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Abstract: Autonomous vehicles are rapidly emerging as a crucial sector within the automotive
industry. Several companies are investing in the development and enhancement of technologies,
which presents challenging problems in the context of robotics and control. In particular, this work
primarily focuses on the creation of an autonomous vehicle architecture utilizing the robotic operating
system (ROS2) framework, accompanied by advanced control algorithms. In order to facilitate the
development and implementation of lateral vehicle dynamics controllers, a reduced-size automated
car available in GIPSA-Lab is used as an experimental platform. The objective is to design robust
controllers capable of achieving optimal tracking and stability. Accordingly, this problem is tackled
under different robust control syntheses, considering theH∞ approach: using linear time-invariant
(LTI) and linear parameter-varying (LPV) model representations. Several simulation and experimental
results are included to demonstrate the efficiency of the controllers.

Keywords: ROS2; robust control; linear parameter varying; look-ahead vision; autonomous vehicles;
real-time implementation

1. Introduction

Autonomous systems, which are widely utilized in the current decade, have revo-
lutionized the research and development sectors. Their applications span various fields,
including industrial robotics, smart grids, drones, aerial vehicles, underwater vehicles,
and self-driving cars. The fundamental principle behind these systems lies in their ability
to react to the surrounding environment. Autonomous vehicles (AVs) have emerged as a
pivotal domain within the automotive industry, prompting significant investments in their
development. These vehicles offer a range of benefits, such as enhanced safety measures,
reduced time and cost requirements, and alleviation of traffic congestion [1]. Undoubtedly,
the technological advancements witnessed in the 21st century have played a major role in
addressing the autonomous vehicle challenge.

Nowadays, it is feasible to implement real-time control closed-loop algorithms utiliz-
ing robust computing systems and reliable sensors. The International Society of Automotive
Engineers (ISAE) classifies autonomy into five levels, each representing a step towards
achieving a fully safe autonomous system [2]. Currently, companies are actively engaged
in the pursuit of the third level, known as conditional automation. At this stage, the vehicle
assumes control in all aspects; however, the driver must remain prepared to take over
if necessary.

AVs possess the ability to interact with their environment and exhibit behavior akin
to human actions. Consequently, it is imperative to develop various branches and sectors
in a coherent manner to construct a safe and efficient AV system. Figure 1 illustrates the
initial step involving sensing and perception, wherein the vehicle can discern different
obstacles. Subsequently, it can make decisions and take actions to achieve its objectives
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through its own actuators and various transmission procedures [3]. Given the strong
interconnection between scientific domains and industrial development sectors, extensive
research communities are investigating all facets of autonomous vehicles. Advanced driver
assistance systems (ADAS) represent a partial automation architecture designed to assist
the driver [4], encompassing lane detection and tracking, lane departure warnings, blind-
spot detection warnings, and collision-avoidance systems [5]. Moreover, the study of
vehicle dynamics can be subdivided into two subdynamical systems capable of describing
vehicle behavior as lateral and longitudinal dynamics. Considering the vehicle model
and accounting for nonlinearities stemming from tire deformation or potential coupling
between longitudinal dynamics, various controllers can be formulated to manage vehicle
dynamics. In a comprehensive survey [6], a comparison of different control approaches was
provided, highlighting the respective challenges and limitations inherent in each method.
In the pursuit of managing nonlinearities that occur due to tire deformation and adapting
to varying parameters in the vehicle’s dynamical model, an innovative data-driven control
approach has emerged, as presented in [7]. This approach capitalizes on adaptive model-
free control gain tuning by incorporating an extremum-seeking control (ESC) mechanism.
The integration of an ESC enables real-time updates to the control gain of the controller,
effectively adapting to dynamic changes in the system.

Figure 1. Perception of the autonomous vehicle environment [8].

Adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC) are
employed to control the longitudinal dynamics of the vehicle while ensuring safety, comfort,
and collision avoidance. Other control algorithms based on the robustH∞ approach have
been utilized [9–11]. Furthermore, model-based model predictive control (MPC) [12,13] has
been experimentally verified as an efficient solution for managing longitudinal dynamics.
On the other hand, the control of lateral dynamics is crucial for performing vehicle-tracking
tasks, such as lane keeping and lane changes. Various techniques have been employed
to manage these dynamics. The linear parameter-varying (LPV) framework, with its
three different approaches—linear fractional transformation (LFT), polytope, and gridding
methods—combined with theH∞ approach, has been applied, with the results compared
in [14]. In [15], the LPV polytope method was introduced, incorporating tracking errors
with the look-ahead vision results [16]. A novel generalized plant with four states was
obtained and controlled using theH∞ approach. Moreover, a robustH∞ controller with a
polytopic gain approach was formulated in [17]. This controller was designed to achieve
effective vehicle path tracking while addressing the nonlinearities present in the kinematic
model. In a similar vein, ref. [18] tackles the issue of robust gain-scheduling control
for path-following systems affected by network-induced delay. The authors employed
linear fractional transformation to account for tire dynamics, proposed a generalized delay
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form, and presented a Markovian process. By utilizing a linear parameter-varying model,
a robust gain-scheduling control method is introduced and subsequently validated through
experimental trials involving autonomous vehicles.

TheH∞ approach was also proposed in [19,20] to control the vehicle’s steering angle.
A comparison between LPV-MPC and nonlinear formulation approaches in controlling
vehicle lateral dynamics is presented in [21,22]. Additionally, in [23], a new vehicle model
that combines lateral and longitudinal dynamics is introduced, which is controlled using
LPV-MPC approaches in a cascaded manner. Furthermore, in order to address path-
following problems and enhance system robustness against uncertainties and varying
parameters, a robust super-twisting sliding mode controller was employed in [24]. This
controller leverages the Lyapunov function theory and has been experimentally validated
to minimize lateral errors and improve the overall system robustness [25]. It is important to
note that the implementation of these control algorithms in real-time applications presents
an additional challenge in the development of autonomous vehicles. Organizing the work
within a well-defined and well-treated architecture has been demonstrated to impact the
execution of results [26,27].

In summary, the aforementioned control algorithms offer a range of potential solutions
utilized in autonomous vehicles. However, selecting a robust controller that ensures
stability of the vehicle’s yaw rate and effectively manages its dynamics remains a challenge
within the automotive control community. This work encompasses both theoretical and
practical aspects in the development of autonomous vehicles, as it involves various stages
before designing a reliable control algorithm.

1. Designing the ROS2 architecture: The initial focus is on developing the ROS2 architec-
ture, taking into account technical implementation considerations. ROS2 serves as a
crucial tool for testing of control algorithms. Although there has been some progress
in implementing an autonomous vehicle architecture in ROS2, accomplishing this
objective has proven challenging due to the variety of tasks involved. The framework
will be utilized by colleagues to implement decision making and different vehicle
lateral dynamic control algorithms.

2. Estimating the lateral dynamics parameters of the new vehicle: With the introduction
of a new vehicle, it is necessary to identify its model and estimate the lateral dynamics
parameters. This step involves conducting multiple experiments, processing collected
data, and addressing the mechanical aspects of the vehicle. Additionally, a realistic
simulation is designed to test the controllers prior to implementation.

3. Control of the lateral dynamics using a robustH∞ controller and planning algorithms:
The final objective is to control the lateral dynamics of the vehicle utilizing a robustH∞
controller and planning algorithms. This controller can be easily tuned and demon-
strates good performance for linear systems. It also accounts for uncertainties and
disturbances affecting the system. Furthermore, since the algorithm considers various
system parameters, the LPV tool is tested to enhance vehicle tracking performance.

The implementation platform for testing the planned algorithms is an RC car available
in the GIPSA-Lab. Different control strategies and robotic tools are employed to achieve
closed-loop control of the system. However, prior to conducting experiments, the RC car
requires initial modifications, including the addition of a differential system, measurement
filtering, and generation the necessary reference signals for tracking.

The remainder of this article is structured as follows. The experimental platform is
introduced in Section 2. The robust control methodology is detailed in Section 3. Section 4
provides an overview of the mathematical model and the system identification method em-
ployed to determine system parameters. The lateral control design is discussed in Section 5,
which also includes the reference generation algorithm based on look-ahead vision. Ee
present both experimental and simulation results in Section 6. Finally, the conclusion is
provided in Section 7.
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2. Experimental Setup

The GIPSA-Lab grounded vehicle platform offers researchers various tools to test their
developed algorithms (Table 1). Figure 2 illustrates the components of the platform. It is
equipped with a Vicon tracker comprising 12 cameras. This tracker enables the capture of
precise position coordinates and the yaw angle of the vehicle, denoted as (Xglobal, Yglobal, ψ).
A PC is utilized to run the control algorithms and associated codes within the framework
of ROS2. It serves as the central processing unit for implementation and execution of
the algorithms. The RC car used in the platform is equipped with an Arduino RP 2040
board. Communication between the Arduino RP 2040 board and ROS2 is established
through a WiFi network. The RC car is equipped with two BLDC motors and one servo
motor, enabling longitudinal and heading motions (see Figures 3 and 4). The vehicle is also
equipped with sensors for measuring battery voltage, current, and wheel encoders. The PC
runs control algorithms at specified frequencies, sending PWM signals to the Arduino RP.
The Arduino RP converts the signals into voltage inputs for the actuators. The resulting
motion is captured by the Vicon tracker, which relays the information back to the PC.

Figure 2. GIPSA-Lab experimental platform.

Figure 3. RC Car back view.

Figure 4. RC car front view.
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Table 1. RC car components.

Type Functionality

1 Swicth Switching car power ON/OFF.
2 8 mm Qualisys super-spherical Captured by Vicon tracker.
3 Arduino RP 2040 Microcontroller of the vehicle.
4 Spur gears Increase torque provided by BLDC.
5 Elastic wheel 2 rear wheels of the vehicle.
6 ACCU NI-MH 3000 Supply battery power.
7 MG996R servo motor Steering actuator.
8 Elastic wheel 2 Front wheels of the vehicle.
9 BLDC–A2212/13T Throttle actuator.

Autonomous Vehicle ROS Implementation Framework

The overall system architecture comprises two main controllers: a high-level and low-
level controller. The high-level controller generates actions and references for the vehicle’s
actuators based on the sensed environment, objectives, and constraints. It is further divided
into three primary blocks: detection, perception, and decision policy, as depicted in Figure 5.
The sensing block collects and transmits necessary data to the perception node, which
estimates the relevant states of the vehicle. The decision policy node functions as the
vehicle’s brain, utilizing the obtained states and considering objectives to determine the
optimal action to be conveyed to the lower controller. Within this architecture, the decision
policy bears the responsibility of providing the reference longitudinal velocity (vx) and
the desired trajectory coordinates for the vehicle to follow. Path planning serves as a
forward controller, translating the desired action into the heading rate reference (ψ̇ref) that
the vehicle’s lateral dynamics track. Ultimately, the control algorithms are implemented in
the control node, where commands for the lateral and longitudinal actuators are generated
to guide the vehicle towards its objectives.

Offline Map

Decision Making
Deep Reinforcement

Learning (RL).

PerceptionSensing 

Velocity Reference

Lane Condition

Controllers

Longitudinal Controller
(LPV\𝐻∞ Based ACC)

Lateral  Controller 
(LTI-LPV\𝐻∞, MPC)

Vehicle Interface

Heading Reference
(Look-Ahead Vision)

Encoder

Cameras

IMU

State Estimation 

Localization

Figure 5. The architecture implemented in ROS to achieve an autonomous vehicle. For more
information about the deployed reinforcement learning model for the decision policy, refer to [28],
and for the adaptive cruise controller used for longitudinal controller, refer to [9]. In [29], the authors
provide an exposition and implementation of the MPC and LPV/MPC for lateral control of the vehicle.



Electronics 2023, 12, 3680 6 of 21

As previously mentioned, each component of this architecture operates on a specific
node with a designated frequency. These nodes are interconnected through data exchange
using defined topics through subscribing and publishing mechanisms. This framework fa-
cilitates the development of individual components by allowing modifications and updates
to the running algorithms. As the paper’s direction suggests, the primary goal is to create a
fundamental robust lateral controller that can be integrated into the mentioned architecture.
In broad terms, the control gains are devised using MATLAB, while the implementation
takes place using Python 3 within the ROS environment.

3. Control Theory

In the context of autonomous vehicles, it is crucial to employ a dynamic controller
that offers robustness, stability, and accurate tracking in the presence of uncertainties and
noise. Therefore, it is logical to choose an approach that can fulfill these requirements and
fine tune it based on the specific application. This work emphasizes the utilization ofH∞
control, which embodies principles that align with the aforementioned objectives. The aim
is to explore the principles ofH∞ control and implement it in a real-time dynamic system.
By doing so, the controller can effectively handle various challenges and disturbances
encountered in autonomous vehicle applications.

3.1. Definition ofH∞ Norm

The H∞ norm of a proper LTI system is defined by the state space representation
(A, B, C, D) from an input (w(t)) to an output (z(t)) that belongs to RH∞, which is the
induced energy to the energy gain, defined as:

‖G(jω)‖∞ = sup
ω∈R

σ̄[G(jω)] < ∞ (1)

H∞ is considered equivalent to the L2-induced norm.

3.2. H∞ Control Problem Formulation

Here, we present the simple H∞ control problem formulation that was used in this
study. The target system to be controlled is represented in Figure 6 by G(s). Two weighting
functions (We and Wu) act as tuning constraints for the built controller (K(s)). The scheme
in Figure 6 is converted to the LFT scheme shown in Figure 7.

G(s)+
-

𝑟(𝑡)

𝑾𝒆

𝑾𝒖

𝒆𝟏(𝒕)

𝒆𝟐(𝒕)

P

𝑛(𝑡)++

e(𝑡) u(𝑡) y(𝑡)
K(s)

Figure 6. H∞ control architecture.
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𝑊𝑒 -𝑊𝑒𝐺

0 𝑊𝑢

𝐼 -𝐺

Controller (K)

P

u r-y

𝑤 ≡
𝑟
𝑛 e = 

𝑒1
𝑒2

External Inputs

Controlled Input Measured Outputs

Controlled Outputs

Figure 7. Generalized plant (P).

The generalized plant (P) aims to characterize the controlled output with the external
input and build a controller that minimizes the L2-induced gain from the external input
(ω) to the controlled output (e). In other words, the controller must minimize the impact
of the reference and the assumed disturbances and noises with respect to the output of
the defined weighting functions. The suboptimalH∞ problem is formulated as shown in
Equation (2). Given a positive value of γ > 0, the objective is to compute a stabilizing
controller (K(s)).

‖e‖2 ≤ γ‖ω‖2 , ‖Tew‖∞ =

∥∥∥∥ WeS
WuKS

∥∥∥∥ ≤ γ (2)

T =
GK

1− GK
, S = 1− GK

1− GK
, SG = S× G , KS = K× S (3)

where S represents the sensitivity function that quantifies the impact of noise on the closed-
loop(Tyr), while KS signifies the controlled sensitivity function that illustrates the influence
of external input on the controlled input (u). A controller can be formulated to achieve a
minimum γmin concerning the sensitivity functions, while adhering to defined templates.
This task is addressed by either employing the algebraic Riccati approach or utilizing the
linear matrix inequality (LMI) method, as outlined by Zhou, Skogestad, and Postlewaite).
Weighting functions We and Wu defined as in Equation (4) are utilized to design templates
for S and KS, respectively.

1
We

=
s + ωbεe

s
Ms

+ ωb
and

1
Wu

=
εus + ωbc

s + ωbc
Mu

(4)

The weighting function is tuned according to the required performance, where:

• Ms: Robustness required with max module margin;
• ωb: Tracking speed and rejecting disturbances;
• εe: Steady-state tracking error;
• Mu: Actuator constraints based on ∆u

∆r ;
• ωbc: Actuator bandwidth;
• εu: Attenuated noises on controlled input.

The plant (P) can be expressed in another form as shown in (5).

ẋ = Ax + B1ω + B2u

e = C1x + D11ω + D12u

y = C2x + D21ω + D22u

(5)
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where x ∈ Rn is the union of the plant states and the weighing function states, ω ∈ Rnω

represents the defined external inputs to P, u ∈ Rnu is the controlled input, e ∈ Rne

represents the the controlled outputs, and y ∈ Rny represents the measured outputs of the
system. In the context of the employed mixed-sensitivity problem, a stabilizing controller
(K(s)) is computed to satisfy the following condition:∥∥∥∥ WeS

WuKS

∥∥∥∥
∞
≤ 1 (6)

This implies a sufficient but not necessary condition, as shown in Equation (7).∥∥WeS
∥∥

∞ ≤ 1 ,
∥∥WuKS

∥∥
∞ ≤ 1 (7)

3.3. LPV System Modeling Formulation

A dynamical system that includes varying parameters in its state-space model can be
reformulated to be modeled as an LPV system. Different approaches deal with modeling
formulation problems, such as gridding, LFT, and polytope approaches. The state space of
the generalized LPV plant (P) is represented by (8).ẋ

e
y

 =

 A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2ρ D21(ρ) D22(ρ)

x
w
u

 (8)

where x(t) ∈ Rn . . . ρ = (ρ1(t), ρ2(t), . . . .., ρN(t)) ∈ Ω is a vector of time-varying parame-
ters, where Ω is a defined convex set, and ρ(.) is assumed to be bounded and is known as
ρ ∈ Ω ⊂ RN .

3.3.1. Affine Parameter Dependence

The LPV system matrices can be written in the form of affine parameters (9).

A(ρ) = A0 + A1ρ1 + · · ·+ ANρN (9)

3.3.2. Polytopic Modeling Approach

The polytopic modeling approach is another representation of an affine LPV system.
Assuming that ρi ∈ [ρi, ρ̄i], it is possible to build a polytope containing all possible ρi.
Two main conditions must be satisfied [14]: the input and output matrices should be
independent of the variable parameter, and the model must be affine with respect to the
parameters. The variation of ρ within the corners of the convex polytope problem is defined
as ρ = ∑2np

i=1 µiωi and ∑2np

i=1 µi = 1, where np represents the number of varying parameters,
and µi ≥ 0. Assuming that the targeted system contains two varying parameters (ρ1 and
ρ2), the convex optimization problem is formulated as a polytope with four corners, as
shown in Figure 8 and defined by Equation (10).

Figure 8. Polytopic modeling approach.
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µk =
∏

np
j=1 |ρj − C(ωk)j|

∏
np
j=1(ρj − ρj)

C(ωk)j = {ρj|ρj = ρj if (ωk)j = ρj&ρj = ρj if (ωk)j = ρj}

ω1 = (ρ1, ρ2) µ1 =
|ρ1 − ρ1|
|ρ1 − ρ1|

× |ρ2 − ρ2|
|ρ2 − ρ2|

ω2 = (ρ1, ρ2) µ2 =
|ρ1 − ρ1|
|ρ1 − ρ1|

×
|ρ2 − ρ2|
|ρ2 − ρ2|

ω3 = (ρ1, ρ2) µ3 =
|ρ1 − ρ1|
|ρ1 − ρ1|

× |ρ2 − ρ2|
|ρ2 − ρ2|

ω4 = (ρ1, ρ2) µ4 =
|ρ1 − ρ1|
|ρ1 − ρ1|

×
|ρ2 − ρ2|
|ρ2 − ρ2|

(10)

The LPV model is created by solving the controller LTI problem at each vertex of the
convex set, and by knowing the actually desired varying parameter (ρ), it is possible to
schedule the needed controller. The interpolation between the four vertices is performed
according to (11). [

Apol(ρ) Bpol(ρ)

Cpol(ρ) Dpol(ρ)

]
=

2np

∑
i=1

µi(ρ)

[
A(ωi) B(ωi)
C(ωi) D(ωi)

]
(11)

4. Estimation of the Bicycle Lateral Model Parameters
4.1. Mathematical Modeling

Studying the behavior of a system while considering all the forces that influence it falls
under the domain of system dynamics. In the case of autonomous vehicles, the dynamics
of the system are significantly influenced by the forces exerted by the wheels. The motion
of the vehicle can be effectively described by analyzing the behavior of the wheels from
various perspectives. To simplify the modeling process, an assumption is made that the
four wheels of the vehicle can be represented by two wheels. The individual front and rear
wheels of the vehicle are then modeled accordingly, as depicted in Figure 9. This modeling
approach is commonly referred to as the bicycle model.

The model operates under the assumption that both the front and rear wheels move
at the same angular speed. However, to account for the consequences of this assumption,
a differential system is introduced. This system incorporates the steering angle (δ) and
calculates the velocity difference between the wheels. It is important to note that the bicycle
model simplifies the system and subsequently streamlines the control design process.
Moreover, it effectively captures the vehicle’s lateral dynamics. It is worth mentioning
that these assumptions might impact the model’s performance when dealing with high
velocities and drifting maneuvers, scenarios that are not relevant to the context of our
controller design work. Nevertheless, the challenge of vehicle control involving drifting
maneuvers and high slip angles was explored and applied in [30]. In their study, the authors
devised a hierarchical dynamic drifting controller (HDDC) that comprises a path-tracking
layer, a vehicle motion control layer, and an actuator regulation layer.

By applying Newton’s second law and summation of the moment around the axis of
rotation of the vehicle, the mathematical model can be represented as shown in Equation (12).

v̇y = −
2C f + 2Cr

mvx
vy − vxψ̇−

2C f l f − 2Crlr
mvx

ψ̇ +
2C f

m
δ

ψ̈ = −
l f 2C f − lr2Cr

Izvx
vy −

l f 2C f + lr2Cr

Izvx
ψ̇ +

l f 2C f

Iz
δ

(12)
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A =

 − 2C f +2Cr
mvx

vx −
2C f l f−2Cr lr

mvx

− l f 2C f−lr2Cr
Izvx

− l f 2C f +lr2Cr
Izvx

 B =

[ 2C f
m

l f 2C f
Iz

]
(13)

The system can be described by the state-space representation shown in Equation (13).
The input to the system is the steering angle in radians, while the states are the lateral
velocity (vy) and the vehicle’s yaw rate (ψ̇). The parameters that need to be identified
include the front and rear wheel stiffness (C f and Cr, respectively), the position of the
center of gravity (represented by the distances to the front wheels (l f ) and the rear wheels
(lr)), and the inertia around the axis of rotation (Iz).

Figure 9. Vehicle bicycle model [31].

4.2. System Identification

The chosen bicycle model is a linear model that incorporates a varying parameter (vx).
However, it is important to acknowledge that this model has certain limitations when it
comes to describing the vehicle’s motion at low velocities and capturing the nonlinearities
that may arise in the system. To address these limitations, LPV identification techniques
can be employed. These techniques allow for the identification of both the state space and
transfer functions of the system, as demonstrated in [32]. By utilizing LPV identification,
a more accurate representation of the vehicle’s dynamics can be obtained, considering the
varying parameters and nonlinear behaviors that may influence the system.

Within the field of system identification, diverse strategies can be employed to achieve
favorable outcomes, contingent on the pre-existing understanding of the system. These
strategies fall under categories such as black-box, gray-box, and white-box techniques [33].
Leveraging knowledge of the mathematical model governing the lateral dynamics of vehi-
cles, gray-box identification techniques prove suitable for estimating unknown parameters
of the model. Specifically, the prediction error method (PEM) is employed to minimize the
disparity between measured and simulated outputs by adjusting these unknown parame-
ters. However, it is acknowledged that this method is sensitive to initial conditions; the
solver can become trapped in local optima associated with incorrect parameter estimates.
To counter this, initial conditions are selected based on fundamental physical insights into
the system. Data are collected through open-loop identification, involving step inputs
consistently applied to stimulate the system, thereby activating all vehicle frequencies
and dynamics.

In an experimental setup, a fixed PWM signal was applied to achieve a target angular
speed of the wheel of θ̇ = 25 rad/s. Meanwhile, the longitudinal velocity of the vehicle
varied between vx = 1.1 m/s and vx = 1.3 m/s. To control the steering angle (δ) a joy-stick
was utilized to provide different PWM signals. These PWM signals were converted into an
input voltage that directly controlled the servo motor, allowing for precise manipulation of
the steering angle.

After processing and filtering the collected data, an optimization problem is solved to
address Equation (14), where y represents the actual measured data indicating the states
of the bicycle model, and ŷ(φ̂) represents the simulated model states. The identification
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results are presented in Figure 10 and Table 2. The analysis reveals that the input delay
occurs between 9 and 13 sampling times in the system. The root mean square error (RMSE)
is calculated to be 0.268.

min
Φ̂
‖y− ŷ(φ̂)‖2 Where Φ̂ = [C f , Cr, lr, l f , Iz] (14)

To ensure that the estimated model closely approximates the actual system, it is crucial to
validate the obtained outcomes. New data were gathered, and the estimated results were
employed to simulate the system using real inputs. As depicted in Figure 11, the simulated
outcomes align well with the measured outcomes, affirming that the identified system can
effectively model the system’s dynamic behavior. Importantly, the main constraint of this
identification technique lies in its inability to accurately model lateral dynamics across
all variable vx values, as previously mentioned. This limitation arises from nonlinearities
stemming from tire deformation. Nonetheless, the system is identified within the desired
operational range of vx.

Figure 10. Vehicle system identification.
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Figure 11. Vehicle system validation.
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Table 2. Vehicle parameter estimation.

Parameter Value S.I Units

m 1.1937 Kg
Iz 0.005 Kg·m2

C f 4.8438 N
rad

Cr 11.2441 N
rad

lr 0.1049 m
l f 0.0691 m

5. Lateral Control Design

The lateral control architecture comprises two primary controllers: the reference
generator and the feedback controller. The reference generator is responsible for generating
a reference value (ψ̇re f ), which the vehicle must track. On the other hand, the feedback
controller is responsible for regulating the vehicle’s dynamics to enable it to follow the
desired trajectory.

5.1. Look-Ahead Reference Generator

Tracking ψ̇re f is the chosen method to track a defined path. Different methods can
generate this reference based on human interaction while driving. Pure pursuit, Stanley,
lateral error, and look-ahead vision are the most popular strategies that achieve satisfactory
results in real implementation [15,34]. The philosophy of generating ψ̇re f is shown in
Figure 12. The forward distance (L) from point A is tuned using (15); then, the nearest
point on track B to C is found. With the coordinates of (A, B, C) and knowing the ψ of the
vehicle, it is possible to generate ψ̇re f using (16).

L = tpV , tp look-ahead time to be tuned. (15)

ψ̇re f =
2V sin(α)

L
where α = arctan(

yB − yA
xB − xA

)− ψ (16)

Figure 12. Look-ahead vision algorithm structure [16].

5.2. LTI/H∞ Controller

A robust H∞ controller was chosen to regulate the lateral dynamics of the vehicle.
In the initial step, the system is treated as an LTI system, neglecting variations in vx.
The controller is designed using the architecture depicted in Figure 6. Weighting functions
We and Wu are designed as first-order transfer functions, as shown in Equation (4). Offline
tuning of the parameters is performed, with specific values provided in Table 3. It is
important to note that the controller is designed in discrete time. Both the weighting
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functions and the system are discretized using the Tustin method, with a sampling time of
Ts = 0.02.

Table 3. Vehicle lateral dynamicH∞ weighting parameters.

Parameter Value

Ms 2
ωb (rad/s) 3.14
εe 10−2

Mu 1
ωbc (rad/s) 31.4
εu 10−3

To design the controller, the LMI approach is utilized, and the MATLAB Robust toolbox
is employed to determine the optimal value of γ (γoptimal). The response of the closed-loop
system to frequency analysis is aligned with the predefined templates, exhibiting noise
rejection capabilities and tracking the desired references, as shown in Figure 13.

Figure 13. Analyzing the frequency response of the sensitivity function of the system and the
corresponding weighting templates.

5.3. LPV/H∞ Controller

The longitudinal speed, denoted as vx, is assumed to be bounded within the range of
0.4 to 1.6 m/s. A polytopic modeling approach is adopted, considering two independent
parameters: ρ1 = vx and ρ2 = 1

vx
. Figure 8 illustrates the four vertices that describe the

convex formulation of the set. The LPV/H∞ solution involves solving an LMI-based
optimization method to find the controller (Ki) at each vertex of the polytope. Utilizing the
tuned weighting functions provided in Table 3, four generalized plants are constructed at
each corner of the polytope, denoted by ωi.

It is worth noting that the considered approach is deemed conservative, as it describes
an excessively large set compared to the actual parameter variations [14]. To address
this issue, the fourth vertex is eliminated, resulting in a total of np + 1 vertices when
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determining the controller at specified (ρ1, ρ2). The new interpolation coefficients are
represented in Equation (17).

µ1 = 1− (µ2 + µ3) , µ2 =
|ρ2 − ρ2|
|ρ2 − ρ2|

, µ3 =
|ρ1 − ρ1|
|ρ1 − ρ1|

(17)

The controller (K(ρ)) at the target point (ρ1, ρ2) is then calculated using (18).

[
AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

]
=

np+1

∑
i=1

µi(ρ)

[
AKi BKi

CKi DKi

]
(18)

6. Simulation and Experimental Results

The designed controller is implemented and simulated using the MATLAB Simulink
simulator. The simulation architecture is depicted in Figure 14. The kinematic model is
employed to determine the vehicle’s position during simulation time. The outputs (Ẋ and
Ẏ) are integrated to obtain the global position of the vehicle (X, Y) on the track. This model
is typically utilized to describe the motion of a vehicle at low velocities. The servomotor
actuator is modeled as a first-order transfer function, denoted as Gact, with an input delay.
In the lateral model of the bicycle, γc represents the controlled input, while δ represents the
input for the steering angle. In this section, both simulation and experimental results are
presented for analysis and comparison.

Figure 14. LPV|LTI/H∞ simulation architecture.

6.1. Simulation of LTI/H∞ Controller

The controller is designed assuming a constant velocity of vx = 1 m/s. The tracking
results are presented in Figure 15. The simulated system demonstrates accurate path
following. The observed oscillation at the end of the first lap is attributed to the vehicle’s
speed transitioning from curvature following to straight-line following. In the simulation,
vx is varied between 0.8 and 1 m/s. The lateral error of the vehicle’s center of gravity
ranges from 5 cm to 10 cm during successful tracking. However, it increases to around
20 cm when the vehicle oscillates during the first two laps. This behavior is influenced
by the vehicle’s speed variations as it encounters different curvatures. The results of the
simulated system are illustrated in Figure 16, showcasing the yaw rate’s effective tracking
performance with respect to the reference generated by the look-ahead vision.
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Figure 15. LTI/H∞ Vehicle tracking simulation.

Figure 16. LTI/H∞ simulation results.

6.2. Simulation of LPV/H∞ Controller

As previously mentioned, the reduced polytopic approach is designed with the knowl-
edge that vx lies within the range of [0.4, 1.6] m/s. However, for simulation purposes,
the range is assumed to be [0.8, 1] m/s. The tracking performance is illustrated in Figure 17,
clearly demonstrating the effectiveness of the controller in reducing oscillations during cur-
vature changes. The lateral error mostly falls within the range of 5 cm to 10 cm. The results
presented in Figure 18 exhibit the excellent tracking performance of the yaw rate, which
closely follows its desired reference.
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Figure 17. LPV/H∞ Vehicle tracking simulation.

Figure 18. LPV/H∞ simulation results.

6.3. Experimental Results of LTI/H∞

The designed controller was successfully implemented in real time. The vehicle un-
derwent several rounds of testing with varying vx values, constrained within the designed
range. Experimental tracking results are presented in Figure 19, demonstrating that the
vehicle effectively tracks the track with good performance. Figure 20 showcases the states
of the vehicle during the experiment, with the yaw rate accurately tracking the generated
reference and the lateral error staying below 15 cm.

It is important to note that this controller is specifically designed for vx limited to
1 m/s, as oscillations and vehicle instability can occur beyond this limit. The controller
ensures stability and optimal performance within this velocity range.
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Figure 19. LTI/H∞ Vehicle experimental tracking.
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Figure 20. LTI/H∞ experimental results.

6.4. Experimental Results of LPV/H∞

The vehicle completed multiple rounds around the identified trajectory. The longitudi-
nal velocity was controlled using a joystick to maintain vx within the range of [0.5, 1.3] m/s.
Figure 21 displays the position of the vehicle relative to the defined reference. It is impor-
tant to note that the initial conditions of the controller significantly impact its stability and
efficiency. The maximum lateral error, as depicted in Figure 22, occurs when the vehicle’s
longitudinal speed reaches vx = 1.5 m/s. During the second curvature, where the vehicle
oscillates three times, the high value of vx relative to the vehicle’s dimensions leads to
this behavior. It is evident that at lower velocities, the tracking performance is improved,
with smaller lateral errors observed. This experiment was conducted at various velocities to
assess the controller’s performance under different acceleration and deceleration scenarios.
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Figure 21. LPV/H∞ vehicle experimental tracking.
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Figure 22. LPV/H∞ experimental results.

6.5. Experimental Comparison between LTI and Polytopic LPV

In order to provide a rough comparison between the mentioned strategies, a sample
of the experiment presented. Figures 23 and 24 illustrate the range of velocity variation,
along with the corresponding lateral error. The root mean square error (RMSE) for the
lateral error is calculated to be 0.0581 for the LTI approach and 0.0567 for the LPV polytope
approach. It is observed that the LPV polytope approach performs better in handling larger
values of vx compared to the LTI approach. During the experiments, the LTI controller
reached instability at vx values higher than 1.2 m/s, indicating the improved performance
achieved using the LPV approach.
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Figure 24. Lateral error.

7. Conclusions

This study presents a comprehensive approach to address the treatment and design of
an autonomous vehicles, covering various aspects, from robotics to control, with the aim of
enhancing system functionality and performance.

• We introduced the ROS2 environment, achieved through the design and development
of a versatile architecture that breaks down the vehicle software controller into distinct
levels. Each of these levels was addressed and adjusted independently.

• We introduced a concise discussion of the lateral dynamic model of the system, high-
lighting the impact of vx on its linear mode. Additionally, a parameter estimation-
based prediction error method was presented, accompanied by realistic outcomes.

• The system is categorized as LTI or LPV depending on the variation of vx. For each
scenario, a robust H∞ controller was designed and practically implemented using
the previously described ROS2 architecture. In terms of experimental comparison,
this study reveals the limitations of the LTI/H∞ approach compared to the LPV/H∞
approach, particularly when dealing with velocities higher than the designed operat-
ing point.

This fundamental architecture has room for enhancement across various dimensions.
From a robotics perspective, focusing on localization through onboard sensors can signifi-
cantly enhance the car’s sensing and perception capabilities. Additionally, the implementa-
tion of filters and observers to mitigate measurement noise and enhance sensing reliability
is crucial. On a different note, incorporating longitudinal control is essential to manage full
vehicle dynamics. Different controllers, like MPC, MFC, and adaptive controllers, for both
dynamics can yield improved performance and should be thoroughly tested.
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