
Citation: Cai, C.; Chen, B.; Qiu, J.; Xu,

Y.; Li, M.; Yang, Y. Migratory

Perception in Edge-Assisted Internet

of Vehicles. Electronics 2023, 12, 3662.

https://doi.org/10.3390/

electronics12173662

Academic Editors: Mehdi Sookhak

and Francesco Moscato

Received: 8 August 2023

Revised: 24 August 2023

Accepted: 28 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Migratory Perception in Edge-Assisted Internet of Vehicles
Chao Cai 1, Bin Chen 1, Jiahui Qiu 1, Yanan Xu 1, Mengfei Li 2 and Yujia Yang 2,∗

1 China United Network Communications Co., Ltd., Intelligent Network Innovation Center,
Beijing 100048, China; caichao2@chinaunicom.cn (C.C.); chenbin12@chinaunicom.cn (B.C.);
qiujh21@chinaunicom.cn (J.Q.); xuyn39@chinaunicom.cn (Y.X.)

2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; fiona_lee@bupt.edu.cn

* Correspondence: yangyj2022@bupt.edu.cn

Abstract: Autonomous driving technology heavily relies on the accurate perception of traffic envi-
ronments, mainly through roadside cameras and LiDARs. Although several popular and robust 2D
and 3D object detection methods exist, including R-CNN, YOLO, SSD, PointPillar, and VoxelNet, the
perception range and accuracy of an individual vehicle can be limited by blocking from other vehicles
or buildings. A solution is to harness roadside perception infrastructures for vehicle–infrastructure
cooperative perception, using edge computing for real-time intermediate features extraction and V2X
networks for transmitting these features to vehicles. This emerging migratory perception paradigm
requires deploying exclusive cooperative perception services on edge servers and involves the migra-
tion of perception services to reduce response time. In such a setup, competition among multiple
cooperative perception services exists due to limited edge resources. This study proposes a multi-
agent reinforcement learning (MADRL)-based service scheduling method for migratory perception
in vehicle–infrastructure cooperative perception, utilizing a discrete time-varying graph to model
the relationship between service nodes and edge server nodes. This MADRL-based approach can
efficiently address the challenges of service placement and migration in resource-limited environ-
ments, minimize latency, and maximize resource utilization for migratory perception services on
edge servers.

Keywords: migratory perception; multi-agent deep reinforcement learning; edge computing

1. Introduction

With the rapid development of artificial intelligence, the automation level of au-
tonomous vehicles has been continuously rising. One of the critical technologies of au-
tonomous driving is the accurate perception of highly dynamic traffic environments using
roadside cameras and LiDARs. Some popular methods such as R-CNN [1], YOLO [2], and
SSD [3] for 2D object detection and PointPillar [4] and VoxelNet [5] for 3D object detection
have demonstrated robust performance in detecting traffic entities such as vehicles and
pedestrians. However, blocking from other vehicles or buildings limits the perception
accuracy and range of a single vehicle, rendering it insufficient for driving safety. Given
the advantages of roadside perception infrastructures in accuracy and angle of view, it will
be vital to use these infrastructures to assist vehicles in performing cooperative percep-
tion. In the vehicle–infrastructure cooperative perception paradigm, roadside perception
infrastructures can transmit raw data, intermediate features, or detection results to vehicles
through the vehicle-to-everything (V2X) network, achieving corresponding early fusion,
intermediate fusion, and late fusion. Due to the low latency and high accuracy require-
ments of vehicle–infrastructure cooperative perception, intermediate fusion methods such
as Where2comm [6], V2X-ViT [7], and DiscoNet [8] are typically used to achieve a trade-off
between data volume and feature granularity. Specifically, edge computing can be utilized
for the real-time extraction of intermediate features on the roadside, while the V2X network

Electronics 2023, 12, 3662. https://doi.org/10.3390/electronics12173662 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173662
https://doi.org/10.3390/electronics12173662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0004-1642-7604
https://doi.org/10.3390/electronics12173662
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173662?type=check_update&version=2


Electronics 2023, 12, 3662 2 of 19

can be used to transmit these features to nearby vehicles. However, this novel vehicle–
infrastructure cooperative perception paradigm imposes new challenges on existing edge
computing systems from the following aspects:

Exclusive Perception Service. Different types of autonomous vehicles use distinct
neural networks for cooperative perception, necessitating the deployment of exclusive
cooperative perception services for each vehicle on the edge server. These services work
to extract intermediate features understood by a specific vehicle from perception data
obtained from roadside infrastructures.

Migratory Perception Service. As vehicles are fast-moving, the associated roadside
perception devices are constantly changing. To ensure the latency constraint of the service,
the cooperative perception service needs to be migrated accordingly to reduce the service
response time.

Competition Among Multiple Cooperative Perception Services. This indicates the
limited availability of edge resources and the existence of competition among multiple
services. If several autonomous vehicles simultaneously send requests for cooperative
perception services to the edge server, the server needs to maximize resource utilization by
optimizing service placement.

Therefore, service scheduling and migration for vehicle–infrastructure cooperative
perception are crucial for ensuring the efficient and timely transmission of intermediate
environment features. This yields a migratory perception paradigm. However, this paradigm
faces the curse of dimensionality, which has two main aspects. On the one hand, a large
number of services exist, each using a different perceptual neural network and requiring
different computational resources, leading to a large state space for service scheduling. On
the other hand, the action space for service scheduling is also extensive due to the large
quantity of edge servers. As a solution, we propose a service scheduling method based
on multi-agent reinforcement learning to guarantee the quality of services for migratory
perception. The main contributions of this paper are three-fold.

• Due to the various neural network architectures used for cooperative perception in
different types of autonomous vehicles, an edge-assisted migratory perception frame-
work is proposed which leverages edge services to perceive data, extracts intermediate
features, and fuses them in vehicles to achieve collaborative cognition.

• A discrete time-varying graph is designed to model the relationship between service
nodes and edge server nodes. This transforms the service scheduling problem into a
link prediction problem to better quantify the temporal variability of services.

• We propose a multi-agent reinforcement learning (MADRL)-based service scheduling
method specifically designed to tackle the complex challenges of service placement
and migration in a resource-limited environment. Migratory perception services
on edge servers are modeled as multiple learning agents to minimize latency and
maximize resource utilization for migratory perception.

This article initially presents the background and focus of the study in Section 1.
Section 2 is dedicated to surveying previous research within the realms of perception and
resource scheduling. The framework of the system under investigation is introduced in
Section 3, complete with network and computing models, highlighting the issues the re-
search aims to resolve. Moreover, it presents an intelligent service scheduling method,
reliant on multi-agent deep reinforcement learning. This section also elaborates on the
construction of the discrete-time graph and provides detailed information about the state
space, action space, reward functions, and state transitions. In Section 4, a resource schedul-
ing algorithm for edge computing based on QMIX is proposed to implement the method.
Detailed information about the experimental environment, model definition, and train-
ing, as well as experimental data and results, is provided in Section 5. The final section
concludes the paper, summarizing the key findings and achievements of this study.



Electronics 2023, 12, 3662 3 of 19

2. Related Work
2.1. Cognition and Decision Making

Advancements in autonomous vehicle technology have spurred considerable research
and development in single-vehicle 2D and 3D perception. Many of the key algorithms
proposed involve the use of convolutional neural networks (CNNs) [9] like YOLO [2],
SSD [3], and Faster R-CNN [10] for image-based object detection and recognition services.
These algorithms excel in the rapid and accurate recognition and localization of objects
from sensor streams, playing crucial roles in enabling autonomous navigation. Further,
semantic segmentation algorithms like DeepLab [11] and U-Net [12] have considerably
improved vehicles’ ability to understand the environment by parsing complex scenes into
intelligible segments like road, cars, and pedestrians.

In addition to image-based perception, 3D perception, mainly using LIDAR, has
seen significant advancement. Algorithms like PointNet [13] and VoxelNet [5] excel at
processing rich 3D point cloud data for object detection and pose estimation. Simultaneous
localization and mapping (SLAM) [14], with popular algorithms such as ORB-SLAM [15],
has also found widespread use in autonomous vehicles to map unknown environments
and track a vehicle’s location.

While the above-mentioned algorithms primarily focus on enhancing single-vehicle per-
ception, there is an emerging paradigm shift towards multi-vehicle and vehicle–infrastructure
cooperative perception. This cooperative perception leverages inter-vehicle communication
(using technologies like DSRC [16] and V2X [17]) to share perception data between vehi-
cles, contributing to a broader perception scope beyond individual vehicles. Furthermore,
cooperative SLAM algorithms enable multiple vehicles to work in unison to construct a
comprehensive environmental map, significantly improving overall perception and posi-
tioning accuracy. Data fusion techniques have also gained prominence in this realm, dealing
with disparate sources of perception data from multiple vehicles and infrastructure. To
ensure the accuracy and consistency of the data transmitted to the central fusion node, vari-
ous techniques have been developed for data pre-fusion. These techniques encompass data
pre-processing [18], calibration [19], and feature extraction [20], which aim to standardize
the data in terms of coordinate systems and timestamps. Moving on to the mid-fusion stage,
different fusion techniques are employed at the central node to integrate the data from
multiple sources effectively, which techniques include traditional filtering methods [21],
deep neural networks [22], Bayesian inference [23], weighted averaging [24], and fuzzy
logic [25]. The goal is to generate more accurate and consistent perception results. Finally,
in the post-fusion phase, the fused data are applied to specific domains or decision-making
services which can involve target tracking, scene analysis, and decision formulation. Ensem-
ble learning [26], deep fusion neural networks [27], graph models [28], and non-negative
matrix factorization [29] can be used to further improve the accuracy and robustness of the
fusion results. By leveraging the outcomes of data fusion, applications like autonomous
driving can utilize post-fusion results for services such as path planning and control. In
addition, algorithms need to not only be effective but also consider cost reduction and
energy efficiency. Promising approaches such as the one proposed by Huang et al. [30]
focus on cost-aware collaborative task execution within energy-harvesting device-to-device
(D2D) networks. This approach highlights the potential for intelligent decision making in
resource-constrained settings.

Moreover, as automated vehicles become an integral part of city traffic, the need
for improved security architectures becomes increasingly essential. Basilio et al. [31]
proposes an innovative osmotic computing framework that accounts for the dynamic
relationship involving vehicular-to-vehicular (V2V) and vehicular-to-edge-cloud (V2EC)
interactions. These developments in autonomous vehicle technology, particularly in multi-
agent reinforcement learning and cooperative perception, hold promising potential for
transforming future urban mobility, enhancing both efficiency and safety.



Electronics 2023, 12, 3662 4 of 19

2.2. Resource Scheduling

In this section, the methods of service placement and resource allocation in edge
computing are reviewed. With the expansion of edge computing application scenarios,
many scholars have conducted in-depth research on edge computing.

In the domain of delay reduction, several strategies minimize the total delay of all
users. For example, Wang et al. [32] and Wu et al. [33] utilized neural network-based and
distributed algorithms, respectively, specifically by optimizing offloading workloads from
mobile users to edge servers. These approaches significantly enhance computational effi-
ciency and improve user experience by reducing the delays associated with the processing
of services. However, issues related to the trade-off between delay minimization and com-
putational cost remain a challenge in this category of methods. Addressing these shortcom-
ings, a new line of research aims to achieve efficient computation offloading, predominantly
influenced by game theory. Here, migratory perception services are distributed among
multiple network entities to optimize the use of resources dynamically. Methods proposed
by Chen et al. [34] emphasized simultaneously minimizing energy consumption and com-
pletion time, with a major focus on achieving Nash equilibrium in multi-channel wireless
competitive environments. Despite these achievements, challenges related to the unstable
nature of the wireless environment and complexities related to maintaining Nash equilib-
rium persist. Furthermore, a subset of studies such as Tan et al. [35] and Chen et al. [36]
extended the problem beyond the conventional offloading, channel allocation, and power
control to include aspects like caching and virtual full-duplex communication. This extends
the notion of resource allocation and offers compelling solutions to some of the challenges
faced by the previous methods. Yet, there exists a further need for solutions that can
dynamically adapt to changes in network conditions and user requirements.

In order to optimize the service placement strategy, He et al. [37] tackled the optimiza-
tion problem of network, caching, and computational resources allocation in vehicular net-
works via a novel deep reinforcement learning method. On the other hand, Ren et al. [38]
applied a deep deterministic policy gradient-based resource allocation scheme, aiming to
maximize system performance by effectively allocating computing and communication
resources in a multi-agent edge computing (MEC) environment. However, a common
challenge for these studies is that they do not fully take into account service variabil-
ity, especially when handling multiple services concurrently. Aiming at this problem,
Wang et al. [39] proposed a deep Q-network-based strategic computation offloading algo-
rithm capable of learning optimal policies without prior knowledge. Yet, these methods
often overlook service migration issues raised due to service mobility in multi-service cases.

In response to the limitations observed in both categories, some recent studies have
begun to take a more comprehensive approach. For instance, Chen et al. [40] proposed a
strategic computation offloading algorithm based on deep networks that makes offload-
ing decisions based on channel quality, energy queue states, and service queue states,
aiming to minimize long-term costs. However, the issue of service time-variation still
remains partially addressed in the current literature, signaling an imperative need for
future explorations into this area.

2.3. Security and Intelligent Decision Making

As vehicular systems become increasingly interconnected, new challenges and com-
plexities arise, pushing the boundaries of traditional safety and security models. The
integration of advanced frameworks and technologies becomes vital not only to mitigate
potential risks and vulnerabilities but also to leverage the potential of IoV for enhanced
transportation efficiency.

Alina et al. [41] proposed an ingenious multi-agent autonomous intersection manage-
ment (MA-AIM) system that significantly contributes to vehicular network safety. Their
system uses vehicle-to-infrastructure (V2I) and infrastructure-to-vehicle (I2V) communica-
tions, reinforced by blockchain technology, demonstrating a forward-looking approach to
reducing intersection-related collisions. Subsequently, Alina et al. [42] also emphasized



Electronics 2023, 12, 3662 5 of 19

secure vehicle-to-vehicle (V2V) and vehicle-to-intersection (V2I) interactions by proposing
a secure and dependable multi-agent AIM system directed at minimizing traffic collisions
caused by human mistakes at intersections. This system incorporates blockchain and smart
contracts, providing an extra layer of security in vehicular communications.

Marrying these ideas with the revolutionary framework proposed by Basilio et al. [43]
offers an even more comprehensive approach to improving vehicular network secu-
rity. Their innovative osmotic computing framework is designed to adapt to fluctuating
city traffic, underscoring the dynamic relationship between vehicular-to-vehicular (V2V)
and vehicular-to-edge-cloud (V2EC) interactions. As a result, their framework presents
prospects for carefully maintaining traffic flow and safety within intricate city environments
that feature vehicles, pedestrians, and multiple physical infrastructures.

As vehicular networks become more sophisticated, they also become more vulnerable
to various threats and attacks. Thus, it is imperative to continually evolve security dynam-
ics in line with technological advancements. Furthermore, the scalability and adaptability
of current solutions to accommodate dynamic and varying traffic scenarios presents an
ongoing challenge. Future research needs to focus on developing more flexible, resilient,
and scalable solutions that can readily adapt to the ever-changing nature of smart city
environments. Thus, while current research has paved the way for innovative solutions
to enhance vehicular network security, there remains an extensive scope for further explo-
ration and development in this field. The quest for a truly secure, efficient, and intelligent
transportation system within smart cities continues, representing a critical frontier for
future research and development.

3. System Model and Problem Formulation
3.1. Framework of Migratory Perception

Our migratory perception framework is utilized for vehicle-to-infrastructure collab-
orative perception services, as illustrated in Figure 1. This framework consists of several
essential components, including edge servers, roadside cameras, vehicles, and edge cloud.
In this system, the service entities are deployed on edge servers to process real-time image
data from roadside cameras. Roadside cameras are connected to the edge servers through
wired connections, and they serve as vital components within the system. In addition,
autonomous vehicles are equipped with advanced communication modules that enable
the real-time reception of intermediate features transmitted by the edge servers through
wireless communication technology. After acquiring these features, the vehicles achieve
long-range cognition through intermediate fusion. In order to improve resource utiliza-
tion and service quality, edge servers migrate services to other edge servers for optimal
service placement. Services that exceed the edge servers should be migrated to the cloud
for processing.

Vehicular Trajectories

t t+1

Edge Servcer

Edge Cloud

Service 
Migration

Image

Feature

Figure 1. Framework of migratory perception.



Electronics 2023, 12, 3662 6 of 19

3.2. Network and Computation Model

The system includes a set of edge servers E, a set of roadside cameras U, and a set
of vehicles V. At any given moment, there is a set of perception services M waiting to be
placed. Each service, denoted as a ∈ M, is described via a five-tuple (v, u, y, r, d), where v
represents the identifier for the vehicle, u represents the roadside camera that generated
the service, y represents the data volume of the service, r represents the initiation time of
the service, and d represents the deadline for the service.

Communication Cost. Roadside cameras are directly connected to edge servers
through wired connections, transmitting image data to the edge servers. The edge servers
are interconnected via local area network (LAN) or wide area network (WAN). The connec-
tions between edge servers and vehicles are established through wireless communication
technologies such as cellular networks (e.g., 4G or 5G) or other dedicated communication
technologies (e.g., vehicle-to-infrastructure communication). Considering the fast trans-
mission speed of data collected by cameras propagated to edge servers through wired
connections, the corresponding duration is negligible. Furthermore, when edge servers
return the intermediate features to the vehicles, the data transmission latency is considered
negligible in the context of our investigation due to the small data volume, which consists
of only a few bytes.

Service Computation Cost. In this system, the service computation cost is determined
by both the data volume of services and the computational resources required for services.
Therefore, the computation cost T for each service is below:{

T = H(y, b) = ψ× y + ω× 1
b

b = B
N

(1)

Here, T = H(y, b) represents the latency of the migratory perception service, where y
denotes the data volume of the service and b denotes the computational resources required
for the service. H is a function that describes the relationship between service latency,
service data volume, and resource quantity. ψ and ω are coefficients that represent the
relative impact of the data volume of the service and the computational resources required
for the service, respectively. B represents the total resources of edge servers hosting the
service, and N represents the total number of services on the edge server. Using the function
H(y, b), we can calculate and analyze the latency of a service.

Migration Costs. Migrating service entities between edge servers inevitably incurs
migration costs. Within our system, migration costs are defined as the expenses incurred
during the transmission of data from service entities on the current edge server to another
edge server across a given time period.

cmgt = α× g× y + β× l (2)

In this equation, the variables α and β represent the relative weights assigned to data
volume and distance, respectively. In our system, g indicates whether the service undergoes
migration and y represents the data volume from migrated services, while l represents the
distance between the edge server hosting the service and the edge server where the service
is to be migrated.

3.3. Problem Formulation

In the context of a three-tier network architecture comprising a vehicle, an edge
server, and an edge cloud, our objective is to optimize the service migration strategy for
vehicular networks.

Assuming that each edge server has one or more migratory perception services, for the
services that require migration, they will be migrated to other edge server nodes that meet
the resource requirements. Given the limited number of edge server nodes, the system
aims to minimize the migration cost and the service timeout rate.



Electronics 2023, 12, 3662 7 of 19

The migration costs of services are constituted by the service data volume and migra-
tion distance. To minimize the migration cost and the service timeout rate, we incorporate
them into the optimization function as follows:

F = ∑(µ ∗ cmgt
i + γ× (1− pi)× cp)

∑j xi,j = 1

∑i(b
i,j
t ) ≤ f j

t
xi,j ∈ {0, 1}

(3)

Suppose the remaining computing resource quantity for edge server node j at time t is
f j
t . In order to ensure that the resource requirements of each service allocated to the edge

server node are met, an edge computing resource upper limit constraint is designed, where

∑i(b
i,j
t ) represents the total allocated resources for service i on edge computing node j at

time t.
In the equation provided above, it can be observed that each service i can only be

assigned to one edge server j and the completion time of each service i should be within a
given deadline. Here, µ and γ, respectively, represent the weights of service migration cost
and service timeout, cp represents the penalty due to service timeout, cmgt

i represents the
migration cost for service i, and the migration cost is defined in Equation (2). xi,j represents
whether service i is assigned to server j. pi represents whether the service has timed out,
and it is defined as follows: {

pi = 1, ∑(Ti,j) + ri ≤ di
pi = 0, ∑(Ti,j) + ri > di

(4)

In addition, Ti,j represents the time of service i on server j.

4. Method
4.1. Intelligent Service Scheduling Discrete Time-Varying Graph Construction

A discrete three-dimensional time-varying graph comprises a set of graphs G1, G2, ..., Gt.
Each graph Gt =< K, D > represents the topological relationship of service migration
between edge servers at time slot t, which can be described as follows: edge servers form a
network topology, enabling the migration of services through interconnected links. This
topological relationship is dynamic and depends on the requirements and strategies of
service migration. During the service migration process, the source edge server transfers
the execution state and data of the service to the target edge server. In the context of a time-
varying graph Gt, the nodes K comprise two categories: service nodes M and edge server
nodes E, denoted as K = M ∪ E. Service node a is described via a four-tuple (b, x, r, d),
where b represents the resource quantity, x represents the location of the current edge
server node s where service node a is situated, r represents initiation time, and d represents
deadline, while edge server node s is described via a two-tuple (B, ft),where B represents
total resource and ft represents the available resource remaining at time slot t. The edges
D represent the edges between service nodes and edge server nodes. The edge weight of
service nodes and edge server nodes represents the migration cost, from the current edge
server hosting the service at time t to the target edge server at time t + 1. This is further
elaborated upon in Equation (2). The existence of corresponding edges between service
nodes and edge server nodes is only valid when the constraint conditions are met. The
nodes and edges of the time-varying graph change over time.

Figure 2 provides a simplified representation of the local state concerning the same
service in two adjacent time slot graphs, Gt and Gt+1. The figure involves six edge server
nodes. In the left graph corresponding to Gt, service a1 is connected by edges to the edge
server nodes s1, s4, s5, and s6, indicating that these four edge server nodes can satisfy
service a1 constraint requirements at that time. Therefore, service a1 can be completed
within the constraints on any of these computing nodes, while the remaining edge server
nodes do not meet the constraints. In contrast, the right graph corresponding to Gt+1 shows



Electronics 2023, 12, 3662 8 of 19

that, due to changes in service spatial positions or edge server node loads, s1, s5, and s6
no longer satisfy a1 constraints. Edge server nodes s2, s3, and s4 now satisfy the service’s
constraints, so a1 adds connecting edges to s2, s3, and s4.

t t+1

Edge Server Node

Resource Utilization Rate

Agent

9

15

10 12 6 3 5

610

12

9

12

7 5
2 6

7

11
10

Figure 2. The left graph represents Gt, while the right graph represents Gt+1.

In Figure 2, by connecting service nodes in adjacent time slots with the direction
pointing toward increasing timestamps, the model establishes the temporal relationship
between the same services across time dimensions.

Using this graph, the migration cost incurred by traversing the edges between service
nodes and edge server nodes can be computed, which is elaborated upon in Equation (2).
In conjunction with the global state of each edge server node and service, we determine the
optimal migration strategy for service placement.

4.2. Intelligent Service Scheduling Decisions Based on Multi-Agent Deep Reinforcement Learning

In the context of edge cooperative perception services for vehicular networks, there are
multiple services that need to be scheduled and placed effectively. Traditional methods may
struggle to handle the complex coupling relationships and migration trends among these
services. MADRL, which combines concepts from reinforcement learning and multi-agent
systems, allows multiple agents to learn and make decisions in a collaborative manner. By
using MADRL, it is aimed to optimize the scheduling and placement of multiple services
in a cooperative and intelligent way.

Therefore, we can model the problem as a multi-agent deep reinforcement learning
(MADRL) framework, where each cooperative perception service deployed on an edge
server is modeled as an intelligent agent. The objective is to minimize the function F. To
model this problem, we define the state space, action space, reward function, and state
transition as follows.

4.2.1. State Space

In our system, each agent represents an edge cooperative perception service. Multiple
services can coexist on an edge server, with each service functioning as an individual agent.
At time slot t, agents obtain their partial observation states based on the time-varying graph
during that time slot. These observation states serve as input for the agents, assisting them
in decision-making processes.

In this context, the observation state space z for an agent is represented via a five-tuple
(ai, sopt, f , cmgt, y), where ai represents the agent’s identifier, sopt denotes the set of optional
edge server nodes, which represent edge server nodes that satisfy the constraints for service
migration, f represents the remaining resources corresponding to the optional edge server
nodes, cmgt represents the migration cost from the edge server node hosting the service to
the optional edge server nodes, and y represents the total data volume from the optional
edge server nodes within a specific range. Thus, the observation state at time slot t can be
defined as:

zt = {ai, sopt
t , ft, cmgt

t , yt} (5)



Electronics 2023, 12, 3662 9 of 19

4.2.2. Action Space

In our edge computing resource scheduling system, each agent, representing a service
on an edge server, is required to select a suitable edge server node from the available nodes.
Assuming the number of edge server nodes is n, the dimensionality of the action space
corresponds directly to the number of nodes, represented as:

A = {s1
t , s2

t , ..., sn
t } (6)

As shown in Figure 2, the agent ai points to the edge server node s, indicating that
agent ai can choose from the set of nodes s. If the selected edge server node remains
unchanged from the previous time slot, no additional actions are necessary. However,
if the chosen edge server node differs from the previous one, a migration action must
be executed.

4.2.3. Reward Function

In our system, a joint reward is employed to regulate the training of the multi-agent
deep reinforcement learning network for edge computing resource scheduling. The agents’
rewards are determined by two key performance indicators: the migration cost and the
service timeout rate. The reward function o is defined as follows:

o = R(z, e) = ∑(µ× cmgt(z, e) + γ× (1− p(z, e))× cp) (7)

In the given objective function, o = R(z, e) = ∑(µ× cmgt(z, e)+ γ× (1− p(z, e))× cp),
where o represents the objective function F to be optimized, as described in Equation (3),
z denotes the observation state space, and e signifies the intelligent agent’s action. Here,
cmgt(z, e) represents the migration cost based on the current observation state space z and
the intelligent agent’s action e. p(z, e) represents whether the service has timed out based
on the current observation state space z and the intelligent agent’s action e.

The objective function aims to optimize the performance of the edge computing system
by minimizing the migration cost, ensuring task completion within the specified time
constraints, and managing the penalty cost associated with task timeouts. By optimizing
this objective function, we can guide intelligent agents to make decisions that lead to
improved performance and resource utilization in the edge computing system.

4.2.4. State Transition

In the migratory perception framework, all agents make their selections at each time
slot, resulting in a joint action. After the joint action is executed, the system transitions
to a new time slot with an updated state. In this update status, the residual resource
amount and the edge server node where the service is located in the time-varying graph are
adjusted according to the probability transition function. This transition denotes movement
from Gt to Gt+1, as illustrated in Figure 2. Within the edge computing resource scheduling
framework, at time step t + 1, agent decisions from the previous time step are used to
update information such as the remaining resource volume for edge server nodes, agent
positions, and other relevant parameters. This leads to the generation of a renewed time-
varying graph, which serves as the basis for the next round of decision making.

4.3. Edge Computing Resource Scheduling Algorithm Based on QMIX

The QMIX algorithm [44] is employed in this study to address the problem of edge
server resource scheduling in scenarios where edge server node resources are scarce and
service computation demands are high. QMIX considers the impact of each agent’s behavior
on the overall environment, optimizing resource allocation and ensuring an optimal service
placement strategy. In contrast, Q-learning and DQN only consider the reward of a single
agent, potentially neglecting the overall system performance optimization.

In our system, intelligent agents represent the migratory perception service on edge
servers. The QMIX algorithm is utilized as the multi-agent reinforcement learning optimiza-



Electronics 2023, 12, 3662 10 of 19

tion algorithm for the system, achieving an optimized service placement strategy, which
incorporates a mixing network to merge the local value functions of individual agents.
By incorporating global state information during the training process, QMIX improves
its performance.

The method of centralized training and distributed execution to train agent policies is
employed. During the training phase, each agent produces a local action-value function
C based on its local observations z. The migratory perception service on the edge servers
processes the inputs from the network and generates intermediate features. Then, the
mixing network combines the local value functions and utilizes the global state information
S as auxiliary data for the merged local value function.

During the training iterations, agents continually explore the environment, collect
actions and observations, and optimize rewards. Network backpropagation is performed,
updating the network parameters using gradient descent. In the execution phase, the
mixing network architecture is no longer utilized; each agent merely relies on its local
network, outputting actions based solely on local observations.

As described in the previous section on multi-agent deep reinforcement learning
modeling, in the edge computing resource scheduling framework, at time slot t, each service
node agent’s local observation is represented as zt = {ai, sopt

t , ft, cmgt
t , yt}. The global state

is the union of all agents’ local observations, represented as S = {St, St+1, Ft, Ct}, where
St represents the states of all edge server nodes in the environment at time slot t, St+1
represents the states of all edge server nodes in the environment at time slot t + 1, Ft
represents the total remaining resources of the edge servers in the current environment,
and Ct represents the total migration cost of the service at time slot t.

Let τ = {τ1, ..., τn} denote the joint action-observation history, where represents
agent a’s action-observation history. Qtot represents the joint action-value function, while
Qi(τi, ui; θi), where θi represents the network parameters and ui is the action of each agent.

QMIX employs a mixing network to merge the local action-value functions of individ-
ual agents, incorporating global state information during the training process to improve
algorithm performance. As taking the argmax of the joint action-value function Qtot is
equivalent to taking the argmax of each local action-value function Q, their monotonicity
values are the same, as demonstrated below:

argmaxuQtot(τ, u) = (
argmaxu1 Q1(τ1, u1)

argmaxun Qn(τn, un)
) (8)

In this study, τ represents the joint action-observation history of all agents, τi represents
the joint action observation history of agent i, u represents the joint action of all agents, ui
represents the action of agent i, and Qi represents the local action-value function of agent i.
Based on τi and ui, we select the edge server node corresponding to the maximum action
using the argmax of the local action value function Q.

The distributed strategy greedily acquires the optimal action through local Qi. QMIX
transforms the above equation into a monotonicity constraint: ∂Qtot

∂Qi
≥ 0, ∀i ∈ {1, 2, . . . , n}.

If the above monotonicity is satisfied, the equation holds. In order to achieve the afore-
mentioned constraint, QMIX employs a mixing network, whose specific structure is
shown below:

According to the QMIX mixing network diagram, each agent, i.e., the migratory
perception service on edge server nodes, inputs the selectable actions along with the agents’
information and passes through their GRU network to output the corresponding local
action-value function. The output of the GRU network serves as the input to the mixing
network, which also accepts the global observation functions as input, enabling it to achieve
global optimality, as shown in Figure 3.



Electronics 2023, 12, 3662 11 of 19

Agent 1 Agent N

Mixing Network

Figure 3. QMIX mixing network [44].

The QMIX model consists of two main components: an agent decision network that
outputs the Qi function of a single agent and a mixing network that takes Qi as input and
outputs a joint Qtot.

The mixing network is a feedforward neural network that takes the output of the agent
network as input and monotonically mixes the generated Qtot values, as shown in Figure 4.
To ensure monotonicity constraints, the mixing network’s weights are restricted to non-
negative values (biases can be negative). This allows the mixing network to approximate
any monotonic function.

hyper_net1 hyper_net2

state

hidden

Figure 4. Mixing network.

The weights of the mixing network are generated by separate hypernetworks. Each
hypernetwork takes the global state S = {St, St+1, Ft, Ct} as input, and the decision network
of each agent is implemented through the DRQN network. This network can be trained
separately for different agents and can also have parameter sharing based on business
requirements. In the context of resource scheduling, we adopt the approach of parameter
sharing for training.

For each agent a, there exists a corresponding agent network which represents an
individual value function Q(τa, ut−1

a ). Here, ut−1
a represents the action of agent a at time

slot t− 1, where τa represents the history of observation sequences. In this context, zt−1
a

represents the local observation input of agent a to the GRU at time slot t − 1, and zt
a

represents the output local observation of agent a through the GRU at time slot t. We
represent these agent networks as DRQNs, which receive the current individual action u
and the joint action observation history of agent a τa as input at each time step, as depicted
in Figure 5.

DRQN replaces the fully connected layer in DQN with a GRU network, and its re-
current layer consists of a 64-dimensional hidden state GRU. Recurrent networks exhibit
stronger adaptability when the quality of observations changes. As depicted in Figure 5,
the network contains three layers: input layer (MLP multi-layer neural network) → inter-
mediate layer (GRU gated recurrent neural network) → output layer (MLP multi-layer
neural network).



Electronics 2023, 12, 3662 12 of 19

MLP

GRU

MLP

Figure 5. QMIX mixing network value calculation.

First, the global information of the environment is input, and actions are selected
randomly with probability ε and greedily with probability 1− ε. By employing this ε-
greedy algorithm, a minimal regret value can be ensured. If it enters the evaluation network,
the edge server node to which the service is migrated with the highest local action value is
selected through the policy function as the action and input to the current environment. The
updated environment observation St and the current reward o are input into the experience
replay pool after the environment is updated according to the generated agent actions.
The experience replay pool re-inputs the current reward and environment observation
into the target network. The evaluate network and target network are updated using the
TD-error algorithm, receiving the Q value of the action selected by the actor network under
state Q as input and outputting Qtot(evaluate). The maximum Q value among all actions
in state St+1, as input by the actor network, is received, and Qtot(target) is output. Edge
Computing Resource Scheduling Algorithm based on QMIX is shown below (Algorithm 1):

Algorithm 1: QMIX Algorithm
Initialize experience replay buffer
Initialize Q networks for all agents and the mixer
Initialize target networks for all agents and the mixer
For each episode = 1, M do

Collect joint observations from all agents
For each agent a do

Select action ua using exploration strategy
Execute joint action u = (u1, . . . , un)
Receive joint reward R and next joint observations
Store experience tuple in replay buffer

End for
Sample mini-batch of experiences from replay buffer
For each agent a do

Update Q network Qa using gradient descent
Calculate local Q-value Q(τa, ut−1

a )
End for
Calculate global Q-value using mixer network
Calculate TD target and TD error for each agent
For each agent i do

Update Q network using TD error and gradient descent
Update target network using a soft update rule

End for
End for



Electronics 2023, 12, 3662 13 of 19

5. Experiment
5.1. Experimental Environment
5.1.1. Training Environment

The simulation environment mainly simulates two parts:
Environment simulation: simulating vehicle movement, service generation, and distri-

bution, as well as service completion and termination.
Edge computing platform simulation: simulating the location of edge server nodes

and initializing and updating resource quantities. The simulation environment primarily
simulates the agent’s environment, while the service placement environment simulates the
edge computing platform.

The simulation environment is mainly responsible for the initialization and attribute
management of vehicles, the attribute management of service nodes on edge server nodes,
service distribution, and destruction.

The service placement environment is primarily responsible for the initialization and
attribute management of edge server nodes. The resource matrix of edge nodes records the
total and remaining resource volumes, where the remaining volume will change according
to the service schedule. The service record dictionary of edge server nodes records the
services and their occupied resource volumes at the current time slot on that edge node.

Upon initializing the simulation environment, the environment generates a specified
number of vehicles and randomly assigns their starting and destination locations. Vehicles
move toward their destination locations at a specified speed. The environment dispatches
services with random data sizes to edge server nodes at each time slot with a probability
that is determined based on the current total number of services on the edge server nodes,
and the MADRL model is responsible for the service schedule to complete services within a
limited time and minimize function F. The service’s time limit is proportional to its random
data volume, and the dispatching probability is inversely proportional to the current total
number of services on the edge server.

5.1.2. Training Process

In this experiment, the simulation environment is first initialized. Then, the relevant
information is obtained from the environment and processed into the input of each agent
in the multi-agent reinforcement learning QMIX model. The scheduling decision output
of each agent is obtained. The output is input into the simulation environment, which
updates the corresponding attributes and computes the relevant rewards.

Due to constraint limitations, only resource constraints are considered in the environ-
ment when selecting optional edge server nodes for service agents. In this environment,
resource quantity is quantified as the number of CPUs, and the required number of CPUs
is mapped from the current remaining data volume.

5.2. Model Definition and Training
5.2.1. Hardware Description

The experiments were conducted using a computer system equipped with an Intel(R)
Core (TM) i7-7700, 3.6 GHz CPU, and 16 GB DDR4 RAM. The GPU used was an NVIDIA
GeForce GTX 1050 Ti with 4 GB of VRAM. The operating system was Ubuntu 18.04 LTS,
and the experiments were implemented using Python 3.7 and TensorFlow 1.15 for the
reinforcement learning algorithm.

5.2.2. Experimental Data Description

The experimental data are obtained by simulating actual data. Services are placed
on edge server nodes. When distributing services, the birth time r, deadline d, total
data volume required y, and node information of the service are initialized. As the time
slot changes, according to the actions of the previous time slot’s services, the resource
remaining volume and service remaining data volume of the edge server nodes are updated
to construct the simulated data for the edge computing resource scheduling system.



Electronics 2023, 12, 3662 14 of 19

5.2.3. Model Parameter Settings

In this experiment, the environment was set to a size of 32 cellular grids, the number of
services ranged from a minimum of 1 to a maximum of 64, and there were 8 edge computing
platforms, with each platform covering 4 cellular grid areas. The QMIX reinforcement
learning model parameters are as shown in Table 1.

Table 1. QMIX algorithm service scheduling model definition.

Parameter Name Value

GRU hidden layer dimension 64
Mixture network hidden layer dimension 32

Exploration factor 1.0–0.05
Reward discount factor 0.99

Buffer size 5000 rounds of simulated data
Sampling batch size 32 rounds of simulated data

Target network update frequency Every 200 rounds of simulation
Learning rate 5× 10−4

5.2.4. Training Output

The training process uses the function F as the training objective. As the training
process iterates, the function F converges to a stable value. A convergence curve is plotted
to determine whether there are any issues in the training process. If convergence to a stable
value is achieved, it indicates that the multi-agent reinforcement learning process is normal,
as shown in Figure 6.

0 200000 400000 600000 800000

Episode Number

−60

−50

−40

−30

−20

−10

0

10

F

Figure 6. QMIX algorithm training process F situation.

5.3. Experiment Setup

Three different configurations are set up in the experiment to compare the training
effects of reward, CPU resource utilization, and service completion rate in service scheduling.

(1) Service scheduling decision based on the QMIX algorithm.
(2) Service scheduling decision based on the greedy policy.
The greedy policy chooses the edge server node with the minimum of the function

F among the nodes that satisfy the constraint conditions as the target migration node
for the agent. It uses a strategy of choosing the locally optimal solution at each stage
to achieve service scheduling and allocates services based on current information and
resources, attempting to select the most optimal option for the current environment at each
decision point. However, the greedy policy may encounter a high iteration count and low
computational efficiency due to the computational complexity and overhead associated
with considering global optimal solutions as the environment becomes more complex.

(3) Service scheduling decisions based on the random policy.



Electronics 2023, 12, 3662 15 of 19

The random policy randomly selects an edge server node that satisfies constraint
conditions as the migration target node for the agent. The random policy relies on random
sampling rather than fixed rules or limits for allocating resources and services. Random
policies may not provide an optimal solution and a completely random policy could result
in unbalanced load distribution or service delays.

The hierarchical edge computing intelligent service scheduling model is compared
with the classic greedy optimization algorithm and random policy.

When there are 5 computing nodes, 10 vehicles, 10 services, CPU resources for the
computing nodes are within between 16 and 32, and service data volume is within between
100 and 1000, the reward values of the three algorithms are compared:

In Figure 7, the X-axis represents the number of training iterations and the Y-axis
signifies the function F. Presented from left to right are the performances of the random
policy, the QMIX-based algorithm, and the greedy policy.

0 1000 2000 3000 4000

Episode Number

−60

−50

−40

−30

−20

−10

F

0 50000 100000 150000 200000

Episode Number

−40

−30

−20

−10

0

10

20

F

0 1000 2000 3000 4000

Episode Number

15.5

16.0

16.5

17.0

17.5

18.0

18.5

F

Figure 7. The corresponding F values from left to right are those of the random policy, QMIX policy,
and greedy policy.

Upon observing the rewards returned by the random policy, it is evident not only that
the performance is consistently poor, but the results also fluctuate significantly, suggesting
an unstable policy. The greedy policy, on the other hand, converges quickly to a stable
value of about 17. Despite this, the rapid early gain does not compensate for subsequent
performance—which is outraced by the QMIX algorithm. The QMIX-based algorithm
shows a gradual, consistent, and more significant increase in rewards as the training
iterations increase. The value of F stabilizes to an approximate value of 20, which is better
than that of the greedy policy. The results demonstrate the superior performance of the
QMIX model in intelligent service scheduling in edge computing environments.

When there are 10 edge server nodes, 15 vehicles, 15 services, CPU resources for
computing nodes are within between 16 and 32, and service data volume is within between
100 and 1000, the function F values of the three algorithms are compared in Figure 8:

0 250 500 750 1000 1250 1500 1750 2000

Episode Number

−170

−160

−150

−140

−130

−120

−110

−100

F

0 100000 200000 300000 400000

Episode Number

−140

−120

−100

−80

−60

−40

−20

F

0 500 1000 1500 2000 2500 3000 3500 4000

Episode Number

−25

−24

−23

−22

−21

−20

−19

−18

F

Figure 8. The corresponding F values from left to right are those of the random policy, QMIX policy,
and greedy policy.



Electronics 2023, 12, 3662 16 of 19

Expanding on the comparison made, an algorithm’s performance is directly propor-
tional to the complexity of the environment. The more complex the situations are, the more
difficult it is for the algorithms to perform efficiently. An increase in edge server nodes,
vehicles, and services presents a more complex environment for the three algorithms.

In the case of the greedy policy, it seems to adapt better to larger environments,
showing superior performance when there are more nodes and vehicles. This could be
attributed to its nature of algorithm design, which aims to maximize short-term rewards,
therefore outperforming other policies in this aspect.

The QMIX policy, despite its sophisticated model design, seemed to struggle more than
the greedy policy when dealing with large environments. It showed signs of difficulty in
learning the service placement strategy well, leading to reduced performance. The decrease
in function F value points to this. The reduced performance might be due to the QMIX
policy’s necessity for extensive training to learn complex service placement strategies.

On the other hand, the random policy demonstrated significant deficiency compared
to the QMIX and greedy policies. This outcome was expected, given that the random policy
lacks strategic selection methods to handle such complex situations efficiently.

In a situation where edge server node resources become scarce and the data volume of
services increases, the service completion rates and resource utilization rates of the three
algorithms across the five nodes are compared.

When there are 5 edge server nodes, 10 vehicles, 10 services, CPU resources for
computing nodes are within between 5 and 10, and service data volume is within between
600 and 900, the resource utilization and service completion rates of the three algorithms
are compared across all computing nodes in Figures 9 and 10:

0 1000 2000 3000 4000

Episode Number

0.1

0.2

0.3

0.4

0.5

0.6

R
a
n
_
c
p
u

0 200000 400000 600000 800000

Episode Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q
m
ix
_
c
p
u

0 1000 2000 3000 4000

Episode Number

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
re
e
d
y
_
c
p
u

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 9. The corresponding resource utilization rates from left to right are those of the random
policy, QMIX policy, and greedy policy.

0 1000 2000 3000 4000

Episode Number

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

R
a
n
_
C
o
m
p
le
ti
o
n
R
a
te

0 200000 400000 600000 800000

Episode Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Q
m
ix
_
C
o
m
p
le
ti
o
n
R
a
te

0 1000 2000 3000 4000

Episode Number

0.65

0.70

0.75

0.80

0.85

G
re
e
d
y
_
C
o
m
p
le
ti
o
n
R
a
te

Figure 10. The corresponding service completion rates from left to right are those of the random
policy, QMIX policy, and greedy policy.

The random policy proves to be the least effective of the three. It is notable for its
relatively low service completion rate, which could be attributed to its lack of strategic
resource allocation. The resources are randomly allocated, which runs the risk of inefficient
utilization and lower service completion rates.



Electronics 2023, 12, 3662 17 of 19

Contrarily, the QMIX policy, a value-based multi-agent reinforcement learning al-
gorithm, delivers a noteworthy performance. The high service completion rate can be
attributed to its learning ability to coordinate among multiple agents. In this case, the
vehicles can be seen as agents and they learn to make optimal decisions regarding resource
allocation and service deployment. This leads to a higher service completion rate, although
the resource utilization rate is not uniformly distributed among the nodes. The reasons
for nodes 1 and 3 having close-to-zero resource utilization under the QMIX policy needs
further investigation. One possible reason could be that the QMIX policy tends to concen-
trate resources on a few nodes (like node 4 in this case), leading to higher overall service
completion rate, but at the cost of lower utilization of other nodes.

The greedy policy strikes a balance between resource utilization and service comple-
tion rate. The significantly high resource utilization of nodes 4 and 5 indicates a tendency
to assign tasks to those nodes that currently have the highest available resources, thus
abiding by its ‘greedy’ nature. This likely explains its high service completion rate at the
initial stage (episode number = 2000). However, the decline in the service completion rate
over the course of the experiment could suggest a need for more sophisticated resource
allocation and service deployment strategies that account for future variations in resource
availability and service demands.

In summary, while all three policies have their own advantages and pain points, the
QMIX algorithm appears to provide the highest service completion rate, and considering
the increasing data volume and resource constraints, a trade-off must be made. Further
investigations may be conducted for enhancing the performance of these algorithms,
especially in terms of achieving a balanced resource utilization across the nodes while
maintaining high service completion rates.

6. Conclusions

The emergence of edge computing has made it possible to realize time-sensitive,
resource-intensive scenarios, such as target detection in edge intelligence. Service placement
within edge computing plays a significant role in determining the overall quality of such
systems. Considering the complex coupling relationships between service placement
decisions and the hierarchical edge computing load, especially in multi-service situations,
this study employs the multi-agent reinforcement learning algorithm QMIX to optimize
intelligent service scheduling and placement.

In scenarios featuring service mobility, facilitating stable and continuous edge com-
puting services inevitably results in service migration. We propose the use of discrete time-
varying graphs to capture the temporality of services and combining these graphs with
reinforcement learning algorithms to better leverage the coupling relationships between ser-
vices and migration tendencies. This approach leads to a more optimized service scheduling
and placement strategy, enabling a more efficient and reliable edge computing system.

Looking to the future, we realize the scope of the extension of our research in varied
dimensions. One area could involve improving the QMIX algorithm or proposing a new
multi-agent reinforcement learning algorithm that offers better performance in particular
settings. In addition, we could consider different migration policies and their impact on
service scheduling and placement. Moreover, we anticipate investigating other service
placement strategies that entail the consideration of additional parameters like energy
consumption, latency, and cost. The inclusion of more dynamic and complex scenarios, like
fluctuating network conditions or user mobility, can also provide a valuable direction for
future work.



Electronics 2023, 12, 3662 18 of 19

Author Contributions: The research idea was conceived collaboratively by C.C., B.C., J.Q. and Y.X.,
who envisioned the scope, significance, and direction of the study. The conducting of experiments,
involving data collection, the running of simulations, and the testing of methods, was handled by
M.L. and Y.Y., while the analysis of the results was undertaken collectively by C.C., B.C., J.Q. and Y.X.
The original manuscript was written by M.L., who documented the rationale, methodology, analysis,
and conclusions of the study. The manuscript was subsequently checked and revised by C.C., B.C.,
J.Q. and Y.X., who provided critical feedback and contributed to refining the content and enhancing
the academic writing. All authors have read and approved the final version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study did not require ethical approval.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.
2. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers.

In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510.

3. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

4. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection from Point Clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

5. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

6. Hu, Y.; Fang, S.; Lei, Z.; Zhong, Y.; Chen, S. Where2comm: Communication-Efficient Collaborative Perception via Spatial
Confidence Maps. Adv. Neural Inf. Process. Syst. 2022, 35, 4874–4886.

7. Xu, R.; Xiang, H.; Tu, Z.; Xia, X.; Yang, M.; Ma, J. V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer.
In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 107–124.

8. Mehr, E.; Jourdan, A.; Thome, N.; Cord, M.; Guitteny, V. DiscoNet: Shapes Learning on Disconnected Manifolds for 3D Editing.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 3474–3483.

9. Cohen, T.S.; Geiger, M.; Köhler, J.; Welling, M. Spherical CNNs. arXiv 2018, arXiv:1801.10130.
10. Jiang, H.; Learned-Miller, E. Face Detection with the Faster R-CNN. In Proceedings of the 2017 12th IEEE International Conference

on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 650–657.
11. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848.
12. Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its Variants for Medical Image Segmentation: A Review of

Theory and Applications. IEEE Access 2021, 9, 82031–82057.
13. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.
14. Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117.
15. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.

2015, 31, 1147–1163.
16. Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 2011, 99, 1162–1182.

[CrossRef]
17. Abboud, K.; Omar, H.A.; Zhuang, W. Interworking of DSRC and Cellular Network Technologies for V2X Communications:

A Survey. IEEE Trans. Veh. Technol. 2016, 65, 9457–9470.
18. Famili, A.; Shen, W.-M.; Weber, R.; Simoudis, E. Data Preprocessing and Intelligent Data Analysis. Intell. Data Anal. 1997, 1, 3–23.

[CrossRef]
19. Dawkins, C.; Srinivasan, T.N.; Whalley, J. Calibration. In Handbook of Econometrics; Elsevier: Amsterdam, The Netherlands, 2001;

Volume 5, pp. 3653–3703.
20. Guyon, I.; Elisseeff, A. An Introduction to Feature Extraction. In Feature Extraction: Foundations and Applications; Springer:

Berlin/Heidelberg, Germany, 2006; pp. 1–25.
21. Chen, R.; Hua, Q.; Chang, Y.-S.; Wang, B.; Zhang, L.; Kong, X. A Survey of Collaborative Filtering-Based Recommender Systems:

From Traditional Methods to Hybrid Methods Based on Social Networks. IEEE Access 2018, 6, 64301–64320.

http://doi.org/10.1109/JPROC.2011.2132790
http://dx.doi.org/10.3233/IDA-1997-1102


Electronics 2023, 12, 3662 19 of 19

22. Montavon, G.; Samek, W.; Müller, K.-R. Methods for Interpreting and Understanding Deep Neural Networks. Digit. Signal
Process. 2018, 73, 1–15. [CrossRef]

23. Ellison, A.M. Bayesian Inference in Ecology. Ecol. Lett. 2004, 7, 509–520. [CrossRef]
24. Yager, R.R.; Filev, D.P. Induced Ordered Weighted Averaging Operators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1999, 29,

141–150. [CrossRef] [PubMed]
25. Zadeh, L.A. Fuzzy Logic. Computer 1988, 21, 83–93. [CrossRef]
26. Sagi, O.; Rokach, L. Ensemble Learning: A Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
27. Wagner, J.; Fischer, V.; Herman, M.; Behnke, S. Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural

Networks. ESANN 2016, 587, 509–514.
28. Harary, F.; Gupta, G. Dynamic Graph Models. Math. Comput. Model. 1997, 25, 79–87. [CrossRef]
29. Lee, D.; Seung, H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2000, 13, 1–7.
30. Huang, B.; Liu, X.; Wang, S.; Pan, L.; Chang, V. Multi-agent reinforcement learning for cost-aware collaborative task execution in

energy-harvesting D2D networks. Comput. Netw. 2021, 195, 108176. [CrossRef]
31. Chen, C.; Xiang, H.; Qiu, T.; Wang, C.; Zhou, Y.; Chang, V. A rear-end collision prediction scheme based on deep learning in the

Internet of Vehicles. J. Parallel Distrib. Comput. 2018, 117, 192–204. [CrossRef]
32. Wang, S.; Xiang, J.; Zhong, Y.; Zhou, Y. Convolutional neural network-based hidden Markov models for rolling element bearing

fault identification. Knowl.-Based Syst. 2018, 144, 65–76. [CrossRef]
33. Wu, X.; Chen, J.; Xie, L.; Chan, L.L.T.; Chen, C.I. Development of convolutional neural network based Gaussian process regression

to construct a novel probabilistic virtual metrology in multi-stage semiconductor processes. Control Eng. Pract. 2020, 96, 104262.
[CrossRef]

34. Chen, Z.-X.; Zhao, M.; Hou, L.-P.; Zhang, X.-Q.; Li, B.-Q.; Huang, J.-Q. Toward Practical High-Energy-Density Lithium–Sulfur
Pouch Cells: A Review. Adv. Mater. 2022, 34, 2201555. [CrossRef] [PubMed]

35. Tan, Y.; Wang, K.; Yang, Y.; Zhou, M.-T. Delay-optimal task offloading for dynamic fog networks. In Proceedings of the ICC
2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6.

36. Chen, X.; Wu, C.; Liu, Z.; Zhang, N.; Ji, Y. Computation offloading in beyond 5G networks: A distributed learning framework
and applications. IEEE Wirel. Commun. 2021, 28, 56–62. [CrossRef]

37. He, Y.; Zhao, N.; Yin, H. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning
approach. IEEE Trans. Veh. Technol. 2017, 67, 44–55. [CrossRef]

38. Ren, Y.; Guo, A.; Song, C.; Xing, Y. Dynamic resource allocation scheme and deep deterministic policy gradient-based mobile
edge computing slices system. IEEE Access 2021, 9, 86062–86073. [CrossRef]

39. Wang, Y.; Liu, H.; Zheng, W.; Xia, Y.; Li, Y.; Chen, P.; Guo, K.; Xie, H. Multi-objective workflow scheduling with deep-Q-network-
based multi-agent reinforcement learning. IEEE Access 2019, 7, 39974–39982. [CrossRef]

40. Chen, X.; Zhang, H.; Wu, C.; Mao, S.; Ji, Y.; Bennis, M. Optimized computation offloading performance in virtual edge computing
systems via deep reinforcement learning. IEEE Internet Things J. 2018, 6, 4005–4018. [CrossRef]

41. Buzachis, A.; Celesti, A.; Galletta, A.; Fazio, M.; Fortino, G.; Villari, M. A multi-agent autonomous intersection management
(MA-AIM) system for smart cities leveraging edge-of-things and Blockchain. Inf. Sci. 2020, 522, 148–163. [CrossRef]

42. Buzachis, A.; Celesti, A.; Galletta, A.; Fazio, M.; Villari, M. A secure and dependable multi-agent autonomous intersection
management (MA-AIM) system leveraging blockchain facilities. In Proceedings of the 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018; pp. 226–231.

43. Filocamo, B.; Galletta, A.; Fazio, M.; Ruiz, J.A.; Sotelo, M.Á; Villari, M. An innovative osmotic computing framework for self
adapting city traffic in autonomous vehicle environment. In Proceedings of the 2018 IEEE Symposium on Computers and
Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 01267–01270.

44. Rashid, T.; Samvelyan, M.; De Witt, C.S.; Farquhar, G.; Foerster, J.; Whiteson, S. Monotonic value function factorisation for deep
multi-agent reinforcement learning. J. Mach. Learn. Res. 2020, 21, 7234–7284.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1111/j.1461-0248.2004.00603.x
http://dx.doi.org/10.1109/3477.752789
http://www.ncbi.nlm.nih.gov/pubmed/18252288
http://dx.doi.org/10.1109/2.53
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.1016/S0895-7177(97)00050-2
http://dx.doi.org/10.1016/j.comnet.2021.108176
http://dx.doi.org/10.1016/j.jpdc.2017.08.014
http://dx.doi.org/10.1016/j.knosys.2017.12.027
http://dx.doi.org/10.1016/j.conengprac.2019.104262
http://dx.doi.org/10.1002/adma.202201555
http://www.ncbi.nlm.nih.gov/pubmed/35475585
http://dx.doi.org/10.1109/MWC.001.2000296
http://dx.doi.org/10.1109/TVT.2017.2760281
http://dx.doi.org/10.1109/ACCESS.2021.3088450
http://dx.doi.org/10.1109/ACCESS.2019.2902846
http://dx.doi.org/10.1109/JIOT.2018.2876279
http://dx.doi.org/10.1016/j.ins.2020.02.059

	Introduction
	Related Work
	Cognition and Decision Making
	Resource Scheduling
	Security and Intelligent Decision Making

	System Model and Problem Formulation
	Framework of Migratory Perception
	Network and Computation Model
	Problem Formulation

	Method
	Intelligent Service Scheduling Discrete Time-Varying Graph Construction
	Intelligent Service Scheduling Decisions Based on Multi-Agent Deep Reinforcement Learning
	State Space
	Action Space
	Reward Function
	State Transition

	Edge Computing Resource Scheduling Algorithm Based on QMIX

	Experiment
	Experimental Environment
	Training Environment
	Training Process

	Model Definition and Training
	Hardware Description
	Experimental Data Description
	Model Parameter Settings
	Training Output

	Experiment Setup

	Conclusions
	References

