of the reconstructed
images, especially in artifact-prone regions. The integration of the left–right difference
image loss primarily aims to mitigate distortions arising from variations in the left–right
images of a stereo pair, caused by factors like lighting fluctuations and camera calibration
errors. Moreover, the application of the left–right difference image loss effectively mitigates
distortions in distant regions of the reconstructed images by guiding distant pixel values
within the reconstructed difference images toward convergence with zero.

The experimental results conducted on the KITTI driving dataset provide compelling
evidence of the effectiveness of our proposed approach. Our model outperforms other
recent studies employing more complex approaches and those utilizing similar approaches.
Despite being trained solely on stereo–image data, our model demonstrates superior
performance compared to networks employing a hybrid training approach involving both
stereo–image and monocular video sequence data. Furthermore, our single-task learning
model trained solely for predicting depth achieves higher performance than multi-task
learning models trained for both semantic segmentation and depth estimation. Through the
process of comparing experimental results, we observed that the hybrid data learning and
multi-task learning approaches significantly enhance the performance of self-supervised
monocular depth estimation. These findings suggest that incorporating these approaches
into our model has the potential to further improve its performance. As a result, our future
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research endeavors will focus on exploring and implementing these techniques to enhance
the capabilities of our model.
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