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Abstract: Convolutional neural networks (CNNs) are indeed commonly employed for hyperspectral
image classification. However, the architecture of cellular neural networks typically requires manual
design and fine-tuning, which can be quite laborious. Fortunately, there have been recent advance-
ments in the field of Neural Architecture Search (NAS) that enable the automatic design of networks.
These NAS techniques have significantly improved the accuracy of HSI classification, pushing it to
new levels. This article proposes a Multi-Scale Spatial-Spectral Attention-based NAS, MS? ANAS)
framework for HSI classification to automatically design a neural network structure for HSI classifiers.
First, this paper constructs a multi-scale attention mechanism extended search space, which considers
multi-scale filters to reduce parameters while maintaining large-scale receptive field and enhanced
multi-scale spectral-spatial feature extraction to increase network sensitivity towards hyperspectral
information. Then, we combined the slow—fast learning architecture update paradigm to optimize
and iteratively update the architecture vector and effectively improve the model’s generalization
ability. Finally, we introduced the Lion optimizer to track only momentum and use symbol operations
to calculate updates, thereby reducing memory overhead and effectively reducing training time. The
proposed NAS method demonstrates impressive classification performance and effectively improves
accuracy across three HSI datasets (University of Pavia, Xuzhou, and WHU-Hi-Hanchuan).

Keywords: hyperspectral image (HSI) classification; neural architecture search; differentiable
architecture search (DARTS); multi-scale attention mechanism

1. Introduction

Hyperspectral remote sensing images (HSIs) capture abundant spatial-spectral infor-
mation across numerous spectral bands, enabling effective differentiation of surface cover.
Therefore, hyperspectral images are widely used in environmental science [1], mineral
exploration [2], plant detection [3], military reconnaissance [4], and so on.

HSIs can extract feature vectors containing thousands of bands from each spatial pixel
position. In practice, there are two phenomena in HSIs: (1) Different objects have similar
spectral characteristics; (2) The same object at different positions has different spectral
characteristics [5]. This is due to the influence of the imaging factors of atmosphere and
light, which leads to the obvious spectral shift between different scenes.

HSI classification is based on pixel level. In the past decade, various traditional
machine learning methods, including the K-nearest neighbor (KNN) algorithm, Support
Vector Machine (SVM) [6], and others, have been widely employed for pixel-level HSI
classification [7].
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Compared with traditional classification algorithms, deep learning-based HSI classifi-
cation methods have demonstrated their effectiveness in extracting robust features from
HSIs, and they have better classification performance. HSI classification methods utiliz-
ing CNN can be classified into three categories based on the feature extraction approach
employed: spectral CNN [8-10], spatial CNN [11,12], and spectral-spatial CNN [13-17].
However, many excellent deep classification network architectures need to be designed
manually, such as ResNet [16], DenseNet [18], VGG [19], and GoogLeNet [20].

Designing an efficient network architecture for HSI classification is a challenging task
that involves significant time, energy, and a large number of verification experiments,
making it difficult to achieve manually. In addition, HSI data has obvious differences in
the number of frequency bands, spectral range, and spatial resolution, so the network
architectures applied to different HSI data classifications are also different [21]. It is
necessary to design different network architectures for HSI classification, which requires a
large amount of work to adjust parameters, resulting in a large consumption of time and
resource costs. Therefore, a natural idea is to automate the neural network design process
and minimize human assistance.

The need to enhance the efficiency of automatic neural network design technology
is motivated by both the expense of computing resources and the burden of parameter
adjustment [22]. NAS has been applied to many tasks and has achieved remarkable results,
such as speech recognition [23], computer vision [24], and so on. The objective of Neural
Architecture Search (NAS) is to automate the construction of high-performance neural
network structures by selecting and combining various neural operations from predefined
search spaces. Previous approaches to NAS have employed various methods, including
reinforcement learning algorithm (RL) [25], evolutionary algorithm (EA) [26], and gradient-
based methods, to perform architecture searches. The reinforcement learning algorithm
regards NAS search as an agent behavior, and network construction is realized through
different behaviors and rewards, which can evaluate the performance of the acquired
network structure. Representation and optimization of agent strategy are two key contents
of network structure search using reinforcement learning [25]. The evolutionary algorithm
uses a genetic algorithm to realize selection, crossover, and compilation to initialize the
search of individuals and cyberspace [27,28].

Among various NAS methods, DARTS and population-based NAS are among the
most popular ones because they have unique advantages in dealing with many challenging
tasks. DARTS mainly benefits from the advantage of relaxing the search space into a
continuous and high search efficiency. The population-based NAS mainly benefits from
the advantages of diverse candidate structures within the population and involves genetic
operators to drive the search process. As the term itself indicates, the population-based NAS
represents a candidate architecture for each individual. Collaboration between candidate
architectures can eliminate poor and well-preserved competition and push the overall
optimization. At present, most population-based NAS methods use genetic algorithms or
genetic programming [25,29] to simulate natural evolution processes, which requires careful
design of random crossover mutation operators. For example, the population-based NAS
method [30] has designed 11 mutation operators to modify the attributes of the network,
including changing the learning rate, resetting weights, inserting convolutions, etc. This
study shows that designing different genetic operators has good feasibility, and neural
networks can be developed and changed from an architectural perspective. Although the
population-based NAS has good performance, many current methods mainly have the
drawback of low computational efficiency.

Whether based on reinforcement learning or population algorithm, NAS realizes
automation through resource-consuming search. To minimize resource usage, one-shot
NAS techniques using hypernetworks have been devised [31,32]. DARTS, a one-shot NAS
approach employing a discernible search strategy [32], incorporates weight sharing to
integrate hypernetwork training and the search for the optimal candidate architecture. This
integration effectively curtails computing resource wastage. At the same time, the gradient-



Electronics 2023, 12, 3641

30f22

based method is used to optimize the over-parameterized hypernetwork. However, the
greater number of weight parameters in DARTS compared to architecture parameters
imposes constraints on architecture optimization, leading to performance crashes [31].
Essentially, this is because DARTS’ candidate results lack diversity in gradient optimization.

However, these NAS methods have their own characteristics that DARTS jointly trains
the hypernetwork and only searches for the optimal solution through the gradient, so they
have defects in flexibility and stability [33]. Many population-based NASs mainly rely on
random crossover/mutation search, which usually requires a lot of computational cost to
evaluate the performance. Therefore, this work adopts the slow—fast learning paradigm
architecture update process in DARTS, which integrates the idea of population-based NAS.
In addition, it can benefit from the advantages of differentiated NAS while overcoming the
shortcomings of the population-based NAS [34].

NAS technology can efficiently automate this process, not only to find the weight of
specific image classification tasks but also to obtain the best network architecture. The
incorporation of NAS offers an excellent solution for HSI data classification, relieving
individuals from the burdensome task of network architecture design. Chen et al. pioneered
the integration of the DARTS method into the HSI classification task, presenting their
proposed approach as 3D-Auto-CNN with Cutout (CNAS) [35] and leveraging point-by-
point convolution to reduce the spectral dimensions of HSI to several dozens. Subsequently,
DARTS is utilized to search for a neural network architecture that is well-suited for the HSI
dataset. This approach aims to minimize redundancy and repetition.

In recent years, the rise of attention mechanisms has brought new research directions
to deep learning. Many researchers use different scales of attention mechanisms to ex-
tract the effective features of different objects in HSI data and classify them effectively.
To reduce repetition, there have been several approaches proposed in the literature for
HSI classification. Wang introduced the Squeeze and Excitation (SE) [36] module, which
adaptively learns the weights of different spectral bands and adjacent pixels in HSI. This
module helps capture relevant information for classification. Roy et al. [37] introduced a
novel method named A252K-ResNet (Attention-based Adaptive Spectral Spatial Kernel
Improved Residual Network). This approach integrates spectral attention to effectively
capture discriminative features for HSI classification. These methods contribute to reduc-
ing redundancy and improving the efficiency of HSI classification tasks. However, in
the field of HSI classification for NAS applications, there is limited search space utilizing
multi-scale attention mechanisms. In addition, various samples in the HSI dataset exhibit
long- tailed distributions, resulting in imbalanced HSI classification results. In light of
the aforementioned approaches, we propose a novel method that utilizes a multi-scale
search space combined with multi-scale spatial-spectral attention. This approach aims
to enhance the extraction of significant spectral-spatial information while suppressing
redundant information and noise. By incorporating this multi-scale attention mechanism,
our method effectively improves the accuracy of classification while reducing computa-
tional complexity. Furthermore, it helps to minimize repetition and redundancy in the HSI
classification process.

Building upon the aforementioned discussion, we present a novel NAS method that
encompasses the automatic design of a search space for multi-scale attention mechanisms
and a search strategy based on the slow—fast paradigm. The key contributions of this
research can be summarized as follows:

1. To address the issue of redundancy, we have proposed a highly effective NAS
classification framework called Multi-Scale Spatial-Spectral Attention-based NAS
(MS3ANAS). By carefully analyzing the characteristics of HSI, we have designed a
multi-scale search space that incorporates rich spatial-spectral attention mechanisms.
This search space consists of seven convolutional operators, each equipped with
attention mechanisms of different scales. The search process can automatically learn
to add attention modules to appropriate locations in the architecture to fully explore
the spectral and spatial information of HSIs for classification.
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2. The slow—fast learning paradigm was quoted for NAS, which further optimizes the
overall architecture vector through pseudo gradient iteration, stabilizing the optimal
search process, which improves the update and rate of convergence speed of the
architecture for HSI classification.

3. To better train the HSI classification model, the Lion optimizer has been introduced,
which not only effectively improves the accuracy of HSI data classification but also
reduces memory overhead and training time because the algorithm only tracks mo-
mentum and uses symbol operations to calculate updates.

2. Materials and Methods
2.1. Search Framework

Figure 1 illustrates the proposed NAS framework for HSI classification in this paper.
Initially, the hyperspectral image is divided into patches using a sliding window approach.
These patches are then fed into the automatic architecture search model, which consists
of both normal cells and reduction cells. Secondly, the NAS network includes supernet
architecture search and final network optimization. We designed a multi-scale attention
mechanism search operator for the search space (The different colored arrows represent
different candidate operations), enhancing the ability to extract multi-scale spectral-spatial
features from HSI data, thereby improving classification performance. Then, we utilized the
slow—fast learning paradigm to effectively update the overall architecture vector, improving
the efficiency of constructing hypergrid architecture units. Finally, we introduced the Lion
optimizer to accelerate model convergence and alleviate model memory overhead.
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Figure 1. The overall framework of the proposed MS?>ANAS model.

2.2. Neural Architecture Search Algorithm

MS3ANAS consists of three architecture search components: the search space of the
multi-scale expanding attention mechanism, the search strategy of the slow—fast learning
paradigm, and the Lion optimizer. Here is a detailed explanation of each component.

2.2.1. Multi-Scale Attention Mechanism Expanded Search Space

1.  Multiple attention mechanism guided search space

Applying different attention mechanisms to different datasets may face varying chal-
lenges. For example, in some HIS datasets, it may be more challenging to use spatial
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attention mechanisms due to strong correlations between data. In contrast, it may be more
difficult to use channel attention mechanisms due to highly variable features. Moreover, the
performance of attention mechanisms can also be affected by factors such as dataset size
and quality, model architecture, and hyperparameters. Therefore, it is important to choose
appropriate attention mechanisms based on different HSI datasets and tasks to achieve
optimal performance and effectiveness. In addition, various samples in the HSI dataset
exhibit long-tailed distributions, resulting in imbalanced HSI classification results. We pro-
pose a multiple search space with rich attention for HSI classification, which can effectively
improve classification accuracy and reduce computational complexity. We select four types
of attention mechanisms to form it. They are the convolutional block attention module
(CBAM) [38], squeeze-and-excitation (SE) module [36], triplet attention (TA) module [39],
and coordinate attention mechanism (CA) [40], as shown in Figure 2.

3 Input
4 Residual
GAP+GMP .
i Average Pool Average Pool
Conv+RelLU [ = I
i . Concat
1x1 Conv v
Sigmoid 1x1 fOHV
l BN + Non-linear
MP+AP ++—*
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| & 1
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Figure 2. Multiple attention mechanism search space (a) CBAM; (d) CA; (b) SE; (c) TA.

To reduce repetition, various attention mechanisms have been proposed in the lit-
erature. One such mechanism is the CBAM module, which combines channel attention
and spatial attention. It aggregates spatial features by performing max-pooling on top of
global average pooling. This allows the network to focus on important spatial information.
Another attention mechanism is the SE module, which enhances the network’s sensitivity
to informative features. It recalibrates filter responses through squeeze-and-excitation
operations, improving the learning ability of convolutional layers. The TA module is
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composed of three parallel branches, each serving a distinct purpose. The first branch
focuses on establishing spatial attention, while the other two branches aim to capture
cross-dimensional interactions between the channel and spatial dimensions. The final
output is obtained by averaging the outputs from these three branches. The CA mechanism
learns weights by combining features at each position with their corresponding coordinate
information. This mechanism effectively captures spatial correlations, leading to improved
model performance. By incorporating these attention mechanisms, models can effectively
reduce redundancy and improve the performance of HSI classification tasks.

As NAS-based HSI classification requires the determination of the search space, we
propose search space O. Formally, let O denote a sequence of candidate operations (multiple
attention guided operations), where each operation represents a function p(-) to be applied
to s;. For each cell g, we configure an architecture parameter “Zi for operation p;. To ensure
continuity of the search space, we relax the search space to allow it to be optimized via
gradient descent. Specifically, we relax the architecture parameter D(Zi to be continuous, and
then compute the operational probabilities for different operations by applying softmax
over all "‘Zi‘

q
exp(a,
R?’i = Pl p,) 1)

n
3 explal))
j=1
Here, n represents the number of candidate operations available. The larger value of
RZ,. indicates a higher likelihood of selecting the representative operation. The output of
the cell is obtained by taking the weighted sum of all possible operations.

plyi) = Y Rhpiyi) 2)

peP

The notation p;(y;) signifies the application of operation p; on input y;. Consequently,
the search process is transformed into a learning process of a set of architectural parameters
{a?,i}. Furthermore, as the network weights w also need to be learned, we are required to
solve the following bi-level optimization problem.

n'}Xin‘cval (w*/ “) (3)

s.t. wk = argminCLy,q;, (w, a) 4)

The purpose of the above formulae is to search for the architectural parameters that
minimize the validation loss L, (w%,«), and the network weights wx are obtained by
minimizing the training loss Ly, (w, ). It is important to note that the training loss and
the validation loss are identical.

The objective of the aforementioned formulae is to search for architectural parameters
that minimize the validation loss £, (wx, ), while the network weights wx are obtained
by minimizing the training loss L4, (w, ). It is crucial to emphasize that the training loss
and the validation loss are indeed the same.

2. Multi-scale attention mechanism search space

Different types of convolutions have varying computational requirements and parameter
counts. Building deeper models can be challenging due to the expensive parameters and time
required for high-dimensional convolutions. This can limit the efficiency and feasibility of
constructing deeper models. Therefore, high-dimensional convolutions are often replaced
with lower-dimensional separable convolutions to alleviate this issue. The novel operation
MCS_sepConv_(b x b) (b =3, 5,7) in the search space combines spectral-spatial CBAM with
spatial separable convolution [41], which helps to extract deeper spectral-spatial features,
and it can enhance the spectral-spatial adaptive learning ability of the I data. In addition,
we use small filters to reduce parameters while maintaining a large-scale receptive field.
We have strengthened the ability to extract scale spectral-spatial features from data, thereby
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improving classification performance. MCS_sepConv(b = 3, 5, 7) with different scales are
as shown in Figure 3.
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Figure 3. Multi-scale attention mechanism guided search space (a) MCS_sepConv(3 X 3);
(b) MCS_sepConv(5 x 5); (¢) MCS_sepConv(7 x 7).

MCS_sepConv_(b X b) refers to a set of convolutional operators that are commonly
used in remote sensing and other image-processing tasks to extract deeper spectral-spatial
features. These operators consist of two separate convolutional layers, one for processing
the spectral dimension and the other for processing the spatial dimension, and they are
applied in a cascaded manner. By using MCS_sepConv_(b x b), the model can capture
more complex and abstract features by combining spectral and spatial information.

Convolution is a widely used operation in NAS-based methodlor HSI classification.
Previous research has primarily concentrated on traditional convolution techniques, depth-
wise separable convolution, and dilated convolution in order to reduce redundancy. How-
ever, the high-dimensional convolutional operations can lead to a large number of parame-
ters and time consumption, making it very difficult to construct an optimal architecture. For
example, depthwise separable convolution can be represented as Sep-Conv(b x b) = Conv
(1 x 1)(Conv(b x b)(x)), and the parameter and Flops(floating point operations per second)
calculations are:

P =Ci xbxb+1xCy x Coyt (5)

FI=Ciy xbxbxHxW+1x1

XCiy X Cout X Hx W ©)
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where C;;;, x H x W is the size of the input x, and Cy,; x H x W corresponds to the output
features, where C;;, and C,,; represent the input and output spectral bands, respectively.
Additionally, P and F; represent the number of parameters and Flops. Incorporating
a pointwise convolution following a depthwise convolution in the CNN can effectively
extract both spatial and spectral features in a sequential manner. Assuming C;, = Cyyt = C,
the number of parameters and Flops for separable convolutions is only (1/b* +1/C) of
regular convolutions. If we extend the concept of separable convolution to the spatial
dimensions, we can define spatial separable convolution as Spatial_SepConv(b x b) = Conv
(1 x 1Conv(1 x b)(Conv(b x 1)(x)). The number of parameters and Flops for a spatial
separable convolution is only (2b + C)/(C + b?) of separable convolution:

Py =2x(Ciyxbx1)4+1x1xCiy X Cou (7)

Fy=2%(Ciy xbx1x HxW) ®)
+1x1xCij XxCoyp x Hx W

To reduce redundancy in a convolutional neural network (CNN), one approach is
to use small filters instead of large-scale filters. This helps to decrease the number of
parameters while still maintaining a large receptive field. This is because, in the CNN,
the number of parameters and computations is directly related to the size of the input
data and the convolution kernel. By using smaller filters, the number of parameters and
computations can be significantly reduced. By using small filters, we can reduce the number
of parameters while maintaining a large receptive field, which is important for capturing
multi-scale features in HSI classification. This can be achieved by using a combination of
small filters with different kernel sizes, which allows us to capture multi-scale features
while reducing the number of parameters and computations.

To enhance the adaptive feature extraction capability of the designed convolution
operation, a lightweight attention module called CBAM (Multi-scale Channel-Spatial
Attention, MCS) is incorporated to enhance the spectral and spatial adaptive learning
ability of the data cube. MCS is a combination of the Multi-scale Channel Attention (MS)
mechanism and the Multi-scale Spatial Attention (MS) mechanism as follows:

Mc(F) = o(MLP(AvgPool(F)+ MLP(MaxPool(F))

= (W (W () + Wy (Wo(Ef,, ) ©)
FF' =M(F)®F
Ms(F) = o(f77([AvgPool(F'); MaxPool(F')]))
= (f7X7[Plfslvg; Plﬁmx}) (10)
P =M(F)®F

where Mys(F) = M;(M.(F)) represents the spectral-spatial CBAM, which involves element-
wise multiplication ®, Wy € RCin/txCin W € RCin*Cin/7, sigmoid activation o, and the
7 x 7 convolutional f7*7.

As shown in Table 1, Conv(5 x 5) and Conv(7 X 7) can be achieved by repeating the
Conv(3 x 3) operations for substitution. In addition, Conv(3 x 3) can be replaced with
Spatial sepconv(3 x 3) = (Conv(1l x 3)Conv(3 x 1)). Assuming C;, = Cpyt = C, when using
Spatial sepconv(3 x 3) for equivalent replacement of Conv(5 x 5), the parameter count is
reduced by about 25%. After replacing Conv(7 X 7), the parameters were reduced by about
33%. The amount of Flops also showed a significant decrease. It can be explained that we
use small filters instead of large ones to effectively reduce parameters while maintaining a
large receptive field, which has obvious effectiveness.
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Table 1. Comparison of convolution parameters and Flops at different scales.

Operation Convolution Repeat Parameters Flops
Conv(3 x 3) Conv(3 x 3) - 9 x C2 IXxCZxHXW
Conv(5 x 5) Conv(3 x 3) 2 18 x C2 18 x CZ2xHxW
Conv(7 x 7) Conv(3 x 3) 3 27 x C2 27xCZxHxW
Spatial_sepconv(3 x 3) Conv(1 x 3)(Conv(3 x 1)) - 6 x C2 6 xCxHxW

Spatial_sepconv(5 x 5)
Spatial_sepconv(7 x 7)

12 x C2 12xCxHxXxW
18 x C2 18xCxHxW

N

Conv(1l x 3)(Conv(3 x 1))
Conv(1l x 3)(Conv(3 x 1))

[eN)

e

Training Validation

samples samples

77777777777 * 7777777777777777777777 + 777777777777 S

Lm“_n Update Lva]
\ /

Weight Set
v

2.2.2. Search Strategy Based on the Slow—Fast Learning Paradigm

In order to further utilize the search space guided by multiple attention mechanisms,
we apply the slow—fast learning paradigm to optimize and iteratively update the archi-
tecture vector. In addition, the HSI classification involves multiple categories, and the
sample size in each category presents the long-tailed distribution, resulting in imbalanced
classification results for certain categories in classification tasks. By using the slow—fast
paradigm to update the architecture vector, the overall architecture vector can be updated
from the perspective of pseudo gradients [42]. Different hyperspectral imbalanced data
can be updated during the construction of the architecture unit to obtain the best results
and effectively enhance the generalization of the model. This design is essentially aimed at
designing an effective NAS method that benefits from the high efficiency of differentiable
NAS and overcomes the drawbacks of high search costs in population-based NAS.

This section optimizes from the perspective of NAS search strategy and effectively
updates the population of architecture vectors through pseudo gradient iteration to achieve
optimal results. The objective of NAS is to initially search for architecture vectors ax € O.
Then, the architecture parameter Cy is used to minimize the validation loss £, (Casx, Wax),
and finally, the weight wx, which is associated with the architecture, is obtained by min-
imizing the training loss L4y (Cax, Wax ). Therefore, the slow—fast learning is essentially
the optimizer for a parameters in our NAS. Specifically, we give the architecture vector
a! obtained by slow—fast learning in the t generation, and its iterative update method is
shown in Figure 4.

o = ot + Axt (11)

where the above equation satisfies Ly, (C,s+1, wzgﬂ) < Lo (Cag, wi ).
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Figure 4. The slow—fast learning process.

To generate pseudo gradient Aa’ effectively, this approach suggests utilizing a popu-
lation of H architecture vectors {«a} le. Each generation randomly splits the population
into H/2 pairs. Next, for each pair of population q, the order of validation loss values is
employed to identify the fast learner (x;’ f and slow learner uc;,s, with smaller loss values
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indicating slow learner and larger loss values indicating fast learner [L,,; (C,: p w;, ) <
9. a.f
Loa1(C,t ,w*, )]. Then, af  learns from af , and updates it.
Xg,s Xg,s 9, qff
_ -1
A‘Xf],s = Ul(“;,f - D‘f],s) + UZA“;,S (12)

Here, 171,12 € [0, 1] represents a randomly generated value obtained from a uniform
distribution. Specifically, 1 determines the step size for a;ls to learn from Dég fr and 7, determines

the influence of momentum Aocg;l. Finally, all fast-slow learners are aggregated to form a new
group of the t + 1th generation. The above pseudo gradient update method is derived from the
second derivative of gradient descent in back propagation, so each architecture vector in the
search space of the multi-attention mechanism designed in this work will move towards the
optimal update direction from the vector that converges faster than them.

After the architecture update process, it is necessary to evaluate the performance of can-
didate architectures for decoding architecture vectors, so that for each pair of architecture
vectors, fast learners can learn and update slow learners by verifying the loss. Subsequently,
the candidate architecture C,s is assessed by solving the following optimization problems:

w,s = optimize(w,s) = step(step(...step(wWys|Cas) .. .|Cus)|Cas) (13)

In the given equation, w), represents the optimal weight of the candidate architecture,
while step(-) denotes the iterative optimization process utilized for updating the weights
of the neural network.

2.2.3. Lion Optimizer

The optimizer is utilized to update and compute the network parameters that influence
model training and output, with the goal of approaching or achieving the optimal value
and thereby minimizing (or maximizing) the loss function. This study utilizes the Lion
optimizer, known for its simplicity, efficiency, and speed. Reducing redundancy is an
important aspect of this work. At the same time, this optimizer is suitable for large-
scale optimization problems involving big datasets or high-dimensional parameter spaces.
The use of the Lion optimizer can not only effectively improve the accuracy of HSI data
classification but also reduce memory overhead and effectively reduce training time because
the algorithm only tracks momentum and uses symbolic operation to calculate updates.
The Lion optimizer formula is written as follows [43]:

9t+1 = tht (14)

gt = Vof(6:1) (15)

where w; is the decay rate, 6; is the weights, and g; = Vg f(6;_1) is the gradient at 6;_.
To calculate the average attenuation of the current and past square gradient, the
mathematical relationship can be written as follows:

ct = Bimy—1 + (1 —B1)g (16)

where c; is the 1st moment estimate, and m;_1 represents the momentum vector from the
previous iteration. 31 is the decay rate of the 1st moment. The weight reduction process for
decoupling is as follows:

0 < 61 — ne(sign(ct) + A0;_1) (17)

where #; is the step size. To counteract biases, the bias-corrected first and second moments
are computed in the following manner:
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my < Bomy 1+ (1 — B2)g: (18)

The algorithm differs from various adaptive algorithms in that it only tracks momen-
tum and uses symbolic operations to compute updates, leading to lower memory overhead
and achieving a unified update magnitude across all dimensions.

3. Results
3.1. Hyperspectral Image Datasets

To assess the efficacy of the proposed NAS method, this research conducts classification
experiments on three datasets: one standard hyperspectral dataset (Pavia University) and
two practical datasets (Xuzhou and WHU-Hi-Hanchuan). Tables 2—4 show the number of
pixels in each category, the false color composite image, and the ground truth map of the
three datasets, respectively. The aim is to reduce redundancy in the experiments and ensure
a comprehensive evaluation. The Pavia University dataset was gathered using AROSIS
sensors that flew over Pavia in northern Italy. It consists of 103 spectral bands and has a
dataset size of 610 x 340 pixels. It consists of nine categories. The Xuzhou dataset was
collected in November 2014 using the HySpex SWIR-384 and HySpex VNIR-1600 imaging
spectrometers. The dataset consists of 436 bands and covers a specific pixel size in the
mining area. A field survey was conducted, and a total of nine categories were calibrated.
In total, 68,877 marker samples were used.

Table 2. Pavia University Dataset Labeled Sample Counts.

No. Class Color Sample Numbers False Color Map Ground Truth Map

1 Asphalt 6631

2 Meadows 18,649

3 Gravel 2099

4 Trees 3064

5 Painted metal sheets 1345

6 Bare Soil 5029

7 Bitumen 1330

8 Self-Blocking Bricks 3682

9 Shadows 947
Total 42,776

Table 3. Xuzhou Dataset Labeled Sample Counts.
No. Class Sample Numbers False Color Map Ground Truth Map

1 Bareland-1 26,396

2 Lakes 4027

3 Coals 2783

4 Cement 5214

5 Crops-1 13,184

6 Trees 2436

7 Bareland-2 6990

8 Crops-2 4777

9 Red-tiles 3070
Total 68,877
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Table 4. WHU-Hi-Hanchuan Dataset Labeled Sample Counts.

No. Class Color Sample Numbers False Color Map Ground Truth Map
1 Strawberry [ 44,735
2 Cowpea ‘ 22,753
3 Soybean [ 10,287
4 Sorghum 5353
5 Water spinach 1200
6 Watermelon I 4533
7 Greens 5903
8 Trees 17,978
9 Grass I 44,735
10 Red roof 9469
11 Gray roof ] 10,516
12 Plastic I 16,911
13 Bare soil ] 3679
14 Road ] 9116
15 Bright object 18,560
16 Water 1136

Total 0

The WHU-Hi-Hanchuan dataset was collected in Hanchuan, Hubei Province, using
the 17 mm focus Headwall Nano Hyperspec sensor installed on the Leica Airbot X6 UAV
V1 platform. The size of the dataset is 1217 x 303 pixels, with 16 categories. The survey
collected data from 68,877 marker samples.

3.2. Implementation Details

Our experiments are conducted at Intel (R) Xeon (R) 4208 CPU@2.10GHz Processor
and Nvidia GeForce RTX 2080Ti graphics card. We conducted 10 experiments to take the
average value to obtain the overall accuracy (OA), average accuracy (AA), and Kappa
coefficient (K) of the experiment.

The hyperspectral image samples are extracted using the sliding window strategy
with a window size and overlap rate set at 50%. For training purposes, 30 samples are
randomly selected as the training dataset, while 20 samples are used for validation. The
training dataset is utilized to train the weights and biases of each neuron in the model,
whereas the architecture variables are optimized based on the validation dataset. Once the
optimal architecture is obtained, the remaining samples are employed as the test dataset
to evaluate the performance of the optimized network architecture and derive the final
classification results.

To evaluate the discovered architectures, we conducted evaluations on the discovered
architectures with two cells and sixteen initial channels. Each cell consisted of seven nodes,
including two input nodes, four intermediate nodes, and one output node. The population
size (N) and generation number were set to 1, 20, 35, and 50, respectively. The batch size for
each search stage was 32, and we used Stochastic Gradient Descent (SGD) to optimize the
weight parameters with a learning rate of 0.025. The cosine power annealing strategy was
employed to reduce the learning rate, with a maximum learning rate of 0.025, a minimum
learning rate of 0.0001, and a power curve parameter of 2. To prevent overfitting and
ensure the robustness of the final model, we also used label smoothing regularization with
a smoothing factor of 0.1.
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3.3. Classification Comparison with State-of-the-Art Methods

In this section, we evaluate the classification performance of MS? ANAS by comparing
it with several advanced methods. These methods include Extended Morphological Profile
combined with Support Vector Machine (EMP-SVM) [44], 2D-CNN [11], 3D-CNN [14],
Spectral-Spatial Residual Network (SSRN) [16], Residual Network (ResNet) [45], Multi-
Layer Perceptron Mixer (MLP Mixer) [46], CNN model designed using NAS (CNAS) [34],
and Efficient Convolutional Neural Architecture Search for LIDAR DSM Classification
(AN-AS-CPA-LS) [47]. To ensure the rigor of the experiment, we randomly selected three
training samples for classes with fewer than three samples. The training times for manually
designed CNN models were set to 200. For CNAS and ANAS-CPA-LS, they searched for
the optimal architecture based on the DARTS strategy. Therefore, their configuration and
superparameter settings were the same as those of the MS?ANAS model. All experimental
results are shown in Tables 5-7, and they represent the average values of ten runs with
different random initializations.

Table 5. Classification results of all methods on the Pavia University dataset.

Methods EMP-SVM 2D-CNN 3D-CNN SSRN MLP-Mixer CNAS ANAS-CPA-LS MS3ANAS

1 60.77 £9.11 76.52 +7.32 86.51 + 3.50 94.01 £ 0.72 96.17 +£ 1.07 96.45 + 0.13 97.70 £ 0.70 99.01 £ 0.35

2 95.68 + 1.10 9447 + 3.35 94.32 + 3.69 99.40 + 0.22 97.80 £+ 0.81 98.96 + 0.02 99.46 + 0.42 99.79 +0.14

3 88.06 + 6.64 93.23 £0.13 69.58 + 5.82 98.26 + 3.28 9443 + 3.16 98.17 £ 0.11 91.13 £ 6.27 97.09 £ 0.11

4 98.38 + 1.55 99.52 +£0.15 95.97 + 3.02 98.73 +£1.32 99.31 £+ 1.00 99.70 + 0.04 99.66 + 0.16 99.89 + 0.01

5 99.46 + 0.36 99.36 + 0.63 99.58 + 0.11 99.64 + 0.69 99.78 + 0.33 99.42 + 0.04 100 £+ 0.00 99.87 £ 0.12

6 92.70 £ 1.16 81.95 +12.16 94.80 + 1.00 95.28 £ 0.19 99.27 £4.13 99.00 £ 0.21 99.80 £ 0.11 99.86 £+ 0.07

7 99.77 + 0.22 42.66 +9.32 95.07 £ 1.29 96.35 + 0.35 98.47 + 0.53 99.41 £ 0.13 99.16 £+ 0.83 99.38 + 0.36

8 65.37 £ 6.31 71.28 +£5.13 84.52 +6.71 84.58 + 0.03 81.86 +£2.72 86.12 £ 0.25 95.13 £+ 0.68 95.33 £1.33

9 49.30 £+ 8.33 96.79 +2.22 99.77 £ 0.10 99.74 + 0.16 99.93 + 1.46 97.47 + 1.33 99.65 + 0.34 100 + 0.00

OA/% 83.39 + 0.85 87.36 £ 1.67 91.04 +£1.70 94.68 + 1.32 96.16 + 0.71 97.42 + 0.29 98.44 + 0.57 99.16 £ 0.03

AA/% 83.27 + 3.86 89.14 £7.20 91.12 £ 1.11 96.22 + 1.58 96.32 £+ 0.90 97.18 £ 0.25 97.97 £ 0.72 9891 £1.14

100 K 81.70 + 1.44 82.99 + 2.46 87.99 + 2.35 9294 + 041 94.89 + 0.09 96.76 + 0.18 97.93 +£0.76 98.89 + 0.09
Params/M 0.0032 0.1439 0.0934 0.0894 0.4305 0.2164 0.2432 0.1376
Flops/G 0.0008 0.1274 0.4682 0.4843 0.0248 2.8302 2.7284 0.0194

Table 6. Classification results of all methods on the Xuzhou dataset.

Methods EMP-SVM 2D-CNN 3D-CNN SSRN MLP-Mixer CNAS ANAS-CPA-LS MS3ANAS

1 95.60 + 1.46 85.83 + 1.83 94.71 £+ 0.80 95.55 + 1.92 96.33 £+ 0.06 98.86 + 0.66 99.15 £+ 0.65 99.71 £0.13

2 92.32 4+ 0.04 90.94 +4.72 85.10 +£ 1.34 94.87 + 4.97 99.94 + 0.61 99.06 + 0.79 99.50 £+ 0.49 99.94 + 0.03

3 85.76 £+ 0.82 82.38 £ 1.81 92.21 £ 0.06 89.04 £+ 6.99 93.98 + 0.44 95.09 £+ 2.71 99.40 £+ 0.03 99.99 £+ 0.01

4 98.45 + 1.57 93.67 + 4.81 96.86 + 0.37 95.68 + 0.28 95.02 + 3.02 92.82 + 5.03 99.10 £ 0.16 99.91 £+ 0.04

5 88.00 £ 0.09 97.30 £ 0.82 9333 £ 1.74 92.88 + 0.37 96.20 £+ 0.93 98.57 £ 0.15 95.95 £+ 0.01 94.21 £+ 0.62

6 82.41 +£0.24 83.66 £ 2.10 86.41 +1.36 95.28 +1.26 79.38 + 6.11 91.75 + 4.89 97.56 + 0.24 97.55 + 0.45

7 7246 + 3.52 90.16 £+ 3.11 86.47 +2.43 90.08 +£1.23 92.75 + 3.05 96.40 + 1.41 94.83 + 0.15 99.86 + 0.98

8 59.38 + 2.77 96.93 + 1.80 98.81 + 1.04 95.95 + 0.45 89.20 £+ 8.11 99.60 + 0.24 97.07 £+ 2.06 99.72 £+ 0.07

9 92.16 £ 1.26 89.71 £ 0.32 89.72 + 0.35 89.77 + 2.49 98.27 + 0.32 98.51 + 0.58 96.92 + 0.07 99.92 + 0.01

OA/% 84.50 + 0.81 88.32 £ 0.27 91.71 £ 0.93 9241 +£1.34 9454 + 2.32 97.07 £ 0.06 97.72 £ 0.19 98.44 £ 1.67

AA/% 85.17 +£ 1.30 87.84 +£0.72 91.51 + 1.84 9290 + 2.21 93.45 + 2.51 96.74 + 1.82 97.67 + 0.49 98.98 + 0.25

100 K 80.38 + 0.77 84.87 £ 0.43 89.46 + 1.31 90.37 £ 1.66 93.14 + 2.89 97.04 £ 1.01 97.11 £0.23 98.04 £ 2.10
Params/M 0.0193 0.0627 0.1094 0.2761 0.3976 0.3844 0.2452 0.0598
Flops/G 0.0059 0.1354 0.4717 0.4489 0.0643 3.0262 2.6810 0.0198
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Table 7. Classification results of all methods on the WHU-Hi-Hanchuan dataset.

Methods EMP-SVM 2D-CNN 3D-CNN SSRN MLP-Mixer CNAS ANAS-CPA-LS MS3ANAS
1 85.45 + 2.47 88.15 £ 0.32 87.16 £ 0.19 90.11 £ 1.52 91.62 + 2.63 93.71 £0.13 95.93 £+ 0.68 97.99 £+ 0.31

2 92.05 £+ 2.01 87.90 + 3.17 93.69 + 0.01 94.31 £ 252 95.14 + 0.01 96.32 + 0.25 98.23 +0.23 98.68 + 0.14

3 80.76 + 3.53 82.11 £ 0.05 87.66 + 1.09 90.52 +1.77 90.47 £+ 0.32 9441 +£1.22 96.09 £+ 2.92 98.80 £ 0.14

4 93.03 £ 2.77 86.44 + 1.56 9253 +£1.23 97.82 £ 0.16 97.47 +£0.70 97.97 + 0.49 99.44 + 0.04 99.32 +£0.12

5 77.85 + 16.59 52.13 £3.19 61.44 +4.24 81.64 + 5.60 78.18 + 3.02 88.30 + 4.50 89.75 + 2.39 96.02 + 1.44

6 64.54 +7.93 65.71 £ 1.61 75.41 + 1.09 74.34 + 191 84.51 £+ 0.05 84.48 + 1.65 91.86 + 0.68 94.00 £+ 0.01

7 6595 + 1.24 69.80 £ 6.17 74.36 + 1.63 82.13 £ 0.78 82.35 + 3.44 84.44 +5.14 92.51 +2.64 93.79 +£2.94

8 88.62 + 0.49 83.48 +0.82 90.43 + 2.19 92.07 £ 1.12 91.39 + 1.05 95.86 + 0.71 98.35 £+ 0.02 98.15 £ 0.13

9 75.43 + 5.81 78.55 + 1.34 87.84 +1.25 87.51 + 247 88.69 + 3.05 90.85 + 2.13 94.88 + 0.87 97.35 £ 0.38

10 90.48 + 3.12 93.35 £ 1.26 95.38 + 1.69 95.04 +0.44 95.66 + 2.72 97.38 +£1.22 99.22 + 0.04 99.73 £ 0.19

11 85.60 + 3.01 82.62 + 0.85 89.71 £ 1.26 86.97 + 2.67 91.47 +£1.37 91.39 + 0.02 96.60 £ 0.01 97.53 £+ 0.07

12 73.08 £+ 2.90 74.78 + 1.89 75.03 + 491 80.84 + 0.69 86.70 + 0.89 89.59 + 3.92 93.69 £+ 0.19 94.75 + 0.33

13 67.30 £ 1.71 67.97 £ 2.68 81.14 £ 1.10 88.13 +£2.92 85.28 + 1.08 87.45 + 5.35 9450 + 1.87 95.55 + 0.26

14 8591 £ 0.73 84.59 + 2.78 89.09 + 0.13 92.72 + 1.08 89.45 + 0.85 94.22 + 2.02 97.32 £ 0.23 97.47 £ 0.93

15 88.87 + 6.20 87.60 £ 2.66 89.78 +£4.21 84.40 £ 11.6 90.09 + 7.58 92.99 + 0.15 97.08 £+ 0.56 95.82 +£0.71

16 97.72 £ 3.02 9748 +£0.71 97.79 £ 0.26 99.15 £+ 0.16 99.11 £+ 0.01 99.49 + 1.37 99.66 + 0.14 99.77 £+ 0.06
OA/% 87.96 + 0.30 89.07 £ 0.31 91.01 £ 0.34 92.78 + 0.09 93.95 + 0.02 96.15 + 0.03 97.44 £+ 0.03 98.30 £+ 0.07
AA/% 82.04 + 3.97 83.04 +£ 245 85.53 + 0.44 88.61 + 1.24 89.66 + 0.98 94.43 + 1.07 95.50 + 0.44 97.17 £ 0.25
100 K 85.85 + 0.37 87.85 £+ 0.36 89.43 + 0.40 91.53 £ 0.11 91.73 £ 0.03 95.32 + 0.02 96.97 £+ 0.08 98.01 £ 0.08

Params/M 0.0170 0.0677 0.9028 1.0653 0.6211 0.3807 0.3672 0.1564
Flops/G 0.0009 0.1466 0.4719 0.4780 0.1035 3.9640 4.0821 0.0742

As shown in Tables 5-7, our proposed MS®ANAS typically outperforms other meth-
ods in terms of OA, AA, and Kappa on three datasets. The EMP-SVM has the lowest
classification accuracy, and the classification accuracy of 2D-CNN and 3D-CNN is also
poor, while SSRN uses skip connections to extract depth feature information, resulting in
higher classification accuracy than 2D-CNN or 3D-CNN. This is due to the lightweight
spatial-spectral attention operations found in multi-scale attention search spaces that can
better extract joint spectral-spatial features of hyperspectral images. Taking the Pavia
dataset as an example, compared to CNAS, the MS?ANAS model proposed in this paper
improves OA from 97.42% to 99.16%. Both ANAS-CPA-LS and MS?ANAS have built the
search space of attention mechanism, but the search space built by our method contains
attention mechanisms of multiple scales. At the same time, we use small filters to reduce
parameters while maintaining a large range of receptive fields. Therefore, the ability to ex-
tract different scales of spectral-spatial features from data is enhanced, thereby improving
classification performance. However, in the case of limited training samples, the ability of
attention mechanisms to fit spatial structural information is not easily utilized. Compared
with ANAS-CPA-LS, MS?ANAS has better classification performance.

As shown in Table 6, compared with EMP-SVM, 2D-CNN, 3D-CNN, SSRN, ResNet,
CNAS, and ANAS-CPA-LS, OA obtained by our proposed method increased by 13.94%,
10.12%, 6.73%, 6.03%, 3.90%, 1.37%, and 0.72%, respectively, on the Xuzhou dataset. Taking
the WHU-Hi-Hanchuan dataset as an example, OA reached 98.30%, and increased by 0.86%,
2.15%, 4.35%, 5.52%, 7.29%, 9.23%, and 10.34%, respectively, compared with ANAS-CPA-LS,
CNAS, ResNet, SSRN, 3D-CNN, 2D-CNN, and EMP-SVM. Except for EMP-SVM, 2D-CNN
is the second worst in performance because it only uses spatial features. Meanwhile, for
other methods, MS?ANAS achieved significant improvements in both AA and Kappa
results. From the classification results of the three datasets, it can be seen that the overall
performance of the NAS-based method is higher than that of the handmade methods.
At the same time, the search space using a multi-scale attention mechanism can enhance
the model’s ability to consider spectral and spatial information, effectively improving
classification performance.

Due to the design of a lightweight NAS model in this article, we compared its complex-
ity with existing technologies in terms of required model parameters (Params) and Flops.
We can see from Tables 5-7 that different search space operations and architecture update
methods can lead to differences in the amount of network parameters. Flops are determined
by the input data size and parameters; therefore, we will conduct an overall analysis based
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on the complexity and classification performance of the network model. Compared with
handmade hyperspectral image classification models such as 2D-CNN and 3D-CNN, as
well as NAS methods such as CNAS and ANAS-CPA-LS, the proposed method has lower
occupancy rates in Params and Flops but achieves the highest OA while achieving the best
classification performance on three datasets. The results further indicate that the proposed
method can solve classification tasks with low cost but high performance. This mainly
benefits from the effectiveness of our special multi-scale search space and the applicability
of the slow—fast learning architecture update paradigm to different hyperspectral datasets.

The classification diagrams of the other seven methods on the three HSI datasets
are displayed in Figures 5-7. It is evident that the proposed algorithm demonstrates
superior performance in general. Compared with ANAS-CPA-LS, the ANAS-CPA-LS
incorrectly classified Bare Soil (Class 6) as Meadows (Class 2) in Figure 5h of the Pavia
dataset classification results.

Figure 5. The classification results of the Pavia University dataset. (a) Ground truth map; (b) EMP-
SVM; (c) 2D-CNN; (d)3D-CNN; (e) SSRN; (f) MLP-Mixer; (g) CNAS; (h) ANAS-CPA-LS; and
(i) MS?ANAS.
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)

Figure 6. The classification results of the Xuzhou dataset. (a) Ground truth map; (b) EMP-SVM;
(¢) 2D-CNN;; (d) 3D-CNN; (e) SSRN; (f) MLP-Mixer; (g) CNAS; (h) ANAS-CPA-LS; and (i) MS?ANAS.

In Figure 6h of the experimental results on the Xuzhou dataset, some Coals (level 2)
were mistakenly classified as Cement (level 7). Through a comparison of the classification
maps obtained, it can be concluded that our method achieves more accurate classification
results with reduced salt-and-pepper noise. Because our method uses the combination of
multi-scale attention mechanism and common attention mechanism as the search operator,
it can more effectively extract deeper spatial features and combine spectral and spatial
information to capture more complex and abstract features.
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‘A

(h)

Figure 7. The classification results of the WHU-Hi-Hanchuan dataset. (a) Ground truth map;
(b) EMP-SVM; (c) 2D-CNN; (d) 3D-CNN;; (e) SSRN; (f) MLP-Mixer; (g) CNAS; (h) ANAS-CPA-LS;
and (i) MS®ANAS.
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4. Discussion
4.1. Optimal Architecture Analysis
Figures 8-10 illustrate the cells with the optimal architecture on the three datasets,

which are obtained through the proposed method. These cells consist of both normal cells
and reduction cells.

4“ MesSep_conv_3x3 n

McsSep_conv_3x3

TripletAttention

McsSep_conv_3x3 n TripletAttention
skip_connect McsSep_conv_SxS
c_{k-2} McsSep_conv_7x7

(a) Normal cell (b) Reduction cell

Figure 8. The searched cell architectures of the Pavia University dataset.

McsSep_conv_5x5

MesSep_conv_3x3

TipletAttention
MesSep_conv_5x5 A
CA SE_Module n

SE_Module

SE_Module

(a) Normal cell (b) Reduction cell

Figure 9. The searched cell architectures of the Xuzhou dataset.

McsSep_conv_5x5

TripletAttention 3

McsSep_conv_7x7 n
McsSep_conv_3x3
McsSep_conv_3x3

(a) Normal cell (b) Reduction cell

MesSep_conv_7x7
MesSep_conv_3x3 CBAI

n‘

Figure 10. The searched cell architectures of the WHU-Hi-Hanchuan dataset.

In our experiment, we employed the slow—fast learning paradigms and the multi-scale
attention mechanism search space to search for the optimal network architecture for each
HSI dataset. We can observe that the network architecture retains more multi-scale search
operators (such as MCS_ sepConv (3 x 3), MCS_ SepConv (5 x 5), and MCS_ SepConv
(7 x 7)). As a result, our model comprises a higher number of learnable parameters,
allowing it to maintain a wide range of receptive fields. This effectively addresses the issues
of gradient disappearance and network degradation. Consequently, our method can extract
scaled spectral-spatial features from the data more effectively, leading to an improvement
in classification performance.

4.2. The Analysis of Slow and Fast Learning Using Optimal Combination Actions

In order to empirically analyze the slow—fast learning process, it is necessary to select
different parameters for experiments. In this section, the generation is combined with
different search spaces to conduct experiments on three datasets. In the experiment, the
control variable method is used for each dataset. The number of experiments, training
samples, validation samples, and test samples is consistent. The conclusion drawn is
that the (a) Pavia University, (b) Xuzhou, and (c) WHU-Hi-Hanchuan datasets display
the complete presentation of each combination, and all datasets display MA + MS and
generation 50 as the best performance combination (Figure 11). Therefore, it can be proven
that slow—fast learning can perform pseudo gradient architecture updates on different
hyperspectral imbalanced data during the construction process of building units, effectively
improving classification performance.



Electronics 2023, 12, 3641

19 of 22

©99.5-100  @99-99.5  H98.5:99  [HI8-98.5 £99.5-100 99-99.5  [98599  [98-98.5
97.5-98 97-97.5 [96.5-97 B96-96.5 97.5-98 97-97.5 £96.5-97 H96-96.5
100 100
98.5 , i
98 e L y
97.5 i = ’ .
A GGenertz?tlor; 550 979.3 p o Generation 50
96.5 eneration ik ‘ - ” ’ Generation 35
9(:6)rigi11 $$ o Generation 20 96. . - Generation 20
Origin . Origin SS =
SENIASS MASS Generation 1 Origin MASS Generation 1
MA+MS SS+MASS MA+MS
(a) (b)
099.5-100 m@99-99.5 098.5-99 0b98-98.5
97.5-98 97-97.5 [096.5-97 @96-96.5
100
99.5
99 &
% -
973 g Genera.tlon 50
97 Generation 35
96.5 ___d
96 SR : Generation 20
Origin SS o
SS?;\I/[gII\nSS MASS Generation 1
MA+MS
(c)

Figure 11. The optimal combined action of the search space and the number of generations for each
dataset. (a) Pavia University; (b) Xuzhou; (¢) WHU-Hi-Hanchuan.

4.3. Ablation Experiments Analysis

To validate the effectiveness of our method in HSI data classification, we conducted
numerous ablation experiments, as presented in Table 8. Specifically, when we solely
employ the CNAS model for classifying the Pavia dataset with only 30 training samples,
OA reached 97.42%, 97.07%, and 96.15%, respectively. When CNAS was combined with
multi-scale attention expansion mechanism search space (MS), OA increased by 0.48%,
0.77%, and 0.89%, respectively. This result demonstrates that the incorporation of a multi-
scale attention mechanism to expand the search space enhances the network’s sensitivity to
informative features, resulting in a slight improvement in the classification performance
of the model. In comparison to CNAS, our method achieves better results. the search
time of MS + NAS on the three datasets does not change significantly, but it significantly
reduces the parameters and achieves better classification accuracy. Obviously, when NAS
was combined with the slow—fast learning paradigm search strategy, the OA of the three
datasets increased by 1.02%, 0.39%, and 0.89%, respectively. This is due to the application
of slow and fast learning paradigms to optimize and interactively update the architecture
vector. It can update the architecture of different hyperspectral imbalanced data and obtain
classification models with stronger generalization ability. At the same time, it can be
observed that the search time for the three datasets was reduced by 0.249 h, 0.111 h, and
0.087 h after SF + MSNAS referenced the Lion optimizer. This is because this optimizer
can effectively reduce the time consumption of NAS architecture search. In addition, the
algorithm only tracks momentum, effectively reducing memory overhead.
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Table 8. The classification results of all methods on each dataset.
Dataset Index CNAS MS + NAS SF + MSNAS SF + MSNAS + Lion

OA (%) 97.42 +0.29 97.90 + 0.37 98.92 + 0.20 99.16 + 0.03

AA (%) 97.18 £ 0.25 97.84 + 1.36 98.07 + 1.83 9891 +£1.14

Pavia University 100 K 96.76 £ 0.18 97.95 + 0.79 98.45 + 2.51 98.89 + 0.09
Search Cost (hours) 3.054 3.013 2.982 2.733
Params (M) 0.1692 0.1574 0.1579 0.1564

OA (%) 97.07 £+ 0.06 97.84 + 0.94 98.23 £ 0.09 98.44 + 1.67

AA (%) 96.74 + 1.82 97.94 + 0.81 98.70 + 0.59 98.98 + 0.25

Xuzhou 100 K 97.04 £1.01 97.18 + 0.78 97.84 + 0.42 98.04 +2.10
Search Cost (hours) 3.312 3.295 3.205 3.094
Params (M) 0.0658 0.0570 0.0578 0.059

OA (%) 96.15 £+ 0.03 97.04 + 0.94 97.93 + 0.09 98.30 + 0.07

WHU-H AA (%) 94.43 £ 1.07 96.52 + 0.81 97.01 £ 0.59 97.17 £0.25

o h_ o 100 K 95.32 £+ 0.02 96.11 + 0.78 97.74 + 0.42 98.01 + 0.08
anchuan Search Cost (hours) 4201 4178 4113 4.026
Params (M) 0.292 0.174 0.176 0.156

5. Conclusions

In this paper, we introduce a neural network architecture search algorithm called
MS3ANAS. This approach aims to address the limitations of conventional differentiable
NAS methods in three key areas: search space, search strategy, and architecture re-
source optimization. Firstly, we introduce an extended search space with a multi-scale
attention mechanism, which can not only enhance the robustness and receptive field
capture ability of the model but also better realize path optimization. Secondly, we
quoted the slow—fast architecture learning paradigm, which not only optimizes the
iterative updating of architecture vectors but also effectively improves the model’s
generalization ability. Finally, the Lion optimizer was introduced to improve the accu-
racy of HSI data classification, reduce memory overhead, and reduce computational
complexity. We conducted experiments on three HSI datasets and compared MS?ANAS
with seven methods. The experimental results show that our method is more competi-
tive. Through the datasets of Xuzhou, Pavia University, and WHU-Hi-Hanchuan, the
OA of our method reached 97.82%, 98.46%, and 98.41%, respectively.

In future work, we will further optimize the NAS structure continuously to make it
more lightweight and easier to adapt to more complex remote sensing image classification
tasks. Furthermore, it is important to consider the practical applicability of our proposed
method. Meanwhile, we plan to apply our approach to real-world hyperspectral image
classification tasks, such as environmental monitoring, agricultural assessment, and urban
planning. By validating the performance of our method on these practical applications, we
can demonstrate its effectiveness and potential impact in various domains. Moreover, the
potential applications of our method extend beyond hyperspectral image classification. By
exploring these new application areas, we can further broaden the scope of our research
and contribute to advancements in related fields. We are excited about the opportunities
that lie ahead and look forward to witnessing the practical implementation and impact of
our work in the field of remote sensing and computer vision.
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