
Citation: Zeng, G.; Zou, Y.

Leveraging Memory Copy Overlap

for Efficient Sparse Matrix-Vector

Multiplication on GPUs. Electronics

2023, 12, 3687. https://doi.org/

10.3390/electronics12173687

Academic Editor: Shinichi

Yamagiwa

Received: 2 August 2023

Revised: 24 August 2023

Accepted: 30 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Leveraging Memory Copy Overlap for Efficient Sparse
Matrix-Vector Multiplication on GPUs
Guangsen Zeng and Yi Zou *

School of Microelectronics, South China University of Technology, Guangzhou 510641, China;
mizengguangsen@mail.scut.edu.cn
* Correspondence: zouyi@scut.edu.cn

Abstract: Sparse matrix-vector multiplication (SpMV) is central to many scientific, engineering,
and other applications, including machine learning. Compressed Sparse Row (CSR) is a widely
used sparse matrix storage format. SpMV using the CSR format on GPU computing platforms is
widely studied, where the access behavior of GPU is often the performance bottleneck. The Ampere
GPU architecture recently from NVIDIA provides a new asynchronous memory copy instruction,
memcpy_async, for more efficient data movement in shared memory. Leveraging the capability of
this new memcpy_async instruction, we first propose the CSR-Partial-Overlap to carefully overlap
the data copy from global memory to shared memory and computation, allowing us to take full
advantage of the data transfer time. In addition, we design the dynamic batch partition and the
dynamic threads distribution to achieve effective load balancing, avoid the overhead of fixing up
partial sums, and improve thread utilization. Furthermore, we propose the CSR-Full-Overlap based
on the CSR-Partial-Overlap, which takes the overlap of data transfer from host to device and SpMV
kernel execution into account as well. The CSR-Full-Overlap unifies the two major overlaps in SpMV
and hides the computation as much as possible in the two important access behaviors of the GPU.
This allows CSR-Full-Overlap to achieve the best performance gains from both overlaps. As far as
we know, this paper is the first in-depth study of how memcpy_async can be potentially applied to
help accelerate SpMV computation in GPU platforms. We compare CSR-Full-Overlap to the current
state-of-the-art cuSPARSE, where our experimental results show an average 2.03x performance gain
and up to 2.67x performance gain.

Keywords: sparse matrix-vector multiplication (SpMV); CSR; NVIDIA Ampere GPUs; shared memory;
overlap; memcpy_async; dynamic batch partition; dynamic threads distribution

1. Introduction

Sparse matrix-vector multiplication (SpMV) is a commonly used operation in computer
science and numerical computation with a wide range of applications in many fields [1,2],
such as large-scale linear systems [3], graph analytics [4,5], machine learning [6], and so
on. SpMV is often the performance bottleneck of these applications, so it is important
to study how to improve the performance of SpMV. Sparse matrices generally only have
a small number of nonzero elements, which are distributed in different positions of the
matrix. This irregular distribution results in uncoalesced memory access behavior, which
leads to huge memory access overhead [7]. In order to reduce such memory overhead to
improve the memory access efficiency, a variety of sparse matrix storage formats have been
proposed, such as Coordinate (COO) [7], Compressed Sparse Row (CSR) [7], ELLPACK
(ELL) [7], Hybrid ELL COO (HYB) [7], CSR5 [8], etc. Among these various storage formats,
CSR is the most widely used and the de facto default format. Other storage formats are
inevitably involved in the problem of format conversion from CSR, causing considerable
performance overhead [9]. Therefore, it is essential to focus on improving the performance
of the SpMV algorithm based on the CSR storage format.
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Graphics processing units (GPUs) provide efficient parallel computing capability
through multiple stream processors and high memory bandwidth. GPU computing plat-
forms are very attractive in the field of high performance computing [10]. In this paper, we
focus particularly on SpMV performance accelerations on NVIDIA GPU-based computing
platforms. Without loss of generality, we use the term GPUs throughout the paper to
refer to NVIDIA GPUs, which are most commonly used in SpMV calculations. However,
the unstructured nature of sparse matrices introduces new challenges, such as difficulty
in maintaining the thread load balance and coalesced memory accesses [7]. Such prob-
lems inevitably all contribute to constraining the GPU to achieve the desired performance
acceleration for SpMV.

In this paper, following convention, we use the term device throughout the paper to
refer to NVIDIA GPUs and host to refer to CPUs [11], where global and shared memory are
used in the context of GPUs. Based on our observations, there exist two major overlaps
in the SpMV data movement, namely the global-to-shared data copy overlap and host-to-
device data copy overlap. The global-to-shared overlap refers to the overlap of data copy
from global memory to shared memory and computation. The device-to-host overlap
refers to the overlap of data transfer from host to device and SpMV kernel execution. For
convenience of discussion, we use GSOL and HDOL for short in this paper to refer to these
two overlaps.

In this paper, we propose a new method to unify these two overlaps to achieve the best
performance improvement for SpMV. The main contributions of this paper are summarized
as follows:

• We introduce the CSR-Partial-Overlap, a novel CSR-based SpMV acceleration algorithm
on CUDA-enabled GPUs. This serves as the first in-depth study of how the new
memcpy_async in NVIDIA Ampere GPU architecture can be applied to performance
acceleration in SpMV;

• We design the dynamic batch partition and the dynamic threads distribution algorithms to
further improve the performance of the CSR-Partial-Overlap;

• We propose the CSR-Full-Overlap based on CSR-Partial-Overlap to unify two major
overlaps in SpMV data movement. CSR-Full-Overlap hides the SpMV computa-
tion as much as possible in two major types of data transfers, gaining performance
acceleration from both overlaps;

• We present a detailed comparative analysis of the proposed CSR-Partial-Overlap
and CSR-Full-Overlap with a variety of well-known SpMV implementations. We
demonstrate that CSR-Partial-Overlap outperforms all other approaches by about
1.4× on average, where CSR-Full-Overlap is superior to the widely used NVIDIA
cuSPARSE, with a speedup of an average of 2.03× and up to 2.67×.

The rest of the paper is organized as follows. Section 2 provides a literature review of
related work in this context. Section 3 offers a brief background review on SpMV, sparse
matrix storage structures, NVIDIA Ampere GPU architecture, and CUDA. In Section 4, we
describe the design philosophy of the proposed CSR-Partial-Overlap and CSR-Full-Overlap
methods in detail. Next, we introduce the experimental setup in Section 5, as well as
analysis and discussions on evaluation results. We conclude this paper in Section 6 with
our thoughts on future research directions.

2. Related Work

GPU-based SpMV acceleration has been studied extensively [7–10,12–21]. Different
optimization techniques have been proposed, focusing on introducing new storage for-
mat [7,8], threads distribution [9,16], shared memory leverage [12], automatic format selec-
tion [13,20], performance analysis and autotuning [14,18,19,21], and load balancing [15,17].

Bell and Garland propose CSR-Scalar and CSR-Vector [7]. In CSR-Scalar, each thread
processes one row of a sparse matrix. If each row of the sparse matrix has a low number of
average nonzero elements, such as 1∼2, CSR-Scalar offers better performance. However,
when the number of average nonzero elements per row is large, the performance is lower
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due to uncoalesced memory accesses. On the other hand, unlike CSR-Scalar, in CSR-Vector
each warp processes one row of the matrix. This coalesced memory access improves mem-
ory access efficiency greatly. However, when short rows are encountered, the redundant
threads in the warp remain idle, leading to low computational resource utilization.

In an effort to solve the shortcomings of CSR-Scalar and CSR-Vector, Liu and Schmidt
propose LightSpMV [9], splitting warps into vectors, where each vector owns vector_size
threads and processes one row of the matrix. LightSpMV first calculates the number
of row-averaged nonzero elements of the sparse matrix to determine the appropriate
vector_size before performing the SpMV. This approach alleviates the problems of low
thread utilization and uncoalesced memory access. However, if the variance of the row
lengths of the matrix is very large, using a fixed vecctor_size is not effective in solving the
above problem.

As regards to the memory accesses in GPUs, the access latency to global memory is
the largest. For this reason, each streaming multiprocessor in a GPU is equipped with
shared memory, accessible to CUDA cores within the streaming multiprocessor with a
lower access latency than that of the global memory. Based on this hardware feature of
GPUs, Greathouse and Daga propose the CSR-Stream [12], which first batch-copies nonzero
elements from global memory to shared memory, then accumulates the nonzero elements
of each row and writes the result back to global memory. It accesses nonzero elements in a
coalesced manner, greatly improving the memory access efficiency. The CSR-Stream proves
that copying data to shared memory at first and then distributing threads to compute the
sum of each row is a better solution, largely thanks to shared memory having low access
latency and friendly to uncoalesced memory access. However, copying data from GPU
global memory to shared memory takes up thread resources. Meanwhile, as compared with
other methods, it has two more accesses to shared memory, leading to poor performance
on sparse matrices with an average row length greater than 32 without fully utilizing the
advantages of shared memory for SpMV.

NVIDIA has recently proposed the Ampere GPU architecture [22], which implements a
new asynchronous copy instruction, memcpy_async. It allows data loading asynchronously
from global memory to shared memory. In other words, no additional thread resources
are required for copying data from global memory to shared memory, thus freeing up the
thread to completely focus on computational operations during such data movement. We
believe that the new capability provided by memcpy_async in the Ampere architecture can
be applied for accelerating SpMV operation. Particularly in this paper, we explore the op-
portunity of overlapping the processes of “copying nonzero elements from global memory
to shared memory” and “vector processes of each matrix row” using memcpy_async to take
full advantage of shared memory for SpMV to achieve overall improved performance.

In addition, before performing a SpMV operation, nonzero elements are copied from
host to device. Actually, in our own experiments, we note that this process is very time-
consuming, as much as more than 10 times that of the SpMV operation itself. The NVIDIA
GPU attempts to solve this via the CUDA library with the concept of streams [11], where a
stream is a sequence of commands that execute in order. Different streams, on the other
hand, may execute their commands out of order with respect to one another or concurrently.
Streams using the cudaMemcpyAsync function are capable of overlapping the “copy nonzero
elements from host to device” and “SpMV kernel execution”, thus improving performance
by hiding the latency of data movement for SpMV.

3. Background
3.1. Sparse Matrix-Vector Multiplication

In this paper, we investigate the general SpMV equation ~y = αA~x + β~y [23], where
A is a sparse m × n matrix. A has Nnz nonzero elements. ~x is a dense vector of size n
and ~y is a dense vector of size m. α and β are scalars. Let Aij denote the element of A at
position (i, j), xi and yi denote the i-th element of vector ~x and ~y. Note that the result of
SpMV is finally written back into the vector ~y, thus the vector ~y on the right-hand side of
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the equation denotes the old value, and the vector ~y on the left-hand side denotes the new
value. SpMV can be expressed as

yi = β · yi + α · ∑
Aij 6=0

Aij · xj (1)

From Equation (1), we know that there are a total of 2× (Nnz + m) floating point
operations (FLOPs) for a single execution of SpMV.

3.2. Compressed Sparse Row

In this paper, we focus on the SpMV optimization using the widely used sparse matrix
storage format, namely the Compressed Sparse Row (CSR). Using the same m × n matrix A
with Nnz nonzero elements, Figure 1 below illustrates that CSR achieves efficient memory
usage by storing nonzero values in three arrays row_o f f sets, column_indices and values.

5 0 1 0 0

0 0 0 2 0

0 10 0 9 0

0 0 0 0 0

7 4 0 0 0

5 0 1 0 0

0 0 0 2 0

0 10 0 9 0

0 0 0 0 0

7 4 0 0 0

A = 

0 2 3 5 5 70 2 3 5 5 7row_offsets = 0 2 3 5 5 7row_offsets = 

0 2 3 1 3 0 10 2 3 1 3 0 1column_indices = 0 2 3 1 3 0 1column_indices = 

5 1 2 10 9 7 45 1 2 10 9 7 4values = 5 1 2 10 9 7 4values = 

0 2 3 5 5 7row_offsets = 

0 2 3 1 3 0 1column_indices = 

5 1 2 10 9 7 4values = 

5 0 1 0 0

0 0 0 2 0

0 10 0 9 0

0 0 0 0 0

7 4 0 0 0

A = 

0 2 3 5 5 7row_offsets = 

0 2 3 1 3 0 1column_indices = 

5 1 2 10 9 7 4values = 

Figure 1. CSR representation of an example sparse matrix A.

Note that the CSR format uses 0-based indices, i.e., the index for the first row or column
starts from 0. The arrays values and column_indices are of length Nnz, and contain the
nonzero values and the column indices of those values, respectively. The array row_o f f sets
is of length m + 1 and encodes the index in values and column_indices where the given row
starts. This is equivalent to row_o f f sets[j] encoding the total number of nonzeros above
row j. row_o f f sets[m] is equal to Nnz. Figure 1 is an example. Algorithm 1 shows the
pseudo-code of CSR-based SpMV using CPU.

Algorithm 1: Sequential SpMV based on CSR format
1 for i = 0; i < m; ++i do
2 sum = 0;
3 for j = row_offsets[i]; j < row_offsets[i + 1]; ++j do
4 sum += values[j] * x[column_indices[j]];

5 y[i] = α * sum + β * y[i];

3.3. Ampere GPU Architecture

NVIDIA GPUs contain multiple streaming multiprocessors (SMs), where each SM con-
tains all necessary computation resources including CUDA cores, scheduler, dispatch units,
shared memory, register files, L1 cache, etc. Shared memory is accessed by the correspond-
ing CUDA cores in the SM they belong to with support for uncoalesced accesses [10,11].
This avoids considerable access latency as compared to global memory when memory
accesses are uncoalesced. Therefore, it is natural to design the SpMV computation such
that we partition the data into batches to batch-copy these data from the global memory to
the shared memory for the SM to perform compute on the data [12].

Recently, NVIDIA has released a new GPU architecture, namely the Ampere. The
Ampere comes with a new powerful asynchronously shared memory copy capability, which
is implemented in CUDA as the memcpy_async instruction [22]. As its name suggests, it
offers efficient asynchronous data copy from global memory to shared memory. This means
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that copying data using memcpy_async no longer occupies thread resources, freeing up the
thread during data movement for computation. Thus, we can leverage this mechanism to
achieve efficient SGOL to improve the performance. In addition, the Ampere implements
a neat hardware acceleration capability to bypass for L1 cache in memcpy_async, copying
data directly from global memory to shared. Figure 2 shows the difference between
memcpy_async and without memcpy_async when copying data.

Global Memory

Shared Memory

L2 Cache

L1 Cache

Registers

Global Memory

Shared Memory

L2 Cache

L1 Cache

Registers

for(i = 0; i < n;  ++i) shared[i] = global[i];

Global Memory

Shared Memory

L2 Cache

L1 Cache

Registers

Global Memory

Shared Memory

L2 Cache

L1 Cache

Registers

memcpy_async(block, shared, global, n*size);

Global Memory

Shared Memory

L2 Cache

L1 Cache

Registers

for(i = 0; i < n;  ++i) shared[i] = global[i];

Global Memory

Shared Memory

L2 Cache

L1 Cache

Registers

memcpy_async(block, shared, global, n*size);

Figure 2. Illustration of the process with and without memcpy_async for data copying from global
memory to shared memory.

Figure 2 offers an illustrative example of two ways for data copying from global
memory to shared memory, where the array shared is stored in shared memory and the
array global is stored in global memory. When using memcpy_async, data avoids taking a
long journey through the memory hierarchy, freeing the thread block as well as related
registers from the task of moving data to focus on compute-centric tasks.

3.4. CUDA Streams

Operations within streams in CUDA are executed sequentially, while operations in
different streams can be interleaved and, if possible, can be executed concurrently. The
cudaMemcpyAsync function is used to copy data from the host memory to the device global
memory asynchronously, designed to only be called by the host side. The memcpy_async
function, on the other hand, can only be called by the device side, copying data asyn-
chronously between global memory and shared memory in the device. Streams use the
cudaMemcpyAsync function to achieve the overlap of data transfer from host to device
and SpMV kernel execution. Algorithm 2 provides a simple code example showing how
cudaMemcpyAsync is used, while Figure 3 provides an illustrative view of how the data
movement and kernel execution are overlapped.

Algorithm 2: Example of overlapping data transfer with kernel execution

1 for i = 0; i < 2; ++i do
2 cudaMemcpyAsync(dev_in + i * size, host_in + i * size, size,

cudaMemcpyHostToDevice, stream[i]);
3 kernel<<<128, 512, 0, stream[i]>>>((dev_in + i * size, dev_out + i * size, size);
4 cudaMemcpyAsync(host_out + i * size, dev_out + i * size, size,

cudaMemcpyDeviceToHost, stream[i]);
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Figure 3. Example view of overlapping the data transfer and kernel execution for two streams.

4. Proposed Methods

The goal of this work is to describe a high-performance SpMV using CSR storage
format on GPU, hiding the computation as much as possible in the two important access
behaviors of the GPU. We first design the CSR-Partial-Overlap, with a two-staged pipeline
design using memcpy_async, targeted directly at GSOL-type overlapping. We further design
the dynamic batch partition algorithm for the CSR-Partial-Overlap to remove the overhead
of fixing up partial sums and allow low cost and effective load balancing. In addition, we
design the dynamic threads distribution algorithm for the computation task in the two-staged
pipeline, to improve thread utilization. Finally, based on the CSR-Partial-Overlap, we
propose the CSR-Full-Overlap, which is not only designed for HDOL-type overlapping but
also further unifies the two major overlap types for best overall performance improvement.

4.1. CSR-Partial-Overlap

To solve the shortcoming of existing SpMV CSR algorithms discussed in Section 2, we
propose the CSR-Partial-Overlap algorithm with both faster data copying and concurrency
in computing and data copying. We aim to achieve these benefits by carefully and smartly
applying memcpy_async to SpMV in CSR-Partial-Overlap.

Since the size of shared memory is fixed, the data is partitioned into batches before
performing SpMV. We design a two-staged pipeline for CSR-Partial-Overlap to overlap
data copying and computation. In addition, we dynamically distribute threads for batches
to obtain better performance in data computing.

4.1.1. Partition Nonzero Elements into Batches

An intuitive strategy for batch partition is to have a fixed number of nonzero elements
per batch, as shown in Figure 4. However, this approach leads to nonzero elements
belonging to the same row being partitioned into two different batches. For example, in
Figure 4, row4 is partitioned into batch1 and batch2, where batch1 and batch2 may be
assigned to different GPU blocks for computation. The batch would have to save the partial
sums of the split rows to the global memory during the computation and wait for all batch
computations to finish before starting another kernel to accumulate the partial sums and
write them back. Consequently, this approach results in additional global memory accesses
and additional kernel overhead for partial sums accumulation. Moreover, writing the
computation result of row back to ~y is also a non-trivial overhead since batches are likely to
differ in number of rows, implying that loads from different batches are not sufficiently
well-balanced.

To mitigate the above problem, we design a dynamic batch partition algorithm (exe-
cuted on the host side), where batches have different numbers of nonzero elements, limited
only by max_batch_size. The steps to partition the batches are as follows:

1. Pick out the extra-long rows whose row length is greater than max_batch_size and
record them in the long_row_in f os array, as shown in line 3 in Algorithm 3;

2. Fill each row into current the batch sequentially. Stop when the number of nonzero
elements in the current batch is larger than max_batch_size or when it encounters an
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extra-long row. Record the start and end rows of the current batch in the batch_in f os
array, as shown in line 7 to 19 in Algorithm 3;

3. Continue to fill the remaining rows into the next batch until all rows have been
partitioned into the corresponding batch.

Algorithm 3: Dynamic nonzero elements batch partition algorithm
1 // find extra-long rows and save them to long_row_infos
2 for i = 0; i < m; ++i do
3 if (row_offsets[i + 1] - row_offsets[i]) > max_batch_size then long_row_infos.append(i);

4 // define a stack that can accumulate row lengths and check for overflow when
adding elements

5 stack s(max_batch_size);
6 for current_row = 0; current_row < m; ++current_row do
7 if current_row is long row then
8 // skip long row and save stack information to batch_infos
9 if s.empty() == false then

10 batch_infos.append(s.start, s.end + 1);
11 s.clean();

12 continue;

13 current_row_len = row_offsets[current_row + 1] - row_offsets[current_row];
14 // use s.push() to accumulated row length and check for overflow
15 if s.push(current_row, current_row_len) != 0 then
16 // the currently accumulated row length is greater than max_batch_size.

save stack information to batch_infos
17 batch_infos.append(s.start, s.end + 1);
18 s.clean();
19 s.push(current_row, current_row_len);

20 // save remaining rows to batch_infos
21 if s.empty() == false then batch_infos.append(s.start, s.end + 1);

values[] 
column_indices[]

y[]

partial 
sum

partial 
sum

row0 row1 row2 row3 row4row0 row1 row2 row3 row4

batch 0 batch 1 batch 2batch 0 batch 1 batch 2batch 0 batch 1 batch 2

Figure 4. A static batch partition results in the same number of nonzero elements in all batches.

Figure 5 shows an example of the working principle of the above dynamic batch
partition algorithm, with the corresponding pseudo-code presented in where Algorithm 3.

As we can see, such a dynamic batch partition method ensures that the same row is
not partitioned into different batches, avoiding the overhead from accumulating partial
row sums. In our observation, when max_batch_size is large enough, e.g., max_batch_size
is larger than 1024, after eliminating extra-long rows larger than max_batch_size, interest-
ingly, batches do not differ much in their numbers of nonzero elements. In addition, the
complexity of the batch partition is only related to m, not to Nnz. This implies that the
overhead for performing the batch partition does not increase significantly when the sparse
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matrix size increases. Moreover, since the result of batch partition is only related to the
number of nonzero elements in each row of the given matrix, there is no need to re-partition
the batches whenever the values of its nonzero elements are changed. In addition, the
latency overhead of using the CPU to partition the batches can be hidden in the data
transfer process between the host and the device. This partitioning method makes each
batch have a similar load, and the batches are evenly distributed among GPU blocks to
execute. Instead of striving for extreme load balancing, like merge-based, we achieved
effective load balancing with a low-cost partitioning method.
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Figure 5. Illustration of dynamical batch partition, where each resulting batch can differ in their
number of nonzero elements.

4.1.2. Two-Staged Pipeline Processing

As CSR-Partial-Overlap is a CUDA kernel, We assume that the kernel is configured
with B GPU blocks and T threads per block. In practice, we usually set B to an integer
multiple of the number of SMs on the GPU and correspondingly set T to the number
of CUDA cores for each SM. To balance the load, each block processes block_batch_num
batches, where block_batch_num = total number o f batches

B .
For convenience of discussion, Figure 6 illustrates an example two-staged pipeline

design used in CSR-Partial-Overlap. In this example, each block processes three batches.
All batches are added to a queue and go through the pipeline in order. Stage 1 of the
pipeline is to copy the values array and column_indices array from the global memory to
shared memory using memcpy_async, as shown in line 12 to 17 in Algorithm 4. Stage 2
of the pipeline is the computation task, i.e., computing the sum of the nonzero elements
of each row in the batch and writing the result back to the ~y vector, as shown in line
19 to 23 in Algorithm 4. We use the term computation to refer to this computation task.
We configure shared memory of size S for each block, where S = 2× max_batch_size×
(sizeof(T_VAL)+sizeof(T_COL)). This shared memory space is partitioned into two
equal-sized sub shared memory spaces, as denoted by S0 and S1 in Figure 6. S0 and S1
form a shared memory resources pool for pipeline to use.

Note that in the beginning, both S0 and S1 are free. In the above example, we load the
data of batch0 into S0. After S0 completes the data loading, the block performs computation
for batch0, while S1 loads the data of batch1. The batch0 stays in S0 while the computation
is being performed, which is released when the computation is complete. Whenever S0
is released, it can immediately be used to load data of batch2. The pipeline repeats this
behavior until all batches have been computed. Using the same example earlier, we overlap
the loading of batch1 and the computation of batch0, and the loading of batch2 and the
computation of batch1. Algorithm 4 shows the pseudo-code for this process.
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Figure 6. Illustration of two-staged pipeline. All batches are added to a queue and go through the
pipeline in order.

Algorithm 4: Copying data from global memory to shared memory overlap-
ping with computation

1 // this is csr_partial_overlapping() kernel
2 __shared__ sval[max_batch_size * 2], scol[max_batch_size * 2];
3 shared_offset[2] = {0, max_batch_size};
4 // extra block return
5 start_batch = blockIdx.x * block_batch_num;
6 end_batch = min(start_batch + block_batch_num, batch_num);
7 if end_batch <= start_batch then return;
8 // overlapping data copying and computation
9 for compute_batch=0,fetch_batch=0; compute_batch<(end_batch-start_batch);

++compute_batch do
10 for ; fetch_batch<(end_batch-start_batch)&&fetch_batch<(compute_batch+2);

++fetch_batch do
11 // fetch data
12 pipeline.producer_acquire();
13 shared_idx = fetch_batch % 2;
14 // copy data from global memory to shared memory using memcpy_async
15 cuda::memcpy_async(block, sval + shared_offset[shared_idx], values +

batch_start_nnz, batch_nnz_len * sizeof(T_VAL), pipeline);
16 cuda::memcpy_async(block, scol + shared_offset[shared_idx], column_indices +

batch_start_nnz, batch_nnz_len * sizeof(T_COL), pipeline);
17 pipeline.producer_commit();

18 // compute while the block is copying data
19 pipeline.consumer_wait();
20 block.sync();
21 shared_idx = compute_batch % 2;
22 compute(batch_start_row, batch_end_row, batch_start_nnz, batch_end_nnz,

row_offsets, scol + shared_offset[shared_idx], sval + shared_offset[shared_idx], ...);
23 pipeline.consumer_release();

4.1.3. Dynamic Thread Distribution For Batches

In this part, we introduce the dynamic threads distribution when batches computing
mentioned above. The SM in the NVIDIA GPU executes threads in groups of 32 parallel
threads called warps [11]. In Section 2, we mentioned that the distribution of one warp
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per matrix row does not work well for all matrices, since the average row lengths of these
matrices are varied. Therefore, we split warps into smaller vectors, each having vector_size
threads, where vector_size ∈ {1, 2, 4, 8, 16, 32}. Each vector computes one row of the matrix
at a time, multiplies and accumulates the nonzero elements of that row, and writes the sum
back to the vector ~y, as shown in line 8 to 19 in Algorithm 5. After the vector completes the
computation of a row, it will distribute the next matrix row until all rows within the batch
have been computed, as shown in line 21 in Algorithm 5. Algorithm 5 presents the detail of
this logic in pseudo-code. Note that the average row length of each batch is variable, to
minimize thread idling, we dynamically select vector_size based on the average row length
of the batch, as shown in Algorithm 6. This method improves thread utilization, which
improves the overall performance of the CSR-Partial-Overlap.

Algorithm 5: Vector process nonzero elements in the batch

1 // this is vector_compute() function
2 block_vector_id = threadIdx.x / VECTOR_SIZE;
3 block_vector_num = blockDim.x / VECTOR_SIZE;
4 lane_id = threadIdx.x & (VECTOR_SIZE - 1);
5 // get first row
6 current_row = batch_start_row + block_vector_id;
7 while current_row < batch_end_row do
8 nnz_start = row[current_row];
9 nnz_end = row[current_row + 1];

10 // compute the dot product of the vector
11 sum = 0;
12 for i = nnz_start + lane_id; i < nnz_end; i += VECTOR_SIZE do
13 sum += sval[i - batch_start_nnz] * x[scol[i - batch_start_nnz]];

14 // intra-vector reduction
15 for i = VECTOR_SIZE� 1; i > 0; i�= 1 do
16 sum += __shfl_down_sync(__activemask(), sum, i, 32);

17 // save the result
18 if lane_id == 0 then
19 y[current_row] = α * sum + β * y[current_row];

20 // get a new row
21 current_row += block_vector_num;

It is not too difficult to see that the proposed CSR-Partial-Overlap focuses only on the
GSOL type of overlapping. It fully utilizes the time of data transfer between the global and
the shared memory for computation. To the best of our knowledge, this is the first time this
aspect has been considered in accelerating SpMV computations. In addition, as described
in Section 4.1.1, CSR-Partial-Overlap benefits from a dynamic batch partition scheme that
fixes the max_batch_size but not the number of nonzero elements within the batch, where
each batch dynamically selects the vector_size based on the average row length. Compared
to existing merge-based SpMV alternatives, CSR-Partial-Overlap achieves a low cost and
effective load balancing and great performance for matrices with low Nnz/m, and is much
faster than CSR-Stream in the case of a large Nnz/m.

4.2. CSR-Full-Overlap

Next, based on CSR-Partial-Overlap, we describe how to unify the HDOL type of
overlapping, maximizing the benefits for accelerating SpMV performance as much as we
can. Note that before using GPUs for SpMV, the data needs to be copied from the host to the
device. This process causes considerable latency overhead, as much as more than 10 times
that of SpMV computation itself. Therefore, we propose CSR-Full-Overlap to utilize the
asynchronous copying feature of CUDA Streams to hide the SpMV kernel execution in the
data transfer to improve the performance greatly.
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Algorithm 6: Select vector_size to compute according to mean

1 // this is compute() function
2 row_num = batch_end_row - batch_start_row;
3 nnz_num = batch_end_nnz - batch_start_nnz;
4 mean = nnz_num/row_num;
5 // set vector size according to mean
6 if mean < SWITCH_POINT_1 then
7 vector_compute<1>(...);

8 else if mean < SWITCH_POINT_2 then
9 vector_compute<2>(...);

10 else if mean < SWITCH_POINT_4 then
11 vector_compute<4>(...);

12 else if mean < SWITCH_POINT_8 then
13 vector_compute<8>(...);

14 else if mean < SWITCH_POINT_16 then
15 vector_compute<16>(...);

16 else
17 vector_compute<32>(...);

The core of the proposed CSR-Full-Overlap relies on the fact that it unifies two types
of overlapping in GPUs as introduced in Section 1. By hiding the SpMV computation in
both types of data transfer, we are able to achieve substantial performance acceleration
for SpMV.

The data transfer overhead between the host and the device is not only the transfer time
overhead, but also the startup time overhead. Therefore, the amount of data transferred
at a time has to be large enough to be cost-effective. Note that the transfer mentioned in
this part refers to the transfer between the host and the device. Based on this, we partition
the batches into big batches. During the experiments, we realize that when the amount
of data is different for each transfer, it will lead to an additional time overhead. This
overhead may seem to be relatively a small portion as compared to the total data transfer
time, but nonetheless contributes to the execution time of the SpMV kernel and thus cannot
be ignored.

Therefore, unlike the partition method in Section 4.1.1, where each big batch transfers
the same big_batch_size nonzero elements (except for the last big batch), Figure 7 shows
an example of the big batch partition, where nine batches are partitioned into two big
batches and big_batch_size = 1000. Note that a batch can be partitioned into two parts
to transfer data, but it can only be processed by one kernel, in which case we assign the
batch to the latter big batch kernel to process, as shown in line 9 and 15 in Algorithm 7.
In this example, batch4 is processed by the big batch1’s kernel. The range of transfer data
of big batch0 is [0, 1000), and the range of transfer data of big batch1 is [1000, 2000). The
batches processed by the kernel of big batch0 are [batch0, batch3], and the batches processed
by the kernel of big batch1 are [batch4, batch8]. We use big_batch_in f os array to store the
partition information mentioned above. The pseudo-code is shown in Algorithm 7.

After partitioning batches into big batches, we overlap the data transfer and kernel
execution using CUDA’s streams feature. Each big batch is distributed to a stream, and the
column_indices array and values array within the big batch are first copied to the device
using cudaMemcpyAsync. After that, the csr_partial_overlapping kernel in Algorithm 4
is called to perform the SpMV operation. The pseudo-code is shown in Algorithm 8.
Since commands are executed concurrently between different streams, the SpMV kernel
execution of a stream overlaps with the data transfer of the next stream.

At this point, we have completed the unification of the two overlaps in SpMV, and
CSR-Full-Overlap can gain performance improvement by two overlaps at the same time.
It is worth mentioning that if the big_batch_size is set to Nnz, which means that a single
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big batch contains all the batches, in this case CSR-Full-Overlap will be equivalent to
CSR-Partial-Overlap.

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 10 1

each batch has a non fixed 
number of nonzero elements

10000 2000
values[]

column_indices[]

batch

big batch each big batch has a fixed 
number of nonzero elements

part0 of batch4 is 
transferred by big batch0

part1 of batch4 is 
transferred by big batch1

batch4 is processed in the 
kernel of big batch1

Figure 7. Illustration of big batch partition, where the big_batch_size is fixed.

Algorithm 7: Partition batches into big batches
1 big_batch_num = ceil(Nnz / big_batch_size);
2 // compute the start_nnz and end_nnz of big_batchs
3 for i = 0; i < big_batch_num; ++i do
4 big_batch_infos[i].start_nnz = i * big_batch_size;
5 big_batch_infos[i].end_nnz = min((i + 1) * big_batch_size, Nnz);

6 // determine which batches the kernel will execute for each big batch
7 for i = 0; i < big_batch_num; ++i do
8 for j = 0; j < batch_num; ++j do
9 if row_offsets[batch_infos[j].end_row] > big_batch_infos[i].start_nnz then

10 big_batch_infos[i].start_batch = j;
11 break;

12 if j == batch_num - 1 then
13 big_batch_infos[i].start_batch = batch_num;

14 for j = batch_num - 1; j >= 0; j = j - 1 do
15 if row_offsets[batch_infos[j].end_row] <= big_batch_infos[i].end_nnz then
16 big_batch_infos[i].end_batch = j + 1;
17 break;

4.3. Processing of Extra-Long Rows

For rows with a number of nonzero elements larger than max_batch_size, we process
them after all streams have finished transferring data. Due to the large load of extra-long
rows, we distribute a row to a block for processing. Multiple warps within the block process
a row together, using shared memory as a temporary space to save the partial sums of each
warp, as shown in line 9 to line 22 in Algorithm 9. Finally, the first warp within the block
accumulates these partial sums and writes the result back to the ~y vector, as shown in line
24 to 32 in Algorithm 9. The pseudo-code for this process is shown in Algorithm 9. Having
so many nonzero elements within a matrix is a rare case in practice, and launching an extra
kernel to process these rows causes additional overhead. We can reduce the probability of
this happening by increasing max_batch_size.
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Algorithm 8: Nonzero elements transfer from host to device overlapping with
SpMV kernel execution

1 for i = 0; i < big_batch_num; ++i do
2 start_nnz = big_batch_infos[i].start_nnz;
3 end_nnz = big_batch_infos[i].end_nnz;
4 len = end_nnz - start_nnz;
5 // data transfer from host to device
6 cudaMemcpyAsync(dcolumn_indices + start_nnz, column_indices + start_nnz, len *

sizeof(T_COL), cudaMemcpyHostToDevice, streams[i]);
7 cudaMemcpyAsync(dvalues + start_nnz, values + start_nnz, len * sizeof(T_VAL),

cudaMemcpyHostToDevice, streams[i]);
8 batch_offset = big_batch_infos[i].start_batch;
9 current_batch_num = big_batch_infos[i].end_batch - big_batch_infos[i].start_batch;

10 // kernel execution
11 csr_partial_overlapping<<<B, T, S, streams[i]>>>(batch_infos + batch_offset, current_batch_num,

...);

Algorithm 9: Each long row is allocated to a block to process
1 // this is long row process kernel
2 warp_id = threadIdx.x / 32;
3 lane_id = threadIdx.x & (32 - 1);
4 __shared__ shared_sum[gridDim.x / 32];
5 // get a long row id
6 current_long_row_id = blockIdx.x;
7 while current_long_row_id < long_row_num do
8 // get the row
9 current_row = long_row_infos[current_long_row_id];

10 nnz_start = row[current_row];
11 nnz_end = row[current_row + 1];
12 // compute the dot product of the warp
13 sum = 0;
14 for i = nnz_start + threadIdx.x; i < nnz_end; i += blockDim.x do
15 sum += values[i] * x[column_indices[i]];

16 // intra-warp reduction
17 for i = 32� 1; i > 0; i�= 1 do
18 sum += __shfl_down_sync(__activemask(), sum, i, 32);

19 // save intermediate results to shared memory
20 if lane_id == 0 then
21 shared_sum[warp_id] = sum;

22 __syncthreads();
23 // intra-block reduction
24 if threadIdx.x < 32 then
25 block_sum = 0;
26 for i = threadIdx.x; i < block_warp_num; i += 32 do
27 block_sum += shared_sum[i];

28 for i = 32� 1; i > 0; i�= 1 do
29 block_sum += __shfl_down_sync(__activemask(), block_sum, i, 32);

30 // save the result
31 if threadIdx.x == 0 then
32 y[current_row] = α * block_sum + β * y[current_row];

33 // get a new long row id
34 __syncthreads();
35 current_long_row_id += gridDim.x;

5. Performance Evaluation
5.1. Experimental Setup

We use the SuiteSparse Matrix Collection, a publicly available and widely used set
of sparse matrix benchmarks collected from a wide range of applications [2]. To evaluate
the performance of the proposed method, we select a set of matrices with representative
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matrix sparsity characteristics from the SuiteSparse dataset. Details of this set are shown
in Table 1. The Nnz of these matrices ranges from 73 K to 14.8 M. The average row length
ranges from 2.6 to 158.5. These matrices represent sparse features that are most common in
a wide variety of applications.

Table 1. Information of sparse matrices used.

Name Nonzeros (Nnz) Nnz/m m n

ncvxqp1 73,963 6.107 12,111 12,111
aug2d 76,832 2.649 29,008 29,008
case9 147,972 10.237 14,454 14,454

delaunay_n16 393,150 5.999 65,536 65,536
ch7-9-b3 423,360 4 105,840 17,640

tandem_dual 460,493 4.895 94,069 94,069
epb3 463,625 5.479 84,617 84,617

ch8-8-b3 470,400 4 117,600 18,816
cage11 559,722 14.322 39,082 39,082
Si5H12 738,598 37.123 19,896 19,896

nemeth19 818,302 86.083 9506 9506
tube1 897,056 41.727 21,498 21,498
kim1 933,195 24.292 38,415 38,415

2D_54019_highK 996,414 18.446 54,019 54,019
nemeth21 1,173,746 123.474 9506 9506
nemeth22 1,358,832 142.945 9506 9506
nemeth23 1,506,810 158.511 9506 9506
Hamrle3 5,514,242 3.810 1,447,360 1,447,360

pre2 5,959,282 9.042 659,033 659,033
pkustk14 14,836,504 97.656 151,926 151,926

All tests are conducted on a workstation with two AMD EPYC 7713 64-Core CPUs
and 377 GB RAM, running the Ubuntu 20.04 Linux operating system. The workstation has
been further equipped with an Ampere-based A40 GPU, which comprises 84 SMs with a
total of 10,752 CUDA cores. It also comes with a total of 48 GB global memory. Each SM
has 48 KB shared memory. All of the CUDA-based programs used for evaluation in this
paper are compiled using the CUDA 11.7 toolkit with standard practice switches “-arch
sm_86 -O3”, corresponding to the target GPU architecture and level 3 optimization.

5.2. Optimal Dynamic vector_size Selection

In Section 2, we mentioned that the larger the average row length of the matrix was,
the larger the vector_size for obtaining optimal performance would be. In other words, it is
advantageous to process matrices with shorter average row lengths when vector_size = 1
and, on the contrary, it is advantageous to process matrices with longer average row lengths
when vector_size = 32. Therefore, we segment the average row length into intervals, and
each interval has a corresponding vector_size that makes the performance optimal on that
interval. The boundary point between intervals we call the optimal switching point. In this
experiment, we generate a series of random matrices with average row lengths ranging
from 1 to 256. The range of average row lengths is large enough to cover all the optimal
switching points. We then evaluate the performance of the CSR-Partial-Overlap on these
random matrices. In each round of experiments, unlike Algorithm 4, we set vector_size to a
fixed number in turn, where vector_size ∈ {1, 2, 4, 8, 16, 32}. In this way, we can measure
the optimal vector_size corresponding to each interval. The result is shown in Table 2.
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Table 2. The optimal vector_size for each average row length interval.

Nnz/m vector_size

[0, 17) 1
[17, 34) 2
[34, 64) 4
[64, 122) 8
[122, 216) 16
[216, ∞) 32

5.3. Evaluation of CSR-Partial-Overlap

For practical evaluation, we use the standard metric of billion floating-point operations
per second (GFLOPs), which is computed as 2(Nnz+m)

tkernel×109 for Equation (1), where tkernel is the
execution time of the CUDA kernel measured in seconds, excluding the host to device data
transfer time.

cuSPARSE is a publicly available library from NVIDIA with GPU-accelerated basic
linear algebra subroutines for handling sparse matrices [23]. cuSPARSE has excellent
performance among the existing SpMV algorithms based on the CSR storage format and is
thus used in this paper as a baseline for our comparative study.

We compare the proposed CSR-Partial-Overlap with three well-known SpMV al-
gorithms based on CSR storage formats in the literature, namely cuSPARSE [23], Light-
SpMV [9], and merge-based [17]. Figure 8 illustrates the performance of various imple-
mentations in single precision on the collection of matrices listed in Table 1. Note that
there is no single algorithm which is best for all the matrices. However in most cases,
CSR-Partial-Overlap either outperforms all other algorithms or performs equally well.
CSR-Partial-Overlap’s performance is far ahead of other algorithms for matrices with aver-
age row lengths less than 16. For example, CSR-Partial-Overlap’s performance on aug2d
matrices is 2.2 times that of cuSPARSE. CSR-Partial-Overlap attains an average throughput
of 100.1 GFLOPs compared to 71.6 for cuSPARSE [23], 71.7 for LightSpMV [9], and 71.1 for
merge-based [17] GFLOPs. On all matrices CSR-Partial-Overlap obtains the best average
performance of 1.4× that of cuSPARSE.
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Figure 8. Performance evaluation of CSR-Partial-Overlap.

5.4. Impact from big_batch_size

One interesting observation from our experiment is the impact from big_batch_size on
the proposed CSR-Full-Overlap algorithms. Recall, as we have discussed in Section 4.2,
that there is a host to device nonzero elements transfer time overhead of up to 10 times
of SpMV computation itself. In CSR-Full-Overlap, the data transfer of each big batch
overlaps with the SpMV kernel execution of the next big batch. Therefore, the SpMV kernel
execution of the last big batch is not overlapped, i.e., its time overhead is not hidden in
data transfer. Intuitively, the smaller the execution time of the last big batch kernel, the
shorter the total time is, thus a smaller big_batch_size is always preferred. However, on
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the contrary, we find that this is not the case since the smaller the big_batch_size, the larger
the stream_num leading to additional overhead due to the increase in streams switching
overhead and startup data transfer is. In our estimation, these overheads are equivalent
to 0.2 ∼ 7% of the total transfer time and thus should not be ignored. Therefore, in this
paper, we choose stream_num = 2, i.e., correspondingly big_batch_size = Nnz

2 , to avoid
above potential overheads.

5.5. Evaluation of CSR-Full-Overlap

To evaluate the performance of the proposed CSR-Full-Overlap, we compare it with
cuSPARSE. For a more objective and realistic view, we design the speedup metric using the
following formula:

Speedup =
tcuSPARSE − tCSR-Full-Overlap

tCSR-Partial-Overlap
+ 1, (2)

The tcuSPARSE in Equation (2) is the total time for cuSPARSE to perform data transfer
and SpMV, where the data transfer time is the time spent to transfer the column_indices
array and values array from the host to the device. Similarly, the tCSR-Full-Overlap is the total
time for CSR-Full-Overlap to perform data transfer and SpMV. The tCSR-Partial-Overlap is the
time taken by this matrix to perform SpMV with CSR-Partial-Overlap, which excludes
the time spent on data transfer between host and device. Using Speedup as a metric can
effectively show the performance improvement effect brought by CSR-Full-Overlap. For
example, if Speedup is 2, it means that the time for one SpMV operation using cuSPARSE
is enough for CSR-Full-Overlap to perform 2 SpMV operations.

Figure 9 illustrates the Speedup of CSR-Full-Overlap versus cuSPARSE in single pre-
cision in the matrix set of Table 1. CSR-Full-Overlap, which unifies the two overlaps in
SpMV, outperforms cuSPARSE in every case, with a maximum Speedup of 2.67 and an
average Speedup of 2.03. This speedup is quite considerable, as Equation (2) indicates
when cuSPARSE has completed 1 SpMV operation, CSR-Full-Overlap has already com-
pleted 2.03 SpMV operations. This proves that CSR-Full-Overlap does its best to hide the
computation in two major types of data transfers to achieve the acceleration from the two
overlaps in SpMV.
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Figure 9. Performance evaluation of CSR-Full-Overlap.

6. Conclusions

As a basic essential scientific computing operation which is widely used in various
fields, improving SpMV performance on its dominant CSR format on popular GPU plat-
forms is of great significance and interest to both academia and industry communities.

In this paper, we present observations and in-depth study of effective application of
memcpy_async from recent NVIDIA Ampere GPUs to achieve substantial performance gain
for SpMV. Firstly, we propose the CSR-Partial-Overlap for GSOL-type overlapping. After
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that, to remove the overhead of fixing up partial sums and allow low cost and effective load
balancing, we design the dynamic batch partition algorithm for the CSR-Partial-Overlap.
To further improve the performance of the CSR-Partial-Overlap, we design the dynamic
threads distribution algorithm to improve thread utilization. Finally, based on the CSR-
Partial-Overlap, we propose the CSR-Full-Overlap, which unifies the two major overlap
types and hides the computation as much as possible in the two important access behaviors
of the GPU.

We also notice that there are several aspects for future improvement. Particularly, we
plan to focus on exploration in the following:

• Note that the load of batch is not completely determined by the number of nonzero
elements, but is also related to factors including the number of rows, the dispersion of
column coordinates, etc. This suggests that it is promising to explore ways for build-
ing a low-cost and efficient batch load prediction model, potentially using machine
learning methods, such that a more accurate and better load balancing is achieved;

• In this paper, we only consider single matrix single vector multiplication operation.
In practice, the same sparse matrix may reside in the GPU for single matrix multiple
vectors multiplication operation, i.e., multiple SpMV operations. Particularly in the
observation of the host to device data transfer being 10 times more than that of SpMV
computation itself, we plan to explore multiple SpMV operations to bring even greater
potential in performance improvement;

• Our approach works under two prerequisites: 1. the GPU supports the GSOL, i.e., the
threads can be freed to perform other computational tasks when copying data between
shared memory and global memory; and 2. the GPU supports the HDOL, i.e., the GPU
can execute other kernels when transferring data between the host memory and the
device memory. Therefore, our approach can be applied to any GPUs which support
the above two prerequisites. Thus, to improve the generalizability of our approach,
applying our approach to GPUs provided by other manufacturers (especially AMD) is
one of our future research directions.

It is our belief that this paper not only serves as the first of its kind, but also more
importantly, it helps pave the way for more fruitful explorations in this dimension.
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