
Citation: Peng, M.; Wei, Q.; Ma, R.;

Geng, Y.; Yang, Y.; Zhang, S.; Zhang,

Y. Unauthorized Access Detection for

Network Device Firmware WEB

Pages. Electronics 2023, 12, 3674.

https://doi.org/10.3390/

electronics12173674

Academic Editor: Alessandro

Gabrielli

Received: 22 June 2023

Revised: 14 July 2023

Accepted: 17 July 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Unauthorized Access Detection for Network Device Firmware
WEB Pages
Minwei Peng, Qiang Wei, Rongkuan Ma, Yangyang Geng *, Yahui Yang, Shichao Zhang and Yali Zhang

Information Engineering University, Zhengzhou 450001, China; mwpeng2021@163.com (M.P.);
funnywei@163.com (Q.W.); rongkuan307@163.com (R.M.); yongyh2020@163.com (Y.Y.); sc1222hm@163.com (S.Z.);
thaodesi@126.com (Y.Z.)
* Correspondence: young9471@163.com

Abstract: WEB technology is utilized for the configuration, interaction, and management of network
equipment, which has become ubiquitous in the intelligent industry and consumer electronics field.
Unauthorized access on WEB allows unauthorized users to access authorized information, causing
security vulnerabilities such as information leakage and command execution. However, commonly
used vulnerability detection techniques for WEB unauthorized access face increasing challenges and
more efficiently identify potentially sensitive pages. We propose WEBUAD, a WEB Unauthorized
Access Detection framework, for the vulnerability detection of WEB service IoT network devices.
WEBUAD utilizes the depth-first search algorithm to fully mine available information on device
firmware and generate a potential-visit page set as well as a similarity–matching algorithm of machine
learning to calculate the similarity of the responses of a web request. Finally, we evaluate WEBUAD
on 9 real physical devices from four vendors and 190 device firmware from seven vendors. The result
shows that compared with the state-of-the-art tool such as IoTScope, WEBUAD discovered 5007
potentially available pages, of which 658 were accessible and 9 sensitive pages existed, taking 50 s.
Furthermore, WEBUAD exposed 13 security-critical vulnerabilities. Our approach can be used to
automate the discovery of the WEB unauthorized access vulnerabilities of IoT devices.

Keywords: network device firmware; unauthorized access vulnerabilities detection; accessible
WEB page

1. Introduction

With the continuous development of IoT (the Internet of Things), more and more
various IoT devices are connected to the Internet. It is estimated that by 2025, there will
be approximately 64 billion IoT devices worldwide [1]. Since WEB connection offers the
benefits of remote configuration, easy identification, and graphical interface operation,
network devices are typically equipped with web services and configuration to facilitate
network configuration, operation, maintenance management, etc. [2] This not only provides
convenient services but also leads to severe security vulnerabilities. As shown in Table 1,
OWASP’s official website lists the top 10 web application security risks in 2021 [3], and
at least three of them—including A01, A04, and A07—are related to WEB unauthorized
access vulnerability. Therefore, it is imperative to precisely identify unauthorized access to
the web on network devices.

Various approaches have been presented to discover unauthorized access vulnerabili-
ties on IoT devices. For example, some researchers collect accessible pages and discover a
WEB unauthorized access vulnerability by using brute-force search or a dictionary. How-
ever, the brute-force search-based method is time-consuming, laborious, and has a high
detection cost. The dictionary-based method requires a lot of manual prior knowledge
and can only search for existing URL resources in the dictionary. As a result, searching
for accessible pages more efficiently remains a significant challenge. Fortunately, there are
several mainstream tools available for firmware simulation of IoT devices, which makes it

Electronics 2023, 12, 3674. https://doi.org/10.3390/electronics12173674 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173674
https://doi.org/10.3390/electronics12173674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12173674
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173674?type=check_update&version=1

Electronics 2023, 12, 3674 2 of 14

feasible to test IoT devices for security issues using firmware simulation approaches [4].
Some researchers extract file systems from firmware, perform system simulations using
only software, and then conduct static and dynamic analyses of the re-managed firmware,
yet these approaches simulate firmware without system firmware code, making it difficult
to judge the success of the simulation before the simulation process. There are also some
full-system simulation tools for WEB security research of IoT devices. But they do not focus
on unauthorized access, so there is still room for progress in the evaluation of functionality
and efficiency.

Table 1. Top 10 WEB Application Security Risks in 2021 [3].

ID Vulnerabilities

A01 2021-Broken Access Control
A02 2021-Cryptographic Failures
A03 2021-Injection
A04 2021-Insecure Design
A05 2021-Security Misconfiguration
A06 2021-Vulnerable and Outdated Components
A07 2021-Identification and Authentication Failures
A08 2021-Software and Data Integrity Failures
A09 2021-Security Logging and Monitoring Failures
A10 2021-Server-Side Request Forgery

To address these challenges, we propose WEBUAD, a WEB Unauthorized Access
Detection framework. Instead of using brute force or dictionaries, WEBUAD utilizes effec-
tive information in firmware to generate a “potential-visit” page. Specifically, WEBUAD
employs a depth-first search algorithm to search for vendors’ unauthorized access “Pro-
tected” and “login-page” URL pages and a similar-match algorithm in machine learning
for sensitive pages in target devices. With WEB access control and login authentication, we
are able to discover and detect unauthorized access and apply it to real physical devices
and firmware simulation devices.

We evaluated WEBUAD using 10 real-world devices from four vendors and 180 firmware
simulation devices from seven vendors to discover and detect unauthorized access during
WEB access control and login authentication. For the device adaptation of firmware emula-
tion, the framework integrates the FirmAE emulation tool. The experimental results showed
that WEBUAD demonstrated impressive performance, discovering 5007 potentially available
pages, of which 658 were accessible and 9 sensitive pages existed, all within 50 s. Addition-
ally, WEBUAD successfully discovered 13 0-day vulnerabilities on 30 devices from seven
manufacturers and assigned 13 new CNVD IDs.

Our contributions are summarized as follows:

• We define a framework, WEBUAD, to detect unauthorized access for network device
firmware WEB pages. This framework allows us to identify sensitive pages in network
device firmware and further discover their security issues;

• We propose an automated approach to detect WEB unauthorized access. Specifically,
we utilize a depth-first search algorithm to search for unauthorized access URL pages
and a similar-match algorithm to identify sensitive pages in target devices;

• We design and implement the prototype system of WEBUAD, which is capable of
detecting and verifying unauthorized access to WEB pages on both firmware emulation
and real devices. WEBUAD discovered a total of 13 0-day vulnerabilities, of which
2 were found on two real devices from two vendors, while the remaining 11 were
exposed on 190 simulated firmware devices from seven vendors;

• The source code of WEBUAD is available on Github for further research. https:
//github.com/mwpeng2021/WEBUAD [5].

The study is organized as follows. In Section 2, we list mainstream tools used for
prior work related to firmware simulation and IoT WEB security research. In Section 3, we

https://github.com/mwpeng2021/WEBUAD
https://github.com/mwpeng2021/WEBUAD

Electronics 2023, 12, 3674 3 of 14

explain the background and challenges of our work, and our proposed system WEBUAD
is explained in Section 4. Prototype implementation and experimental results are described
in Section 5. Finally, conclusions are given in Section 6.

2. Related Work

As far as we know, there are several mainstream tools for firmware simulation of
IoT devices. Sacrificing some code accuracy to provide faster emulation, QEMU [6] has
become one of the primary tools used by academics and industry professionals because
of its open-source licenses and widespread use and promotion by the community. It
emulates architectures such as IA32, x86, MIPS, SPARC, ARM, SH4, PowerPC, ETRAX
CRIS, and RISC-V, and it provides peripherals for many systems, making it almost the most
widely used emulator. PANDA [7] is an open-source platform built on top of QEMU’s
entire emulator system for architecture-independent dynamic analysis. Firmadyne [8],
Costin Firmware Analysis [9], and ARMX [10] extract file systems from firmware perform
system simulations using only software, then perform static and dynamic analyses of the
re-managed firmware. Being a fully automatic framework for simulation and vulnerability
analysis developed on the basis of Firmadyne, FirmAE [11] proposes a way of arbitration
simulation, from the firmware startup, network, NVRAM, kernel, and other aspects, it sums
up the causes of firmware simulation failure and has a universal method, greatly improving
the success rate of simulation. Pretender [12] requires hardware only during the training
phase, where the peripheral model is generated by observing real hardware behavior.
Avatar [13] proposes a new hybrid simulation framework, which significantly improves its
forwarding performance through customized hardware agents. Avatar2 [14] extends Avatar
to allow the replay of forwarded peripheral I/O without using real devices. Prospect [15]
forwards peripheral access at the system call level, but it does not exist on a bare firmware
MCU device, so cached peripheral access is used to approximate the firmware state for
analysis. Symbolic execution-based methods of simulating execution include µEmu [16],
Laelaps [17], Jetset [18], etc., which model peripherals by simulating the software layer and
taking all the values read from the hardware as symbolic values. These methods require
symbolic actuators such as Angr [19] or S2E [20]. HALucinator [21] solves the challenge
of providing peripherals that are not implemented in the base emulator by observing the
interaction with peripherals usually performed with the hardware abstraction layer. Totally,
the current methods still simulate firmware without system firmware code or Linux base,
thus, it is difficult to judge the success of the simulation before the simulation process.

There are also some mainstream tools for the WEB security research of IoT devices.
IoTFuzzer [22], a fuzzy automation framework for the web interface of IoT devices based on
full-system simulation, uses stateful message generation (SMG) capabilities, which make a
message composed of feeds that can basically cover all page actions and applications. Like
IoTFuzzer, WMIFuzzer [23] tests running IoT firmware without the need for a predefined
data model, applies fuzzy technology to the web management interface of Commercial
off-the-shelf (COTS) Internet of Things devices for administration or user interaction, and
evaluates seven popular COTS IoT devices and finds 10 vulnerabilities, 6 of which are 0-day
vulnerabilities. IoTHunter [24], a keyword-based approach to IoT traffic classification, takes
a labeled stream from each device type and uses DPI to extract the correct keywords from
each device type. These extracted keywords serve as unique identifiers for a particular
device. As a new approach that automatically exposes hidden web interfaces of IoT
devices, IoTScope [25] uses firmware analysis to construct probe requests to test physical
devices, narrow down the identification, and filter out unrelated requests and interfaces
through variance analysis. It pinpoints hidden interfaces by attaching various interfaces,
detecting parameters of device settings in requests and matches, as well as sensitive
information keywords. To sum up, the current IoT WEB security research does not focus
on unauthorized access, so there is still room for progress in the evaluation of functionality
and efficiency.

Electronics 2023, 12, 3674 4 of 14

3. Background and Challenges
3.1. Background

IoT security is a branch of cybersecurity that focuses on protecting, monitoring, and
remediating IoT-related threats. It includes but is not limited to the following attack
surfaces: web/mobile applications, cloud, sensors, gateways, smart border devices, and so
on. Devices include not only traditional terminals such as desktops, laptops, mobile phones,
and servers but also printers, cameras, routers, switches, smartphones, and navigation
systems. The contemporary IoT ecosystem is exceedingly intricate with a plethora of
vendors and device models, rendering a “one size fits all” solution unfeasible.

Unauthorized access pertains to the illicit utilization of network resources, encompass-
ing the unauthorized entry of unauthorized users into the network or system as well as
the unauthorized operations of legitimate users. It is a prevalent security vulnerability of
configuration management in industry, household, and other fields. It is mainly manifested
as the authorization or login-page defects—resulting in the direct access of users with
no permission or insufficient permission to pages requiring permission or a higher level
of authorization—or any other vulnerabilities, such as the leakage of databases, website
directories, and so on, as well as the viewing or even the modification or deletion of impor-
tant permission files. Unauthorized access detection technologies include port scanning
detection, vulnerability scanning detection, WEB application scanning detection, network
traffic analysis scanning detection, etc.

The interaction between the computer client and the WEB server is accomplished
through the client’s transmission of HTTP requests and the server’s reception of HTTP
responses. The client dispatches HTTP requests to the server by accessing the URL. After
receiving and processing the requests, the server sends different HTTP responses according
to varying response states. HTTP redirection technology redirects the user from one URL
to another. Before configuration management, the WEB server typically employs HTTP
redirection technology to redirect the user to the login authentication page. The user
enters his or her username and password on the login-page, along with the verification
code required by some devices to complete the verification process. If the authentication
fails, some devices display error messages. When a user accesses any resources of the
device, even if a malicious user attempts to access sensitive information such as the device
configuration page and device information, a secure server should redirect any pages
accessed by an unauthorized user to the login homepage of the device through HTTP
redirection technology. However, throughout the entire login process, the login page may
lack protection, and the access permission may not be strictly defined, thereby resulting in
security vulnerabilities such as unauthorized access, information leakage, and command
execution. Therefore, the failure of the login authentication process may compromise device
security and network security.

3.2. Challenges

The detection of unauthorized access for network device firmware WEB pages poses
the following three primary challenges.

C1: How to enhance the efficiency of firmware simulation? When studying physical
devices that are hard to obtain (e.g., no longer to be sold), or that are impossible to purchase
in large quantities due to their costs, sizes, etc., it is a viable option to find the firmware
to emulate the device using tools like FirmAE. However, the challenge lies in the fact that
it may not be clear whether the simulation is successful or not until the experiment is
completed. If the simulation is successful, the information related to the simulation success
will be output normally, and the firmware simulation time will be acceptable regardless of
how long it takes. If the simulation fails and a long waiting time passes without any output
of the prompt message of simulation failure, security researchers may be misled, and a
significant amount of research time may be delayed. Determining whether the firmware
has been successfully simulated as soon as possible can greatly improve work efficiency.

Electronics 2023, 12, 3674 5 of 14

In response to the first challenge, extensive research has been conducted on the widely
utilized FirmAE firmware simulation tools. By reading and analyzing their source code,
particularly run.sh and firmae.config, it has been discovered that in the event of a failed
firmware simulation during the initial attempt, the program logic error causes it to enter an
infinite loop, rendering it unable to output the prompt message “simulation failure” [26].
Consequently, the firmware simulation remains stuck in an endless wait without knowledge
of the firmware simulation results. To address this issue, we can modify the FirmAE source
code to accurately detect and promptly output a notification when the firmware fails to
simulate successfully within a specific time frame, such as 360 s, which can significantly
reduce the waiting time for a simulation failure.

C2: How to obtain more accessible pages in IoT devices? Generally, the process of
obtaining the list of accessible pages of the device can be divided into three steps. The
first step is to obtain the device firmware from the manufacturer more quickly, which can
be accomplished by downloading from the vendor’s official websites, etc. The second
step is to unpack the firmware, using an existing tool such as Binwalk [27]. Getting and
decompressing device firmware has already been well investigated. The third is to generate
a list of accessible pages for the device, which is challenging to complete with speed and
quantity. By using the dictionary search method, the size of the dictionary is positively
correlated with the content, the vendor, the device, and the firmware information. The larger
the dictionary size, the larger the number of pages that can be accessed using the device;
the lower the efficiency and the longer the running time, the more security vulnerabilities
to be discovered. It is the biggest challenge to obtain the potentially accessible pages of the
device to evaluate and test the efficiency and power performance.

Regarding the second challenge, it is imperative to fully leverage the information
contained within the device firmware. To achieve this, a tool must be developed to identify
the file system within the device firmware and identify all directories and files after de-
compression. By utilizing the known information within the firmware, a depth-first search
algorithm can be employed to generate a comprehensive set of potential accessible page
paths, which can then be systematically accessed one by one to get a consolidated list of
accessible pages.

C3: How to determine whether a page is sensitive? The device boasts an extensive
array of accessible pages, rendering it impractical to manually access each one and record
the outcomes. However, if the crawler and other techniques are used for sequential
scanning and log storage, the log can be manually checked after the access is completed,
but the log-writing process is very slow. Furthermore, the log is of considerable size, which
will require a significant amount of time to manually check. So, finding a fast, precise,
and automatic way to determine whether a page on a device is a sensitive one or not is a
significant challenge.

To address the third challenge, it is necessary to propose several definitions. Firstly, the
“login-page” refers to the page where a user enters his or her username and password for au-
thentication during the login, or the page that is accessed after HTTP redirection. Secondly,
the “Protected-Page” refers to the page that cannot be viewed or configured before the login
verification, or when the login fails. After a successful login, the device information and
configuration modification can be viewed. Lastly, “Non-existent page” refers to pages that
are almost impossible to exist in a set, such as “impossible_1a2b3c4d.html”. Based on these
definitions, a framework was designed and a prototype system was developed to verify
the security issues related to the WEB side of the device. As a first step, the system visits
the login-page of the device. If the login-page is not protected and can be accessed, read, or
modified, the device does not protect it, otherwise, the similarity–matching algorithm of
machine learning is further used to determine whether any accessible pages are sensitive
ones and whether the device has security vulnerabilities. This is achieved by establishing
the list set of “Protected” and “Non-existent” pages and calculating the similarity between
page access response and “Protected” and “Non-existent” page access response.

Electronics 2023, 12, 3674 6 of 14

4. System Design

As shown in Figure 1, the process of preparation entails a series of steps, the first
of which is to acquire the firmware. There are various methods to obtain the firmware,
such as accessing the configuration management page on a physical device, downloading
the current firmware version of the device, or extracting the firmware from the device by
disconnecting the hardware. Another option is to download the compressed firmware file
from the device’s official website, which may be in LZMA, ZIP, or Gzip format. The next
step is to unpack the firmware, which involves extracting various components such as the
boot loader, the kernel, and the file system. This can be achieved using firmware unpacking
tools such as Binwalk. The initialization process is primarily handled in initialization,
which utilizes Binwalk to extract the firmware and locate its file system. Additionally,
FirmAE provides the option to emulate the device in firmware mode.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14

before the login verification, or when the login fails. After a successful login, the device

information and configuration modification can be viewed. Lastly, “Non-existent page”

refers to pages that are almost impossible to exist in a set, such as “impossi-

ble_1a2b3c4d.html”. Based on these definitions, a framework was designed and a proto-

type system was developed to verify the security issues related to the WEB side of the

device. As a first step, the system visits the login-page of the device. If the login-page is

not protected and can be accessed, read, or modified, the device does not protect it, oth-

erwise, the similarity–matching algorithm of machine learning is further used to deter-

mine whether any accessible pages are sensitive ones and whether the device has security

vulnerabilities. This is achieved by establishing the list set of “Protected” and “Non-exist-

ent” pages and calculating the similarity between page access response and “Protected”

and “Non-existent” page access response.

4. System Design

As shown in Figure 1, the process of preparation entails a series of steps, the first of

which is to acquire the firmware. There are various methods to obtain the firmware, such

as accessing the configuration management page on a physical device, downloading the

current firmware version of the device, or extracting the firmware from the device by dis-

connecting the hardware. Another option is to download the compressed firmware file

from the device’s official website, which may be in LZMA, ZIP, or Gzip format. The next

step is to unpack the firmware, which involves extracting various components such as the

boot loader, the kernel, and the file system. This can be achieved using firmware unpack-

ing tools such as Binwalk. The initialization process is primarily handled in initialization,

which utilizes Binwalk to extract the firmware and locate its file system. Additionally, Fir-

mAE provides the option to emulate the device in firmware mode.

Figure 1. WEBUAD flowchart.

Unauthorized access detection and verification consist of the following parts. Firstly,

it is necessary to ensure that the device is operational. If real equipment is utilized, it needs

to be integrated into the network of the research environment. If the device is emulated

with firmware, it must be successful with an enabled WEB service as the signal. The sub-

sequent step is to execute the detection and verification program, which entails accessing

the device’s login-page and examining it for security vulnerabilities such as HTTP redi-

rection and unauthorized access. In addition, a list of all accessible pages of the device

should be generated based on the information extracted from the firmware, and a list of

Protected and Non-existent pages should also be created. The existence of security vul-

nerabilities on each accessible page is determined by similarity–matching, and sensitive

page logs are generated. Unauthorized access detection and verification includes two

parts: reproducing the same firmware and different firmware versions of the device and

attempting to reproduce on different devices from the same manufacturer or on different

firmware versions of the same device from the same manufacturer.

During device access, HTTP redirection is often configured to redirect to the device

login homepage due to security settings. HomeScope utilizes a depth-first search algo-

rithm for redirection discovery, storing all URLs in the redirection chain and visiting them

Figure 1. WEBUAD flowchart.

Unauthorized access detection and verification consist of the following parts. Firstly,
it is necessary to ensure that the device is operational. If real equipment is utilized, it
needs to be integrated into the network of the research environment. If the device is
emulated with firmware, it must be successful with an enabled WEB service as the signal.
The subsequent step is to execute the detection and verification program, which entails
accessing the device’s login-page and examining it for security vulnerabilities such as
HTTP redirection and unauthorized access. In addition, a list of all accessible pages of the
device should be generated based on the information extracted from the firmware, and a
list of Protected and Non-existent pages should also be created. The existence of security
vulnerabilities on each accessible page is determined by similarity–matching, and sensitive
page logs are generated. Unauthorized access detection and verification includes two
parts: reproducing the same firmware and different firmware versions of the device and
attempting to reproduce on different devices from the same manufacturer or on different
firmware versions of the same device from the same manufacturer.

During device access, HTTP redirection is often configured to redirect to the device
login homepage due to security settings. HomeScope utilizes a depth-first search algorithm
for redirection discovery, storing all URLs in the redirection chain and visiting them in
sequence to identify potential security vulnerabilities in the redirection process. Hidden-
Scope employs two algorithms. The first generates pages accessible to devices by using
a depth-first search to traverse all directories and files, concatenating them to create a
collection of potentially accessible pages and adding WEB suffixes such as php, asp, htm,
html, etc. The second is the similarity–matching algorithm, which calculates the threshold
based on the “Protected” and “Non-existent” pages of the device, attempts to visit each
accessible page of the device, calculates the similarity, and compares it with the threshold
to determine whether it is a sensitive page.

The compliance work mainly consists of two aspects. Firstly, the analysis logs of the
framework and prototype system need to collect the following information: the collection
of potentially accessible pages generated, the list of accessible pages attempted and suc-
cessfully accessed using the device, the list of sensitive pages that may have unauthorized
access, the program running time, and other related information. Secondly, the security
vulnerabilities are exposed. All unauthorized access and related information disclosure,

Electronics 2023, 12, 3674 7 of 14

command execution, and other security vulnerabilities have been submitted to the CNVD.
None of the experiments conducted have resulted in any actual threatening attacks on
manufacturers and devices. Only the detection and verification were performed for real
devices or devices simulated using the firmware, no actual related attacks.

5. Evaluation

The prototype implementation of WEBUAD is given in Section 5.1, and the experi-
mental settings are given in Section 5.2. The research questions are listed and discussed in
Sections 5.3 and 5.4. In Section 5.5, the experimental results and case studies are given.

5.1. Prototype Implementation

To evaluate WEBUAD experimentally, we have implemented a prototype of WEBUAD.
As shown in Figure 2, the implementation details of its main components are described as
follows. The first part involves preparation, which includes decompressing firmware and
extracting firmware information. The second part is the search and security verification of
the device’s login-page, which involves obtaining relevant information on the login-page
and detecting HTTP redirection. The third part is the hidden page search and security
detection and verification, which involves using a similarity–matching algorithm to identify
sensitive pages and detect unauthorized access to device WEB pages.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 14

in sequence to identify potential security vulnerabilities in the redirection process. Hid-

denScope employs two algorithms. The first generates pages accessible to devices by us-

ing a depth-first search to traverse all directories and files, concatenating them to create a

collection of potentially accessible pages and adding WEB suffixes such as php, asp, htm,

html, etc. The second is the similarity–matching algorithm, which calculates the threshold

based on the “Protected” and “Non-existent” pages of the device, attempts to visit each

accessible page of the device, calculates the similarity, and compares it with the threshold

to determine whether it is a sensitive page.

The compliance work mainly consists of two aspects. Firstly, the analysis logs of the

framework and prototype system need to collect the following information: the collection

of potentially accessible pages generated, the list of accessible pages attempted and suc-

cessfully accessed using the device, the list of sensitive pages that may have unauthorized

access, the program running time, and other related information. Secondly, the security

vulnerabilities are exposed. All unauthorized access and related information disclosure,

command execution, and other security vulnerabilities have been submitted to the CNVD.

None of the experiments conducted have resulted in any actual threatening attacks on

manufacturers and devices. Only the detection and verification were performed for real

devices or devices simulated using the firmware, no actual related attacks.

5. Evaluation

The prototype implementation of WEBUAD is given in Section 5.1, and the experi-

mental settings are given in Section 5.2. The research questions are listed and discussed in

Sections 5.3 and 5.4. In Section 5.5, the experimental results and case studies are given.

5.1. Prototype Implementation

To evaluate WEBUAD experimentally, we have implemented a prototype of

WEBUAD. As shown in Figure 2, the implementation details of its main components are

described as follows. The first part involves preparation, which includes decompressing

firmware and extracting firmware information. The second part is the search and security

verification of the device’s login-page, which involves obtaining relevant information on

the login-page and detecting HTTP redirection. The third part is the hidden page search

and security detection and verification, which involves using a similarity–matching algo-

rithm to identify sensitive pages and detect unauthorized access to device WEB pages.

The three parts are further explained as follows:

Figure 2. WEBUAD implementation overview.

• Firmware Directory and File Name Extraction. We search all directories, filenames,

and more information in extracted firmware and combine them together, generating

a “login-page” and “potential-visit” page set. Specifically, we utilize Binwalk to

Figure 2. WEBUAD implementation overview.

The three parts are further explained as follows:

• Firmware Directory and File Name Extraction. We search all directories, filenames, and
more information in extracted firmware and combine them together, generating a “login-
page” and “potential-visit” page set. Specifically, we utilize Binwalk to extract firmware
information and employ FirmAE to simulate the dynamic experimental environment;

• Device Login-Page Acquisition and HTTP Redirection Acquisition. We use a depth-
first algorithm to find all redirection HTTP links of a device “login-page” to detect
whether unauthorized access exists or not.

• “Protected” and “Non-Existent” Page Acquisition and Unauthorized Access Detection.
We use “Protected” and “Non-Existent” pages to generate the baseline, and then we
use a similarity–matching algorithm to visit and calculate the similarity of each page.
Then, comparing it to the baseline, we can detect unauthorized access on the device’s
concealed WEB page.

5.2. Experimental Settings

To assess WEBUAD’s efficiency, a total of 190 device firmware from seven vendors
were tested together with the firmware of an RT-AC53 physical device from an ASUS
manufacturer and with a device whose vendor information is hidden. WEBUAD and
IoTScope both run in Ubuntu18.04 VM with 4 GB of RAM, 2 cores, and 4 processors,

Electronics 2023, 12, 3674 8 of 14

and the host is configured with 16 GB of memory and an Intel(R) Core(TM) i7-10750 H
2.60 GHz CPU.

The device test set included real physical devices and firmware-simulated devices.
There were two types for the former: X-Vendor and X-Device named to hide the infor-
mation of the vendor device and firmware version and an RT-AC53 device from ASUS
with a firmware version of XXX.bin. For the latter, there were 190 device firmware from
seven manufacturers, including ASUS, NETGEAR, and D-Link, among which—except for
10 EDIMAX downloaded from the official website—the other 180 from six vendors came
from FirmAE’s firmware set.

5.3. Research Questions

To evaluate the functionality and efficiency of the prototype system, the following
questions are proposed:

RQ1: Is WEBUAD effective in identifying sensitive unauthorized visit pages?
RQ2: Is WEBUAD effective in discovering unauthorized access vulnerabilities on

tested real-world devices and firmware-simulated simulations?
RQ3: How does the time overhead of WEBUAD in discovering sensitive pages com-

pare with mainstream tools?

5.4. Experimental Evaluation

RQ1: HomeScope is implemented in the login-page identification process, and we
use the depth-first algorithm rather than any other algorithms. First, according to WEB
HTTP redirection, it is natural to use the depth-first algorithm. Second, we can get the
WEB source-code after we get the login-page of the device, in which there are several
tags including: “javascript” or “href”, therefore, using the depth-first algorithm to get
all redirect tags is convenient and fast. Since HomeScope detects security vulnerabilities
on the device login-page, security risks such as login verification are not guaranteed on
the device login-page configuration management. In terms of details, there is a security
issue on the “Protected” page of “X” and “Y”. As a result, “X” manufacturer can log into
the device login-page and perform unauthorized access and command execution as the
administrator before authorization. Similar issues also exist in some devices of “Y” vendor
and a certain printer of “Z”. For real devices, security issues exist on the “Protected” and
login-page of vendors “X” and “Y” detected by HomeScope, thus timeliness is unnecessary
to be considered.

Table 2 proves the device login-page classification is necessary. We were surprised by
the number of devices and vendors with no or incomplete protection on the login-page that
caused unauthorized access security issues. HomeScope detected security vulnerabilities
for a total of eight devices from a total of three vendors, including unauthorized access,
information leakage, and command execution, resulting in four CNVD numbers. For the
security and privacy of the manufacturers and devices, sensitive information is replaced
with symbolic letters such as “X” and “Y”.

Table 2. Detection results of HomeScope.

Vendor Device Type CNVD Number

X

X1
unauthorized access,
information leakage,
command execution

CNVD-2022-73093
CNVD-2022-77987

X2
X3
X4
X5

Y
Y1

unauthorized access CNVD-2022-73098Y2
Z Z1 information leakage CNVD-2022-73410

Electronics 2023, 12, 3674 9 of 14

RQ2: To investigate WEBUAD effectiveness, we set some experiments on real devices
and firmware emulation. As shown in Tables 3 and 4, on real devices, WEBUAD found five
0-days, including CNVD-2022-73093, CNVD-2022-77987, CNVD-2022-73098, and CNVD-
2022-73410. In Table 3, WEBUAD found eight 0-days, including CNVD-2022-89524, CNVD-
2023-02802, CNVD-2022-91483, CNVD-2022-69655, CNVD-2022-69516, CNVD-2022-70391,
CNVD-2022-82283, and CNVD-2023-02734 in the device firmware emulation.

Table 3. Detection results of HiddenScope.

Vendor Device Type CNVD Number

NETGEAR

R6400v2 Unauthorized access CNVD-2022-69489
R8000 Unauthorized access CNVD-2022-89524

WNR2000
Unauthorized access CNVD-2023-02802WNR1000

WN2000RPT

EDIMAX

HP5101WN

Information leakage CNVD-2022-91483
BR6228GNS
BR6428NS
BR6479GN

EW7416APN_v2

D-Link DIR815 Information leakage CNVD-2022-69655

ASUS

RT-AC53

Unauthorized access
Information leakage

CNVD-2022-69516
CNVD-2022-70391
CNVD-2022-82283

DSL-N55U
RT-AC66U
RT-AC88U

RT-AC1200G+
RT-N11P
RT-N12+
RT-N12E

RT-N12VP
RT-N66U

RT-AC68U Unauthorized access CNVD-2023-02734

Table 4. Efficiency self-evaluation of WEBUAD.

Program Name Device Name Sensitive Pages Time(s) CNVD Number

WEBUAD R6400v2 14 4 CNVD-2022-69489

As shown in Table 4, taking the NETGEAR R6400v2 device as an example, we set an
experiment to evaluate the functionality of WEBUAD; 14 sensitive pages were found in 4 s,
one of which was accepted by CNVD, CNVD-2022-69489.

Figure 3 showcases the results of WEBUAD’s firmware simulation capabilities and
the discovery of unauthorized sensitive pages. Figure 3a displays the number of success-
ful firmware emulations. Figure 3b represents the number of potentially accessed pages.
Figure 3c provides an overview of the number of actual accessed pages. Figure 3d shows
the number of unauthorized sensitive pages. We adopted D-Link vendors for illustration.
WEBUAD successfully simulated 29 firmware versions from D-Link vendors, generating
149,364 accessible pages. Out of these, WEBUAD was able to access 69,994 pages and
identified a total of 363 sensitive pages. Figure 4 presents the time overhead of WEBUAD.
The average time overhead excludes the simulation time but includes the login-page iden-
tification time and hidden page identification time. For the case of D-Link, WEBUAD’s
total time overhead at the D-Link provider was 1413 s. As depicted in Figures 3 and 4, WE-
BUAD generated 135,904 accessible pages and successfully accessed 17,862 ones, including
245 sensitive ones, with an average time of 1366 s.

Electronics 2023, 12, 3674 10 of 14

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

Table 4. Efficiency self-evaluation of WEBUAD.

Program Name Device Name Sensitive Pages Time(s) CNVD Number

WEBUAD R6400v2 14 4 CNVD-2022-69489

As shown in Table 4, taking the NETGEAR R6400v2 device as an example, we set an

experiment to evaluate the functionality of WEBUAD; 14 sensitive pages were found in 4

s, one of which was accepted by CNVD, CNVD-2022-69489.

Figure 3 showcases the results of WEBUAD’s firmware simulation capabilities and

the discovery of unauthorized sensitive pages. Figure 3a displays the number of success-

ful firmware emulations. Figure 3b represents the number of potentially accessed pages.

Figure 3c provides an overview of the number of actual accessed pages. Figure 3d shows

the number of unauthorized sensitive pages. We adopted D-Link vendors for illustration.

WEBUAD successfully simulated 29 firmware versions from D-Link vendors, generating

149,364 accessible pages. Out of these, WEBUAD was able to access 69,994 pages and iden-

tified a total of 363 sensitive pages. Figure 4 presents the time overhead of WEBUAD. The

average time overhead excludes the simulation time but includes the login-page identifi-

cation time and hidden page identification time. For the case of D-Link, WEBUAD’s total

time overhead at the D-Link provider was 1413 s. As depicted in Figures 3 and 4,

WEBUAD generated 135,904 accessible pages and successfully accessed 17,862 ones, in-

cluding 245 sensitive ones, with an average time of 1366 s.

(a) (b)

(c) (d)

Figure 3. (a) Vendor device’s function evaluation of WEBUAD in a firmware simulation; (b) poten-

tial-visit pages generated with WEBUAD; (c) actual-visit pages generated with WEBUAD; (d) sen-

sitive unauthorized visit pages discovered with WEBUAD.

Figure 3. (a) Vendor device’s function evaluation of WEBUAD in a firmware simulation; (b) potential-
visit pages generated with WEBUAD; (c) actual-visit pages generated with WEBUAD; (d) sensitive
unauthorized visit pages discovered with WEBUAD.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14

Figure 4. Time overhead of WEBUAD.

RQ3: To compare the efficiency of WEBUAD and IoTScope, we conducted experi-

ments using both real devices and firmware emulation. Specifically, we selected the

R6400v2 as the real device and the DIR-815 as the firmware emulation device to evaluate

the efficiency of WEBUAD. To facilitate the comparison, we integrated the IoTScope tool

into the IoTscope.py script. The primary objective was to combine the following steps:

Enumerating Interfaces, Delivering Probing Requests, Identifying Unprotected Interfaces,

and Identifying Hidden Interfaces. This approach aimed to minimize the time required to

enter commands and reduce potential errors during the comparison process.

Table 5 shows the comparison between IoTScope and WEBUAD for the same target

of the real device R6400v2. IoTScope found 177,498 potential-visit pages with 176,375

pages successfully accessed, among which 290 were sensitive, taking 22,978 s or about 6.4

h. One of the sensitive pages that passed manual verification was CNVD-2022-69489. The

WEBUAD framework generated 11,923 accessible pages and successfully visited 3301 of

them with 1 sensitive page. After verification, it was the same CNVD-2022-69489. The total

time spent was 32 s, which accounts for 0.14% of the running time of IoTScope in terms of

time efficiency.

Table 5. Real device R6400v2: efficiency evaluation of WEBUAD.

Program

Name

Potentially Accessible

Pages

Device-Accessible

Pages
Sensitive Pages Time(s)

IoTScope 177,498 176,375 290 22,978

WEBUAD 11,923 3301 1 32

As shown in Table 6, the scope was the same firmware emulation DIR-815, and we

made a contrast between IoTScope and WEBUAD. IoTScope found 97,125 potential-visit

pages and successfully accessed 48,948 of them, including 35 sensitive ones in 5,734 s or

about 1.6 h. One sensitive page was manually verified and declared as CNVD-2022-69655.

WEBUAD found 11,277 accessible pages, 8059 of which were successfully visited, and

there were 6 sensitive pages, one of which was verified to be the same CNVD-2022-69655,

spending 227 s in total and accounting for 3.96% of IoTScope’s running time of in terms

of time efficiency.

Figure 4. Time overhead of WEBUAD.

RQ3: To compare the efficiency of WEBUAD and IoTScope, we conducted experiments
using both real devices and firmware emulation. Specifically, we selected the R6400v2 as the
real device and the DIR-815 as the firmware emulation device to evaluate the efficiency of
WEBUAD. To facilitate the comparison, we integrated the IoTScope tool into the IoTscope.py
script. The primary objective was to combine the following steps: Enumerating Interfaces,
Delivering Probing Requests, Identifying Unprotected Interfaces, and Identifying Hidden
Interfaces. This approach aimed to minimize the time required to enter commands and
reduce potential errors during the comparison process.

Table 5 shows the comparison between IoTScope and WEBUAD for the same target of
the real device R6400v2. IoTScope found 177,498 potential-visit pages with 176,375 pages
successfully accessed, among which 290 were sensitive, taking 22,978 s or about 6.4 h.

Electronics 2023, 12, 3674 11 of 14

One of the sensitive pages that passed manual verification was CNVD-2022-69489. The
WEBUAD framework generated 11,923 accessible pages and successfully visited 3301 of
them with 1 sensitive page. After verification, it was the same CNVD-2022-69489. The total
time spent was 32 s, which accounts for 0.14% of the running time of IoTScope in terms of
time efficiency.

Table 5. Real device R6400v2: efficiency evaluation of WEBUAD.

Program Name Potentially
Accessible Pages

Device-Accessible
Pages Sensitive Pages Time(s)

IoTScope 177,498 176,375 290 22,978
WEBUAD 11,923 3301 1 32

As shown in Table 6, the scope was the same firmware emulation DIR-815, and we
made a contrast between IoTScope and WEBUAD. IoTScope found 97,125 potential-visit
pages and successfully accessed 48,948 of them, including 35 sensitive ones in 5734 s or
about 1.6 h. One sensitive page was manually verified and declared as CNVD-2022-69655.
WEBUAD found 11,277 accessible pages, 8059 of which were successfully visited, and
there were 6 sensitive pages, one of which was verified to be the same CNVD-2022-69655,
spending 227 s in total and accounting for 3.96% of IoTScope’s running time of in terms of
time efficiency.

Table 6. Firmware emulation device DIR-815: efficiency evaluation of WEBUAD.

Program Name Potentially
Accessible Pages

Device-Accessible
Pages Sensitive Pages Time(s)

IoTScope 97,125 48,948 35 5734
WEBUAD 11,277 8059 6 227

In general, WEBUAD costs less time in the detection of WEB unauthorized access
vulnerabilities on real devices and firmware emulation devices. Based on the above
discussion, compared with the IoTScope tool, the WEBUAD framework has significantly
reduced the number of potentially accessible pages of devices, the number of successfully
accessed pages of devices, the number of potentially sensitive pages of devices, and the
time spent, and it also has a certain degree of improvement in false reports. The first
reason is that WEBUAD skipped the binary file with the cgi suffix when stitching, so the
number of accessible pages was reduced to a certain extent. The second is that during the
interaction with real devices, the program interacts with real hardware. Hardware has a
certain processing time, and the interaction speed of the firmware simulation is faster than
that of real devices.

5.5. Discussions

WEBUAD successfully emulated firmware for 190 devices across seven different
vendors. It generated a total of 801,970 potential-visit pages and 125,033 actual-visit
pages during the process. Out of these, it identified 1721 sensitive pages. The entire
emulation process took approximately 9565 s. Additionally, WEBUAD discovered five
0-day vulnerabilities in real devices and eight 0-day vulnerabilities in device firmware
emulations. To provide more technical insights, we illustrated some case studies.

We have conducted many experiments with ASUS manufacturers, including a real
RT-AC53 device and a firmware simulation device of RT-AC1200+. RT-AC53 is a real device,
and AC1200G+ is a device simulated with firmware. Unauthorized access and information
leakage exist in some firmware versions of the two devices. As a result, the firmware
version, kernel version, operating system version, and network address of the devices were
leaked without user login verification. We reported this vulnerability to CNVD officials
and obtained CNVD-2022-69516 and CNVD-2022-70931 certificates.

Electronics 2023, 12, 3674 12 of 14

We conducted many experiments for D-Link vendors, including the DIR-815 firmware
simulation device. There was a common information leakage problem on some firmware
versions that could reveal information such as the firmware version, operating system
kernel version, and network address. We reported this vulnerability to the official CNVD
and obtained the CNVD-2022-69655 certificate.

6. Conclusions

To address the security problem of WEB unauthorized access of network device
firmware, we proposed the WEBAUD framework and designed a prototype system, which
solves the problems of fast generation access of device pages and fast detection and verifi-
cation of WEB unauthorized access. WEBUAD combines the capabilities of FirmAE and
Binwalk, allowing it to analyze a device or emulated firmware within a matter of seconds to
a minute. This quick analysis enables WEBUAD to identify potential unauthorized access
efficiently. One of the key advantages of WEBUAD is its accessibility. It is easy to obtain
and utilize, making it a convenient tool for unauthorized access detection. Additionally,
WEBUAD boasts a low detection time, meaning it can swiftly identify potential security
breaches. Moreover, WEBUAD has a high success rate in detecting unauthorized access
attempts, making it a reliable solution for security assessments. Although WEBUAD has a
certain effectiveness and efficiency in the study of WEB unauthorized access to network
device firmware, future work will continue to carry out more in-depth research in the
following two aspects. The main research objective of WEBUAD is to detect the absence of
authorization and to continue to study other security problems in the case of authorization,
such as WEB aspects and binary aspects, like stack overflow, heap overflow, etc. The second
main research objective of WEBUAD is to be accessible to real physical devices and devices
that can simulate firmware. The main work is to complete the detection and verification
of security problems on the premise that the firmware is decompressed and that the WEB
service of the device can be accessed. The firmware decompression process uses the most
available Binwalk tool while the firmware simulation employs the FirmAE tool. When
Binwalk and FirmAE are not efficient or when there are firmware decompression and
simulation failures, WEBUAD cannot complete the detection, resulting in a limited range
of target devices. Further research on firmware decompression and simulation technology
is needed.

Author Contributions: Conceptualization, S.Z.; Methodology, M.P. and Q.W.; Software, M.P. and
R.M.; Formal analysis, R.M. and Y.Y.; Resources, M.P.; Data curation, Y.Y.; Writing—original draft,
M.P., S.Z. and Y.Z.; Writing—review & editing, M.P., Y.G. and Y.Z.; Visualization, Y.G.; Project
administration, Q.W. and Y.G.; Funding acquisition, R.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Key R&D Program of China under Grant
No. 2020YFB2010900 and the Program for Innovation Leading Scientists and Technicians of ZhongYuan
under Grant No. 224200510002.

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Riad, K.; Huang, T.; Ke, L. A dynamic and hierarchical access control for IoT in multi-authority cloud storage. J. Netw. Comput.

Appl. 2020, 160, 102633. [CrossRef]
2. Costin, A.; Zarras, A.; Francillon, A. Automated dynamic firmware analysis at scale: A case study on embedded web interfaces.

In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi’an, China, 30 May–3 June
2016; pp. 437–448.

3. Top 10 Web Application Security Risks. Available online: https://owasp.org/www-project-top-ten/ (accessed on 5 May 2023).
4. Wright, C.; Moeglein, W.A.; Bagchi, S.; Kulkarni, M.; Clements, A.A. Challenges in Firmware Re-Hosting, Emulation, and

Analysis. ACM Comput. Surv. 2020, 54, 5. [CrossRef]

https://doi.org/10.1016/j.jnca.2020.102633
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/3423167

Electronics 2023, 12, 3674 13 of 14

5. WEBUAD. WEB Unauthorized Access Detection Tool. Available online: https://github.com/mwpeng2021/WEBUAD (accessed
on 5 May 2023).

6. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual Conference on USENIX Annual Technical
Conference, Anaheim, CA, USA, 10–15 April 2005; USENIX Association: Berkeley, CA, USA, 2005; pp. 41–47.

7. Panda, P.R. Systemic: A modeling platform supporting multiple design abstractions. In Proceedings of the 14th International
Symposium on Systems Synthesis, Montrél, QC, Canada, 30 September–3 October 2001.

8. Chen, D.D.; Woo, M.; Brumley, D.; Egele, M. Towards automated dynamic analysis for linux-based embedded firmware. In
Proceedings of the 23rd Annual Network and Distributed System Security Symposium, San Diego, CA, USA, 7 February–3
March 2023.

9. Costin, A.; Zaddach, J.; Francillon, A.; Balzarotti, D. A Large-Scale Analysis of the Security of Embedded Firmwares. In
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22 August 2014; USENIX Association: San
Diego, CA, USA, 2014; pp. 95–110. Available online: https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/costin (accessed on 18 June 2023).

10. Shah, S. The ARM-X Firmware Emulation Framework. Available online: https://github.com/therealsaumil/emux (accessed on
11 April 2023).

11. Kim, M.; Kim, D.; Kim, E.; Kim, S.; Jang, Y.; Kim, Y. FirmAE: Towards large-scale emulation of iot firmware for dynamic
analysis. In Proceedings of the Annual Computer Security Applications Conference, Virtual, 7–11 September 2020; Association
for Computing Machinery: New York, NY, USA, 2020; pp. 733–745.

12. Gustafson, E.; Muench, M.; Spensky, C.; Redini, N.; Machiry, A.; Fratantonio, Y.; Balzarotti, D.; Francillon, A.; Choe, Y.R.; Kruegel,
C.; et al. Toward the analysis of embedded firmware through automated rehosting. In Proceedings of the 22nd International
Symposium on Research in Attacks, Intrusions and Defenses, Beijing, China, 23–25 September 2019.

13. Zaddach, J.; Bruno, L.; Francillon, A.; Balzarotti, D. AVATAR: A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26
February 2014; pp. 1–16.

14. Muench, M.; Nisi, D.; Francillon, A.; Balzarotti, D. Avatar2: A Multi-target Orchestration Platform. Proc. Workshop Binary Anal.
2018, 18, 1–11.

15. Kammerstetter, M.; Platzer, C.; Kastner, W. Prospect: Peripheral proxying supported embedded code testing. In Proceedings
of the 9th ACM Symposium on Information, Computer and Communications Security, Kyoto, Japan, 4–6 June 2014; ACM:
New York, NY, USA, 2014; pp. 329–340. [CrossRef]

16. Zhou, W.; Computer, N.; Intrusion, N.; Symposium, U.S. Automatic Firmware Emulation through Invalidity-guided Knowl-
edge Inference. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13
August 2021.

17. Cao, C.; Guan, L.; Ming, J.; Liu, P. Device-agnostic firmware execution is possible: A concolic execution approach for peripheral
emulation. In Proceedings of the Annual Computer Security Applications Conference, Virtual, 7–11 September 2020; Association
for Computing Machinery: New York, NY, USA, 2020.

18. Johnson, E.; Diego, S.; Bland, M.; Zhu, Y.; Mason, J.; Champaign, U.; Checkoway, S.; College, O.; Savage, S.; Diego, S.; et al. Jetset:
Targeted Firmware Rehosting for Embedded Systems. In Proceedings of the 30th USENIX Security Symposium (USENIX Security
21), Vancouver, BC, Canada, 11–13 August 2021.

19. A Binary Framework Based on Symbolic Execution and Analog Execution, Angr. Available online: https://angr.slack.com
(accessed on 12 July 2023).

20. Chipounov, V.; Kuznetsov, V.; Candea, G. S2E: A platform for in-vivo multi- path analysis of software systems. Acm Sigplan
Notices 2011, 46, 265–278. [CrossRef]

21. Clements, A.A.; Sandia National Laboratories; Gustafson, E.; UC Santa Barbara; Sandia National Laboratories; Scharnowski, T.;
Ruhr-Universität Bochum; Grosen, P.; UC Santa Barbara; Fritz, D.; et al. HALucinator: Firmware re-hosting through abstraction
layer emulation. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Santa Clara, CA, USA, 14–16
August 2019.

22. Chen, J.; Diao, W.; Zhao, Q.; Zuo, C.; Lin, Z.; Wang, X.; Lau, W.C.; Sun, M.; Yang, R.; Zhang, K. IoTFuzzer: Discovering memory
corruptions in iot through app-based fuzzing. In Proceedings of the Network and Distributed System Security Symposium
(NDSS’18), San Diego, CA, USA, 18–21 February 2018.

23. Wang, D.; Zhang, X.; Chen, T.; Li, J. Discovering vulnerabilities in COTS IoT devices through blackbox fuzzing web management
interface. Secur. Commun. Netw. 2019, 2019, 1–19. [CrossRef]

24. Khandait, P.; Hubballi, N.; Mazumdar, B. IoTHunter: IoT network traffic classification using device specific keywords. IET Netw.
2020, 10, 59–75. [CrossRef]

25. Xie, W.; Chen, J.; Wang, Z.; Feng, C.; Wang, E.; Gao, Y.; Wang, B.; Lu, K. Game of Hide-and-Seek: Exposing Hidden Interfaces in
Embedded Web Applications of IoT Devices. In Proceedings of the ACM Web Conference 2022 (WWW ’22), Lyon, France, 25–29
April 2022; ACM: New York, NY, USA, 2022. [CrossRef]

https://github.com/mwpeng2021/WEBUAD
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://github.com/therealsaumil/emux
https://doi.org/10.1145/2590296.2590301
https://angr.slack.com
https://doi.org/10.1145/1961296.1950396
https://doi.org/10.1155/2019/5076324
https://doi.org/10.1049/ntw2.12007
https://doi.org/10.1145/3485447.3512213

Electronics 2023, 12, 3674 14 of 14

26. FirmAE issue, Make Some Changes in Firmae.Config can Make FirmAE Faster when Facing a Firmware Image Cannot Be
Emulated. Available online: https://github.com/pr0v3rbs/FirmAE/issues/56 (accessed on 9 June 2023).

27. Binwalk. Firmware Analysis Tool. Available online: https://github.com/ReFirmLabs/binwalk (accessed on 2 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/pr0v3rbs/FirmAE/issues/56
https://github.com/ReFirmLabs/binwalk

	Introduction
	Related Work
	Background and Challenges
	Background
	Challenges

	System Design
	Evaluation
	Prototype Implementation
	Experimental Settings
	Research Questions
	Experimental Evaluation
	Discussions

	Conclusions
	References

