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Abstract: Currently, the Global Positioning System (GPS) is widely used, but its signal is attenuated
by factors such as trees, walls, and ceilings, which severely degrade its positioning accuracy. To fill the
gap, various indoor positioning techniques have attracted increasing attention in recent years. Visible
light positioning (VLP) is a promising scheme for indoor positioning due to its high precision, high
security, and low energy consumption; however, ubiquitous diffuse reflection affects the accuracy
and robustness of VLP. During our testing, we found that diffuse reflection could increase the error
in RSS values by 20~30%, severely affecting VLP accuracy; however, diffuse reflection is inevitable
in real positioning environments. To solve this problem, this paper first establishes a wall diffuse
reflection model and then implements a visible light positioning system based on an Internet of
Things platform. Finally, this paper uses the system to verify the effectiveness of the diffuse reflection
model. The experiments show that the proposed model effectively improves positioning accuracy by
36.7~61.3%.

Keywords: visible light positioning; internet of things platforms; trilateral positioning; diffuse
channel model

1. Introduction

The Global Positioning System (GPS) is a widely used positioning technology [1],
but it suffers from significant attenuation in challenging environments due to various
interference factors such as trees, walls, and ceilings. According to Kerem Ozsoy [2],
GPS indoor localization can reach an accuracy of only approximately 7 m with the help
of power amplifiers under various types of interference. This is insufficient to provide
adequate services in the current complex indoor positioning scenarios. However, as
urbanization progresses, complex and tall structures increasingly occupy people’s living
environments, necessitating higher-precision positioning technologies when addressing
the environment [3].

Currently, the main research areas for indoor positioning technology include wireless
fidelity (wi-fi) [4], Bluetooth [5], Zigbee [6], radio frequency identification (RFID), infrared,
ultrasonic, and visible light [7], optical camera communication (OCC) [8], light detection
and ranging (Lidar) [9], and ultra-wideband (UWB) [10]. Wi-fi, Bluetooth, and Zigbee
can achieve only limited positioning accuracy. While infrared, ultrasonic, and UWB can
provide high-precision localization, they involve high construction costs. LED lights, as
energy-efficient and environmentally friendly lighting sources, have become increasingly
popular in people’s daily lives. In addition to being more accurate than traditional wireless
positioning techniques, they have many advantages, such as low energy consumption,
small multipath effects, environmental friendliness, harmlessness to humans, and long
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service life [11]. Although the construction cost of replacing incandescent bulbs with LED
lights indoors is currently high, the maintenance cost of LED lights is low, and the trend is
toward more widespread use in future lighting scenarios. The signal reception devices for
LED mainly include photodiodes (PDs) and cameras. Although the camera can achieve
higher accuracy, it requires higher resolution and a wider field of view, and the computation
is more complex. Therefore, this article focuses on simple and efficient PD-based visible
light positioning. In recent years, many VLP positioning algorithms based on PD have
been proposed and experimentally verified [12], with an average positioning accuracy
of centimeters.

Angle of arrival (AOA) [13] and time difference of arrival (TDOA) [14] localization
systems exhibit good stability but are complex and tedious to implement, with strict re-
quirements for equipment conditions. Received signal strength (RSS)-based localization
has lower complexity and better feasibility with higher accuracy, despite poorer resistance
to interference and instability in localization. Reliable anti-noise and anti-interference
solutions would make localization systems more suitable for practical applications. There-
fore, a visible light localization system based on RSS is constructed, utilizing the latest
IoT development chip, ESP32, to address the issues of complexity, sidelobe effects, and
frequency instability in current visible light experimental equipment, resulting in a stable,
concise, small, and user-friendly experimental setup.

Moreover, the diffuse reflection of objects is unavoidable in all application environ-
ments. The complexity of wall geometry and reflection models in reality, along with the
significant impact of diffuse reflection on RSS values, makes wall diffuse reflection one of
the most challenging interferences to resolve. Based on our own experimental results, the
localization accuracy without the wall surface diffuse reflection is 3.04 cm, while with the
wall surface diffuse reflection it is 14.73 cm. The introduction of the wall surface diffuse
reflection leads to an increase of approximately 3 to 4 times in the localization error.

Nazmi A. Mohammed [15] also stated: “Diffuse reflection had a great impact on
the localization error. For example, at the worst operating coordinates, the localization
error was estimated to be 2 cm in the case of LOS, whereas it increased to 1.52 m in the
case that included the effect of multipath propagation under the following specifications:
a transmitted LED power of 1 W, 60° half-power transmitting angle, Rx with 70° FOV,
400 MHz noise BW, and walls with a reflectivity of 0.8”. Currently, there are some articles
that have proposed solutions at the theoretical and methodological levels [15-18], but there
are very few researchers who have addressed this problem in real-world scenarios.

To solve this problem, this paper models the impact of single-sided wall diffuse reflec-
tion on RSS values using the Lambertian model, and validates its effectiveness in actual
localization. Therefore, the main contributions of this paper are summarized as follows:

e  Building a low-cost, stable, and strongly sidelobe-interference-resistant visible light
positioning system;

e  Establishing a model for wall diffuse reflection and validating its effectiveness in
practical VLP system.

2. Principle of the Proposed VLP System

Figure 1 illustrates the flow chart of the proposed visible light system, in which the LED
at the transmitting end is modulated at different frequencies, and after spatial transmission,
all LED signals are received by the PD and different LED signal strengths are identified and
extracted through FFT. The signal strength is converted to the corresponding distance by
the Lambertian model and the position is finally solved through the least squares method.

Indoor visible light transmission links can be distinguished in two aspects: whether
the transmitter and receiver have directionality and whether there are obstacles between
them. Therefore, it is divided into a line-of-sight (LOS) transmission link and non-line-of-
sight (NLOS) transmission link. The LOS transmission link is preferred as the channel is
not affected by the multipath.
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Figure 1. The overall system diagram.

We use RSS signal localization, which is based on the relationship between the LOS
optical intensity and the position. This is an effective link in our optical localization process.
Both the LED and PD channel models follow the Lambertian Emission law, which states
that the radiation intensity in all directions after the surface reflection of incident light is
completely diffuse is the same. The diffuse light intensity is proportional to the cosine of
the incident angle and independent of the reflection direction. The received optical power
by the PD is shown in Equation (1).

P(g,g) = T ;;ARPTI-  Ts(@)8(e) coz"; (¢) cosM(g) (1)

where d; is the distance between the it" LED and the receiver, A R is the effective area of the
PD at the receiver, Pr, is the optical power of the i'" LED source, ¢ is the angle of irradiance,
@ is the angle of incidence at the receiver, Ts(¢) is the gain of an optical filter, and g(¢) is
the gain of an optical concentrator placed in front of the sensor [19]. Generally speaking,
when there is no lens or filter in front of the PD, Ts(¢) = g(¢) = 1. M and m; represent
Lambertian orders of the detector and LED chip, respectively. They can be given by:

- Im2

M = In(cos(¢(1/2))) )
mo=——in2
i In(cos(¢(1/2)))

In order to analyze the relationship between the optical channel gain and the position
information of the PD, we simplified the optical channel gain model. Specifically, we
assumed that the LED and PD were placed horizontally; consequently, the incidence angle
was equal to the radiation angle. The cosine function of the incidence angle satisfies the
following equation:

cos(¢) = cos(¢) = Z 3)

h represents the vertical height between the lamp and PD. d still represents the distance
between the LED and the receiver. Therefore, the Lambertian formula can be simplified to:

i+ 1)ARPr. B\ mtM
(m+)RT1,1(d> @)

PLOSi((P/ 90) = T E
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Thus, the received signal strength (RSS) value for the line-of-sight (LOS) link is ex-
pressed as:

RSSLOSi = lll'-dbi
iz PIARR ®
bij=—(m+M+2)

However, in practical situations, the impact of NLOS and environmental noise on visi-
ble light cannot be ignored. Among them, the impact of wall reflection is particularly severe.

According to the light reflection model, when the light beam emitted by the LED
light source irradiates the wall, it will be scattered, resulting in diffuse reflected light. The
intensity of the diffuse reflected light in different directions is proportional to the cosine of
the incidence angle, and it is independent of the reflection direction. This behavior follows
the Lambertian radiation law.

The process of wall diffuse reflection can be divided into two steps [20]. First, the LED
irradiates the wall, and then the wall diffuse reflection serves as a new light source. Finally,
the diffuse reflected light is received by the photodetector (PD).

To calculate the overall DC gain, we need to consider the contributions from both the
LED light source and the wall diffuse reflection. The intensity of the diffuse reflected light
depends on the incident angle of the light beam on the wall, and is independent of the
reflection direction.

Finally, the overall DC gain of diffuse reflection can be described as:

ARAARW(mﬁl)PTI, m:
ET=r (¢1)
i 0 < @2 < grov ©)
cos(¢p1)cos(¢2)cos(p2) Ts(92)
0 $2 > Qrov

Pwan; = 4 wan

In Equation (6), as shown in Figure 2, it can be seen that the geometry is similar to
the line-of-sight (LOS) scenario, with two main differences. First, an additional term of
AA is introduced, which represents the infinitesimal integration area of the effective wall.
Second, a term of Ryy is included, which represents the coefficient of the wall surface diffuse
reflection. ¢; is the light source emission angle, ¢, is the wall reception angle, ¢, is the wall
diffuse emission angle, and ¢ is the PD reception angle. Similarly to Equation (1), Ts(¢2)
can be thought of as equal to 1.

LOS

Figure 2. A schematic diagram of the line-of-sight (LOS) and wall diffuse reflection.
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We can consider Equation (6) in more depth. Ag, Ry, and Pr, in the equation can
be considered as constants under the condition that the LED, wall, and PD are constants.
m; can be calculated from b; of Equation (5), which is also constant for a constant single
LED. So, the constant parts will be generalized to K;. However, for the four variables
cos(¢1), cos(¢1), cos(¢2), cos(¢2), di,, and dp,, we set up the red coordinate system in
Figure 2, assuming that the position of the LED is Prgp (X1, Y1,, Z1,), the current position
of the microelement AA of the wall is Py, (X2, Y2, Z;), and the position of the PD is
Ppp(X3,Y3,Z3). Then Equation (6) can be simplified as follows:

%cosmi(%)cos((pl)
_ Yoo 0 < ¢2 < ¢rov
RSSWIZU - Wall COS(472)COS(([)2)AA
0 $2 > @rov
i/ (X, = Xo)* + (1, = ) o+ (23, - Z2) @
dzl.: \/(X — X3)2 + (Yz — Y3)2 + (Z2 — Z3)2
cos(¢r) = {(0/ 0,—1)- [(Xlifylilef) — (X2, Y2, ZZ)] }/dli
COS((P]) = {(0, 1,0) . [(Xl,-lyl,-lzl,-) - (Xz,Yz, Zz)] }/d]i
cos(¢2) = {(0,1,0) - [(X2, Y2, Z2) — (X3,Y3,Z3)]} /da,
cos(g2) = {(0,0,1) - [(X2, Y2, Z2) — (X3, Y3, Z3)]} / dy,

Of these elements, P, gp (Xli, Y1, Zl,~> is fixed and known. As long as we specify the
area range of the integration on the wall, the current position of the microelement AA of
the wall Py, (X2, Ys, Zy) is also known when traversing each microelement AA. Therefore,
we want to calculate the gain from the wall reflection in this model. In fact, we need only
to input the position of the PD, Ppp (X3, Y3, Z3). Since Z3 is fixed, our input quantities are
then only X and Y of the PD.

Therefore, the final RSS value can be described as:

RSS; = RSS10s; + RSSwan, +n (8)

n denotes the other noise sources. Moreover, we mainly focus on the effect caused by
the diffuse reflection of the wall; consequently, this paper temporarily ignores the impact of
other noise sources [19]. Among these, the amount of direct light obtained by our sensor
is RSS;, the amount directly related to distance is RSS;g;, and the amount we need to
remove is RSSyy,y;. Thus, in the positioning stage, we suppress the interference of the wall’s
reflection by RSS;p0s, = RSS; — RSSwar,-

After obtaining the RSS value by removing the wall reflection according to
Equations (5), (7), and (8), we will perform a three-sided localization based on the three
modulation frequencies of the LED lights.

The transmitter LED adopts frequency division multiplexing, and the optical signal
power obtained at the PD receiver is demodulated by fast Fourier transform to obtain the
received RSS value of each lamp. According to Equation (5), the 3D distance between
the PD and the LED light source with different emission frequencies can be calculated.
According to the principle of trilateral positioning, it is necessary to know the 3D distance
between at least three LEDs and the PD to solve the specific position of the PD, and these
three LEDs cannot be in the same line. The principle of the RSS trilateral positioning
in the 2D plane is shown in Figure 3, where the three LED coordinates are, respectively,
T1(x1,y1,21), and To(x2, Y2, 22), and T3(x3, y3,23). The coordinates of the PD at the receiver
are P(x,y,z).
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Figure 3. The principle of RSS trilateral positioning.

If the 3D distance between the PD and the three LEDs is calculated according to the
signal attenuation law and according to the principle of trilateral positioning, Equation (9)
can be given as follows:

(x=x1)’+y-mn)+z-n)=d
(x—x)’+ (y—12)° + (z—2)° =d} 9
(x—x3)* + (y—y3)* + (z — z3)° = d}

Equation (9) is simplified and expressed as a matrix as follows:

X1—X2 Y1—Y2 21 —22 X
AX=BA=|xy—x3 y1—y3 z1—2z3| X= |y
X2 —X3 Yy —Ys Zp —23 Z (10)

dy—dy+x5+y5+25 — x5 —y3— 23

As described in Equation (7), our diffuse model needs the PD localization to estimate
the diffuse power RSSyy,,, but the position is unknown in the positioning process. Thus,
we plan to use an iterative approach [21] to refine the PD’s position from coarse estimation.
Specifically, we first use the RSS value disturbed by the diffuse reflection to perform a
coarse localization. Obviously, this position estimation is affected by diffuse reflections
and is not accurate; however, it can provide us with an initial input location for the model.
Then, we input the coarse localization result into the diffuse model, calculate the RSSyy,y;,,
and subdivide the RSSyy,y;, from the RSS; value, and then estimate the position using the
new RSS value. Thus, the positioning result is optimized. Then, the optimized positioning
result is input into the diffuse reflection model again and optimizes the RSS value as well
as the localization estimation, until the positioning results reach convergence. We set this
convergence condition as the maximum difference between the two positioning results
before and after it exceeds 1 cm. The overall process is shown in Figure 4.
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3. Hardware Construction

In the selection of the main control chip, careful consideration was given to the
computing power requirements in the context of the Internet of Things. Therefore, the
ESP32, a cost-effective powerful chip, was chosen as the main control chip (as shown in
Figure 5), The ESP32 is specifically designed for mobile devices, wearable electronics,
and IoT applications, delivering industry-leading low-power performance, including
fine-resolution clock gating, power-saving mode, and dynamic voltage scaling. It is
equipped with a 32-bit dual-core processor operating at a CPU speed of 80 MHz, with
the capability of reaching up to 240 MHz. The built-in wi-fi protocol supports multiple
protocols including 802.11 b/g/n/d/e/i/k/r, enabling data transmission speeds of
up to 150 Mbps [22]. Additionally, the chip incorporates a comprehensive Bluetooth
v4.2 standard, encompassing both traditional Bluetooth (BR/EDR) and Bluetooth Low
Energy (BLE) [23] functionalities.
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Figure 5. Main control chip (ESP32) example.

In terms of photosensitive devices, the accurate demodulation of high frequency
poses a significant challenge for this project. Therefore, a photosensitive device with a
high sensitivity requirement is needed. For this purpose, the PIN-type photodiode (PD)
OPT101 [24] is selected, as illustrated in Figure 6. The OPT101 offers a spectral range
of 300 nm to 1000 nm. It exhibits wide linear output characteristics, making it highly
suitable for detecting visible light emitted by LED lights. This detector module integrates
a photodiode and a transconductance amplifier, providing a voltage signal as the final
output. Hence, the conversion of this signal into usable data requires an analog-to-digital
(AD) conversion module. The detector module demonstrates high responsivity and low
dark current. By utilizing external resistors and capacitors, the responsivity and sampling
bandwidth of the module can be adjusted accordingly.

The LED lamp driving modulation module is a crucial component of the transmitter
module. In this paper’s experiment, PWM modulation is utilized for LED modulation. The
LED driver module controls the current through the PWM wave transmitted by the ESP32,
thereby adjusting the luminous frequency and power of the LED lamp. To achieve this, we
employ the PT4115 as our current control chip.

The PT4115 [25] is a continuous-mode inductive buck converter designed for the
efficient driving of single or multiple series LEDs when the supply voltage exceeds the
output voltage. The IC operates with an input voltage ranging from 5 V to 24 V, and the
output current can be externally adjusted, with a maximum output current of 0.7 A. As
depicted in Figure 6, the PT4115 integrates power tubes and a high-end current detection
circuit. The average output current can be set using an external resistor. Additionally, the
output current can be reduced below the set value by applying a DC voltage or PWM
signal to the DIM pin. The DIM pin supports both linear and PWM dimming. Applying a
voltage of 0.2 V or less to the DIM pin turns off the output power tube, putting the IC into
low-current standby mode.

The ESP32 has the capability to register devices in a cloud platform [26], allowing
for remote control and data upload as long as an internet connection is available. Cloud
platforms can be categorized into three levels: infrastructure as a service (laaS) as the
underlying infrastructure, platform as a service (PaaS) in the middle layer, and software
and services (SaaS) in the upper layer. The IoT cloud platform we employ is based on PaaS
and follows the cloud service deployment model, typically categorized into public and
non-public clouds (e.g., private cloud, hybrid cloud). Given the anticipated high number of
simultaneous online users in this project, Ali Cloud is selected as our target cloud platform.
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On the transmitter side, only the frequency and duty cycle of the LED need to be con-
trolled, while the receiver may require extensive data uploading. To set up the ESP32 pro-
gramming environment in the Arduino software (version 2.0.2), relevant support libraries
such as Crypto, pubsubclient-2.8, and Arduino Json need to be downloaded. ESP-IDF also
provides routines that allow for experimentation on both platforms.

Finally, on the transmitter side, the device is created on the Ali cloud platform, and
the host computer program is written. The host computer can change the frequency and
duty cycle of the relevant ESP32 to generate PWM waves by accepting input instructions.
As shown in Figure 7, a single ESP32 can drive up to 4 LEDs at different frequencies and
duty cycles. The maximum number of devices that the host computer can control depends
solely on the equipment limit of Ali Cloud.

W MainWindow = ‘af X
Device Name State HZ1 HZ2 HZ3 HZ4 PWM1  PWM2 PWM3  PWM4 Order Control

[RanaYuanpeng OFFLINE 0 0 0 0 0 0 0 0 [ selectThisDevice

JangXiansheng] OFFLINE 0 [ [ 0 0 0 o 0 Select This Device

Name of the Device

HZ1 100

Receiver DataFormat ™

2B 2023.03.15_00.25.13.303_1122336A383F.csv

€3
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,1087,2101,1599,9,25,1855,2095,92,0,579,2111,2111,0,0,1103,
2111,634,6,99,2094,1855,30,19,780,2111,2054,0,0,1392,2111,1
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Figure 7. Transmitter control interface and receiver data format.

At the receiving end, a host computer based on TCP is built, which can receive
12,000 values sampled by ESP32 per second and convert them into CSV files, as shown
in Figure 7.

Different components are spliced by drawing PCB using Jialichuang EDA platform.
The PCB diagram and the physical diagram of the transmitter and receiver are shown
in Figure 8. Then, the LED controlled by the transmitter is placed horizontally on the
bracket, and the receiver is placed on the car. At this point, the hardware construction of
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the experiment in this paper is completed, and the overall experimental scenario is shown
in Figure 9.

PCB Diagram

2
o T a I o
o lerminat ;

o

Transmitting Terminal

Figure 9. Overall experimental scenario.

4. Diffusion Model in Real Scenes

The primary objective of this chapter is to obtain the parameters in each formula for
real-world scenarios, aiming to establish the diffuse reflection model and line-of-sight (LOS)
model for practical environments. In Equation (5), we need to determine two parameters,
a; and b;, while in Equation (7), we need to determine two other parameters, m; and K;.
Where m; = —b; — M — 2, m; can be calculated from b;.

Therefore, our idea is to first obtain the parameters 4; and b; through Equation (5), and
then obtain the parameter K; through Equations (7) and (8). The entire process is illustrated
in Figure 10 and is explained later in the paper.

First, we obtain the parameters a; and b;. According to Equation (5), we will fit the
relationship between RSS value and distance, based on the positions of selected points and
their corresponding RSS; ps,; values, as well as the positions of the LED, in the absence of
wall reflections. This process is illustrated in Figure 10. Then, we obtain the parameters g;
and b; for each LED. The fitting curve shown in Figure 11 indicates a high accuracy, with
fitting errors ranging from 1.92 to 4.39 cm.
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Thus, we obtained three sets of relationships between RSS; s, and distance, thereby
obtaining the parameters shown in Table 1.
The b; value provides m; for the computation of Equation (7).

Table 1. Coefficient obtained by fitting.

LED Parameters Obtained by Fitting (RSS Los=a-d®)

a b K
LED1 8.1939 —0.3047 799.1
LED2 8.5522 —0.3134 798.5
LED3 9.3178 —0.3264 785.3

Then we obtain the parameters K;. In the practical scenario, for ease of testing, we se-
lected one line parallel to the wall and another perpendicular to the wall for testing purposes.

We can then subtract the RSS; ps; obtained in the occluded wall case from the RSS;
obtained in the exposed wall case as a real RSSyy,;, to obtain the RSSyy,, for the real
scene. By adjusting through a suitable range of values K; in Equation (7), when mean
error between the RSSyy,y;, calculated by the model and the real RSSyy,;;, are least, they are
matched. At this point, K; represents the LED’s luminous intensity and the wall’s diffuse
reflection ratio, denoted as K; in the context of the study.

Subsequently, we can assess the correctness of the parameters by using points from
another parallel line, as shown in Figure 12. The red line is the RSSyy,;, calculated by the
model, and the blue line is the RSSyy,;, obtained from the real scene. The average error of
our model can reach 0.74% in the x-direction and 1.66% in the y-direction. We believe that
such errors are sufficient to prove the correctness of our model in the presence of sampling
fluctuations. The same operation will be performed on the other two LEDs. The optimal K
values matched by the three LEDs are listed in Table 1.



Electronics 2023, 12, 3646 12 of 17

LED1 LED1

Error=0.74%
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Figure 12. Comparison of model calculations and actual values.

After determining the aforementioned parameters, we obtain the single-lamp-single-
wall model, as shown in Figure 13a. The variation along the y-axis, i.e., the change in
received light intensity as the PD moves along a line parallel to the wall surface, is shown
in Figure 13b. The variation along the x-axis, i.e., the change in received light intensity as
the PD moves along a line parallel to the wall surface, is shown in Figure 13c. Figure 13d
shows the diffuse reflection intensity of the wall observed from a top-down perspective,
and it can be seen that it is attenuated outwardly centered at a point.

35

25 3
¥

Diffuse Reflection Model of Single Lamp Source

5.0

0.5 1 15 2

350 —
3

300 —|
25

250 —|
N 200 —|

150 —

100 —|

50 —

X o

Figure 13. Wall diffuse reflection model.

After completing the above preparations, we will conduct formal experiments under
the conditions of uncovering and obstructing the wall. We will collect trajectory data sepa-
rately for the obstructed and exposed wall surfaces, and then use the model we established
to correct the trajectory data for the exposed wall surface. We will compare the corrected
trajectory data with the standard trajectory data for the three aforementioned trajectories.
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5. Experiments
5.1. Experimental Settings

As shown in Figure 9, we arranged a 1 m X 1 m X 1 m field. In order to minimize
the occlusion of light on the light frame and apply it to our model as much as possible, we
arranged two LEDs near the two corners of the wall, and one LED at the far end of the
middle, forming a trilateral positioning.

In terms of signal modulation, in order to avoid harmonic interference and frequency
instability, we choose three frequencies with fewer common factors, which are 1300 Hz,
1800 Hz, and 2300 Hz, respectively. The duty cycle is chosen to be 50%.

Since the bandwidth of OPT101 is 14 kHz, we choose 12 kHz as the sampling frequency,
and the actual measurement shows that the frequency characteristics of the signal are good
at this sampling frequency, which is suitable for Fourier transform.

In terms of measurement method, we will use the established trajectory on graph
paper as the real trajectory and measure the RSS values under the conditions of shading
cloth occlusion and without shading cloth occlusion, respectively, compare the results of the
trilateral positioning without wall reflection, with wall reflection, and with wall reflection
but optimized by the model, and use the distance between them and the real trajectory as
the evaluation index. A smaller distance indicates a more accurate localization result.

5.2. Evaluation

We tested a total of two trajectories, as shown in Figure 14, where the green line
represents the preset standard trajectory, the blue line represents the results of our trilateral
localization under the wall occlusion condition, the red line represents the results of our
trilateral localization under the wall exposure condition, and the yellow line represents the
positioning results obtained after being optimized by our model.
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Figure 14. The three positioning results are compared with the standard trajectory.

To comprehensively evaluate our optimization capability, we employ several perfor-
mance metrics, namely the mean error (ME) and root mean square error (RMSE), as well as
errors corresponding to probability thresholds of 50% and 90%. Through the utilization of
probability cumulative distribution function (CDF) analysis, we have discerned that our
model exhibits consistent capacity to optimize received signal strength (RSS) values across
diverse distances.

As shown in Table 2, under the condition of wall occlusion, the mean positioning
errors of the two trajectories are 3.04 cm and 3.70 cm, the RMSEs of the two trajectories are
3.04 cm and 3.70 cm, 50% of the positioning errors are, respectively, within 3.59 cm and
3.38 cm, and 90% of the positioning errors are, respectively, within 5.55 cm and 5.03 cm,
which are high-precision. However, after adding the diffuse reflection of the wall, the
mean positioning errors of the two trajectories decreased to 13.37 cm and 14.73 c¢m, the
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RMSEs of the two trajectories reduced to 14.18 cm and 15.25 cm, 50% of the positioning
errors are, respectively, within 13.72 cm and 14.84 cm, and 90% of the positioning errors
are, respectively, within 19.68 cm and 20.97 cm. Thus, the reflection of the wall seriously
decreases the positioning precision.

After introducing the wall diffuse reflection model, our positioning results achieve
impressive enhancement in accuracy ranging from 36.7% to 61.3% when confronted with the
presence of diffuse reflection occurring on the wall. Specifically, the mean positioning errors
of the two trajectories decreases to 6.20 cm and 6.19 cm, the RMSE of the two trajectories
decreases to 6.98 cm and 6.88 cm, 50% of the positioning errors are, respectively, within
5.45 cm and 5.74 cm, and 90% of the positioning errors are, respectively, within 12.46 cm
and 8.64 cm. Thus, our method has brought the positioning precision back to a relatively
precise state when faced with the reflection of the wall. The detail can also be found in the
CDF figures, as shown in Figure 15. Our method (blue line) achieves a better performance
than the method without consideration of the diffuse reflection (red line).
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Figure 15. CDF positioning error.

We believe that the positioning results of this system can achieve such accuracy, first of
all, thanks to the miniaturization, simplification, high stability, and good anti-sidelobe effect
of the system, which makes its positioning effect ideal in the state of low interference. The
second reason is that the scene we built is relatively small and ideal, and we can accurately
obtain the values of each parameter, which is difficult to do in actual scenes. Expanding the
model in complex scenarios is one of the next steps in our research agenda.

Table 2. Positioning errors.

Error
. No Diffusion Diffusion Existed Our Results Improvement

Trajectory Type of Error (cm) (cm) (cm) %)
ME 3.70 13.37 6.20 53.63
Traiectorvl RMSE 4.04 14.18 6.98 50.78
jectory 50% 3.59 13.72 5.45 60.28
90% 5.55 19.68 12.46 36.69
ME 3.04 14.73 6.19 57.98
Tratectory? RMSE 3.40 15.25 6.88 54.89
jectory 50% 338 14.84 5.74 61.32

90% 5.03 20.97 8.64 58.80
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6. Discussion

In attempting to address this issue, during our preliminary research, we found that,
although there are numerous articles studying visible light localization with wall diffuse
reflection, most of them conducted only simulations and had limited validation in real-
world scenarios. This makes it challenging for us to make direct comparisons. In Table 3,
we provide a representative summary of other studies’ results. It is essential to note that
the settings and objectives of these works are not entirely identical. We present them here
merely to provide a rough comparation.

Table 3. Comparison with other studies’ results.

Simulation or

Evaluation Numerical
Thesis Methods and Approaches Scene . . Real-World
Metrics Value (Unit) Experiment
Visible light positioning (VLP); EQO/ ° ,Of the 7.88 (cm)
line-of-sight (LOS) and non-line- POSIionINg €rrors
Study 1 [16] of-sight (NLOS) links; 2 LED 95% of the Simulation
gated recurrent units (GRU) dm x4 i 3 positioning 9.87 (cm)
neural networks m m m errors
Visible light positioning (VLP); 16 LEDs SR?lz;(lev}[Eiirolr
Study 2 [17] multipath reflections; 8m x 8m x 23 m (RM;IE) (the best of 31.69 (cm) Simulation
received signal strength (RSS); ' all conditions)
Visible light indoor positioning; 4PDs Root Mean
Study 3 [18] multipath reflections; maximum 5m x5m x 3m Square Error 5 (cm) Simulation
likelihood estimation (RMSE)
Received signal strength 41EDs Root Mean
Study 4 [15] indication (RSSI); visible 5m x5m x 3m Square Error 68 (cm) Simulation
light communication (VLC) (RMSE)
80% of the 7.81 (cm)
positioning errors
Visible light positioning (VLP); 95% of the
Our Stud line-of-sight (LOS) and non-line- 3 LEDs positioning 13.46 (cm) Real-world
Y of-sight (NLOS) links; ImxImx1m errors Experiment
iteration Root Mean
Square Error 6.88 (cm)
(RMSE)

For instance, in Study 1 [16], the scene size was 4 m x 4 m x 3 m, with 80% of
positioning errors being smaller than 7.88 cm and 95% of positioning errors being smaller
than 9.87 cm. Since they did not present improvements brought about by their model, we
can use only positioning errors as the basis for our evaluation. However, they evaluate
their model only in simulated scenes, and there remains a significant gap between real-
world validation and simulations. From the distribution of our cumulative distribution
function (CDF), it can be observed that there is a certain gap between the performance
of sensors at some distant points and those at close range. In reality, factors such as
wall uniformity, unexpected obstructions, communication stability, and the quality of
chip oscillators can significantly influence the positioning results. Under the influence of
these various factors, we achieved positioning accuracy similar to simulations and even
outperformed some larger scenes by an order of magnitude. We believe this is sufficient
to demonstrate the model’s usability in real-world scenarios and can provide a reference
for future experiments with other models in practical environments. Moreover, other
methods in Table 3 were verified only in simulated scenes; consequently, they have similar
characteristics and results.
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7. Conclusions

We have developed a visible light positioning system based on the ESP32 micro-
controller, an Internet of Things (IoT) platform, and the received signal strength (RSS)
technique. This system exhibits notable advantages in terms of compactness, affordability,
stability, and resistance to sidelobe interference, thus presenting a promising avenue for
the future commercialization of visible light positioning. In order to address the significant
concern of wall reflections in indoor visible light positioning, we have formulated and
simulated a model, verifying its feasibility through practical implementation.

Nevertheless, it is important to note that the constructed scene in our study is a
simplified environment, only with1 x 1 x 1 m? size, whereas our modeling work will
encounter more complex wall geometry features and higher environmental noise in larger
scenarios. The current research work lacks comprehensive reflection modeling in large-
scale complex scenes. Hence, future endeavors will involve the utilization of more robust
methodologies to tackle the issue of wall reflections in larger and more intricate settings.
Here, we present two suggestions:

e  For the challenging task of modeling geometric features on large-scale wall surfaces,
we recommend utilizing Lidar technology to measure planar scenes. This approach
will enable stable and efficient modeling for various scenarios;

e  Existing physics-based models cannot meet our real-time computational speed re-
quirements. Therefore, we recommend the development of more efficient methods for
fitting existing physics equations.

Expanding this model is also one of our further objectives.
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