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Abstract: Currently, X-ray inspection systems may produce false detections due to factors such as
the varying sizes of contraband images, complex backgrounds, and blurred edges. To address this
issue, we propose the YOLO-CID method for contraband image detection. Firstly, we designed the
MP-OD module in the backbone network to enhance the model’s ability to extract key information
from complex background images. Secondly, at the neck of the network, we designed a simplified
version of BiFPN to add cross-scale connection lines in the feature fusion structure, to preserve
deeper semantic information and enhance the network’s ability to represent objects in low-contrast or
occlusion situations. Finally, we added a new object detection layer to improve the model’s accuracy
in detecting small objects in dense environments. Experimental results on the PIDray public dataset
show that the average accuracy rate of the YOLO-CID algorithm is 82.7% and the recall rate is 81.2%,
which are 4.9% and 3.2% higher than the YOLOv7 algorithm, respectively. At the same time, the
mAP on the CLCXray dataset reached 80.2%. Additionally, it can achieve a real-time detection speed
of 40 frames per second and 43 frames per second in real scenes. These results demonstrate the
effectiveness of the YOLO-CID algorithm in X-ray contraband detection.

Keywords: contraband detection; X-ray images; YOLOv7; BiFPN; object detection

1. Introduction

In contemporary society, with the diversification of transportation modes and the
reduction of travel costs, the density of human traffic in public places is gradually increas-
ing. Therefore, it becomes more and more important to protect people’s personal safety
and property security in public places. X-rays have the qualities of high energy, a short
wavelength, and the ability to penetrate substances, which make them widely used in
the fields of video surveillance [1], drone cruising [2], image security inspection [3], etc.
At present, security work mainly relies on X-rays to identify contraband such as knives,
firearms, and flammable goods, but this identification method mainly relies on the anal-
ysis and judgment of the security inspector, so there is greater subjectivity, even among
experienced professionals, in the face of a constant stream of X-ray images. This will also
produce visual fatigue and thus, in the processing of complex scenes, to the phenomenon
of missed or mis-inspection. Therefore, in order to ensure the maximum possible safety of
individuals and accelerate the detection efficiency, it is necessary to devise an intelligent
detection algorithm with high accuracy and timeliness to identify contraband. However,
the poor recognition of objects in the X-ray imaging process, susceptibility to the imaging
environment, and high noise levels pose considerable challenges to the construction of
X-ray detection models.

There are several traditional methods for the detection of targets in infrared images,
including threshold detection [4], the Hough transform [5], and wavelet detection [6].
However, the sensitivity of these methods is influenced by thermal emissivity, making
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them vulnerable to interference from the specimen’s surface and background radiation.
Traditional X-ray detection methods also have two main drawbacks. Firstly, the resulting
images have complex structures, poor resolutions, and weak anti-interference abilities
and are easily damaged. This makes it difficult to determine the target’s shape, size,
and location using traditional methods, resulting in low detection accuracy. Secondly,
the imaging speed is slow and cannot meet practical demands.

In recent years, object detection algorithms based on deep learning have been widely used
in various industries. The YOLO family, a family of regression-based single-stage algorithms,
has played an important role in X-ray object detection. [7] YOLO’s regression method eliminates
the need for complex frameworks, thus reducing the detection time. However, the YOLO
algorithm struggles to perform optimally in complex backgrounds where objects overlap and
occlude each other. In addition, the problem of multiple color overlaps caused by objects made
of different materials when exposed to X-rays needs to be addressed.

YOLOv7 is the latest and most advanced object detection tool in the YOLO series.
Its exceptional performance has made it one of the leading real-time object detection
methods. Additionally, it has applications in fields such as healthcare, national defense,
and security [8–10]. It uses the scalable and efficient layer aggregation network E-ELAN
to accelerate model convergence. Rep [11] (RepVGG Block) reparameterization is used to
achieve the best trade-off between speed and accuracy during training. Label assignment
and auxiliary training heads improve the performance of object detectors in multi-task
training. These advantages enable the model to ensure good accuracy and timeliness when
detecting X-ray images. However, when directly applied to the X-ray suspected contraband
detection field, the YOLO algorithm may encounter some problems:

1. Compared with common scenes, most targets in X-ray images are placed arbitrarily and
have directional characteristics. However, the YOLOv7 network’s positioning of key
information is relatively vague, making it easy to lose key feature information about the
directionality of the target. This further increases the difficulty of contraband detection.

2. The objects in X-ray images form a complex background due to overlapping and occlusion.
However, there is no corresponding attention mechanism to deal with this complex
background, resulting in the inaccurate detection of contraband under such conditions.

3. Although the PAFPN structure in the feature fusion module can enhance the network’s
representation ability, it does not make full use of the feature map output of each
node and does not take into account the different fusion capabilities of each module
for features. In response to these challenges, this article targets improvements on the
basis of YOLOv7.

This paper proposes an X-ray contraband detection algorithm, YOLO-CID, based on
an improved version of YOLOv7 for use in complex scenes. Experiments demonstrate that,
in the challenging environment of contraband identification with complex backgrounds,
the algorithm can achieve high levels of detection speed and accuracy.

The main contributions of this paper are as follows.

1. This paper proposes the YOLO-CID algorithm for X-ray contraband detection. We
conducted ablation and comparative experiments of YOLO-CID on the PIDray [12]
dataset and CLCXray [13] dataset. The experimental results show that, compared with
current mainstream algorithms, our algorithm has significantly improved detection
accuracy and speeds.

2. We implemented a robust new architecture and an enhanced MP-OD model, which
builds upon and extends the original MPConv model. We added skip connections
between the models and completed the second part (ODConv [14]). This results in
a more accurate model with less redundant feature information, greater resilience
against background X-ray images, and a faster feature localization speed.

3. We designed the P3-BiFPN module by replacing the original model’s PAFPN [15]
network with a BIFPN [16] network while retaining the P3 feature fusion layer to
preserve shallow semantic information. This improves the network’s reasonable
application of path resources.
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4. We introduced the shuffle attention mechanism [17], an efficient spatial channel dual
attention mechanism, in the neck to improve the network’s focus on tiny features.

2. Related Works
2.1. Traditional Machine Learning Methods for Contraband Detection in X-ray Images

In early machine learning studies of X-ray detection using single-view correlation
detection, Turcsany et al. [18] proposed a visual bag-of-words model based on SVM and
SURF features. They used starter visual words obtained from clustering to identify contra-
band in X-ray images, demonstrating the effectiveness of large and distinctly characterized
datasets. Riffo et al. also achieved good results by designing an implicit shape model
(ISM) for single-view contraband recognition [19]. Kundegorski et al. conducted extensive
experiments on X-ray image classification and detection tasks using traditional manual
features [20]. By combining multiple manual features, they demonstrated the effectiveness
of traditional manual features in X-ray image detection tasks.

Later, multi-view detection techniques were developed to improve the object detec-
tion performance by compensating for the incomplete information of single-view imag-
ing. Franzel et al. introduced multi-view imaging for rotating objects and combined
SVM with gradient histograms in sliding window detection to improve detection [21].
Bastan et al.conducted a comprehensive evaluation of standard local features for image
classification and target detection using the visual bag-of-words model [22]. They extended
these features to obtain additional useful information from X-ray images, improving the
detection performance.

2.2. Deep Learning for Contraband X-ray Image Detection

In recent years, deep-learning-based target detection algorithms have been rapidly
developed and have played an important role in X-ray contraband detection, signifi-
cantly improving the detection accuracy and efficiency compared to traditional algorithms.
Mery et al. provided the GDXrays dataset, which contains 8150 X-ray luggage images with
guns, hand swords, and blades. The images in the GDXray dataset are grayscale maps
with clear target outlines, simple backgrounds, and low object overlap and occlusion [23].
Miao et al. (2019) introduced the larger SIXray dataset, with over 1 million X-ray images
containing six types of targets: guns, knives, wrenches, pliers, scissors, and hammers.
The SIXray dataset has 8929 labeled images containing targets and a high degree of ran-
domness in target object stacking [24]. Zhao et al. (2022) published the CLCXray dataset to
address the overlapping problem in X-ray security images [13]. This dataset has a large
amount of data with overlapping phenomena and more accurate annotations compared
to previous datasets. The paper also proposes a label-aware mechanism with an attention
mechanism that adjusts the feature map according to label information to distinguish
different objects in overlapping regions at the high-dimensional feature layer. These large,
publicly available datasets provide stable data support for deep learning experiments in
this domain and motivate continued development and progress.

In 2012, Krizhevsky et al. proposed the AlexNet network, which achieved excellent
results in image classification and demonstrated the potential of deep learning in image
processing [25]. Following the success of AlexNet, various classification networks, such
as VGG [26], GoogleNet [27], and ResNet [28], YOLOX[29], YOLOv5 [30], and YOLOv,
were developed, continuously improving deep learning’s classification performance. Ak-
cay [31] et al. applied the AlexNet network to X-ray luggage classification using transfer
learning and achieved excellent detection performance compared to traditional machine
learning methods. Mery et al. conducted experiments on the GDXray dataset, comparing X-
ray luggage classification using bag-of-words models, sparse representation, deep learning,
and classical pattern recognition schemes [32]. The results showed that both AlexNet and
GoogleNet achieved high recognition rates, indicating the feasibility of using deep learning
to design automatic contraband recognition devices. Xu et al. used an attention mechanism
to quickly locate unlabeled information in weakly supervised environments where image
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information labels were missing [33]. Liu et al. proposed the Faster R-CNN object detection
framework based on deep convolutional neural networks (DCNNs) to address detection
failures caused by complex image backgrounds [34]. Li et al. improved the YOLOv5 model
by compressing channels, optimizing parameters, and proposing a new YOLO-FIRI model
for infrared target detection problems such as low recognition rates and high false alarm
rates due to long distances, weak energy, and low resolutions [35]. Xiang et al. integrated
both MCA and SCA modules into the YOLOx framework, enabling the acquisition of
material information for contraband while expanding the model’s receptive field, thereby
enhancing the detection efficiency [36]. These improvements have significantly impacted
the detection quality of contraband detection algorithms. However, real-world contraband
detection still faces challenges such as varying item scales and complex backgrounds.

To address existing issues and leverage the unique characteristics of X-ray contraband
images, this paper introduces improvements to the MPConv module and feature pyramid
module of the YOLOv7 network. Additionally, we incorporate a shuffle attention mecha-
nism and propose the YOLOv7-based YOLO-CID network model. Through ablation and
comparative experiments, we demonstrate that the YOLO-CID model is more effective
and practical than current mainstream methods and has significant value in the field of
X-ray security.

3. YOLO-CID
3.1. Network Architecture

YOLOv7 is the most advanced object detector in the YOLO series. Its high accuracy
and real-time performance have garnered widespread recognition in the field of object
detection. In light of this, we propose the YOLO-CID algorithm for X-ray contraband
detection, which is based on YOLOv7.

The structure of the YOLO-CID model is shown in the figure below. The model consists
of three components: an efficient full-dimensional feature extraction network (MP-OD), an
improved bidirectionally weighted feature pyramid network (P3-BiFPN) for feature fusion,
and a neck component combined with a shuffle attention mechanism.

In Figure 1, the input image is resized to a uniform size of 640 × 640 pixels to meet
the format requirements of the entire network. The resized images are then fed into
the backbone network, where the BConv convolutional layer extracts image features at
different scales. The MP-OD convolutional layer adopts a parallel strategy to learn the four-
dimensional complementary attention of the input channel, output channel, kernel space,
and number of kernels without disrupting the original gradient path. This process quickly
locates effective features in the model feature map and improves its feature extraction
ability. The neck part uses an improved weighted bidirectional feature pyramid, BiFPN-P3.
The red line represents our improvement on the original PAFPN. We use the P3 layer, which
is the top layer of the neck E-ELEAN module and the MPConv module. The node is deleted,
and the root node and end node of the P3 and P4 layers are connected simultaneously.
Through a top-down and bottom-up model structure, semantic information of different
scales is transferred from shallow to deep layers, outputting three-layer fusion feature
maps of different scales. The SA mechanism redistributes the weights in the fused feature
map to suppress irrelevant features while enhancing contraband features for more robust
representations. Finally, four detection layers at the prediction end predict the confidence,
category, and anchor box of the result to obtain the final detection outcome.

Compared to the original YOLOv7 network, this network has shown significant
improvements in detection accuracy, speed, and model parameters.
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Figure 1. YOLO-CID network architecture.

3.2. MP-OD Module

The diversity of items in contraband recognition images and their random and variable
stacking positions pose a major challenge for the network to effectively extract feature
information. To maximize the extraction of key features for X-ray dangerous goods image
detection, it is necessary to increase the parameters, depth, and number of channels of
the network. However, this leads to increased computational complexity and a larger
model size, making deployment more difficult. In the field of contraband identification, it
is essential to control the number of model parameters and the amount of computation to
ensure timely detection. To solve this problem, we improved the MPconv module of the
backbone network and created the OD-MP module, enabling the YOLOv7 model to locate
valid features in images more quickly. This improves the timeliness of feature extraction
and enhances the object detection performance in complex situations.

In Figure 2, we replace the convolution (CBS) module of the lower branch of the
central module with a full-dimensional dynamic convolution (ODConv) module. This
allows the model to increase its complexity without increasing the network depth or width,



Electronics 2023, 12, 3636 6 of 18

reducing resource waste. We added a skip connection to the lower branch. When the
network generates gradient dispersion due to the introduction of the ODConv module, it
can independently select an appropriate path during the backpropagation of the gradient,
avoiding branches that produce gradient dispersion. This makes the network fitting more
stable and rapid. The specific ODConv structure diagram is shown in Figure 3.

ODConv

CBSMaxPool

CBS

MP-OD =

C
o
n
cat

CBSMaxPool

CBS

MPConv =

C
o
n
cat

CBS

Figure 2. Structural comparison of MPConv and MP-OD modules.

Figure 3. ODConv module.

In the convolution kernel Wi, αwi represents the attention scalar, while αsi , αci , and α fi
represent the attention weights along the spatial dimension, input channel dimension,
and output channel dimension, respectively. The input feature vector X has a uniform
length through GAP. As shown in the figure, ODConv compresses X into a feature vector of
the input channel length through channel average pooling GAP. The feature vector is then
mapped to a low-dimensional space through the fully connected layer (FC). After being
activated by the ReLU function, it is divided into four head branches. The sigmoid or
SoftMax function normalizes it to generate four different types of attention values: αwi , αsi ,
αci , and α fi

. Its working principle is shown in Formula (1).

Zn = αwn

⊙
α fn

⊙
αcn

⊙
αsn

⊙
Wn (1)

Zn =
n

∑
i=1

Zt ∗ X (2)
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In the equation, Zn represents the final weight obtained by multiplication in each
of the four dimensions of the dynamic convolution kernel. The input feature vector X is
length-unified by GAP.

Unlike conditional parameter convolution (CondConv) [37] and dynamic filter convo-
lution (DynamicConv) [38], which only focus on the weight ratio of a single dimension,
ODConv uses SE’s multi-head attention module to emphasize the importance of the spatial
dimension, input channel dimension, and output channel dimension of the convolution
kernel space for feature extraction. This module multiplies different attentions along
the dimensions of the position, channel, filter, and kernel by progressively multiplying
the convolution, providing better performance in capturing rich contextual information.
As a result, ODConv greatly improves the feature extraction ability of convolution. More
importantly, ODConv achieves better performance with fewer convolution kernels than
CondConv and DyConv. Its high-efficiency and lightweight features enable the model to
improve its perception of direction, position, and channel information without sacrificing
accuracy or incurring a significant computational overhead.

3.3. BiFPN-P3 Module

Due to the varying scales of targets to be detected in images, a feature pyramid model
(FPN) is commonly used in the feature fusion process of target detection to improve the
situation wherein key information from small target objects is ignored during deep convolu-
tion. This approach utilizes hierarchical semantic information for feature fusion. The pixel
aggregation network (PAFPN) used in the YOLOv7 model adds a low-dimensional to
high-dimensional network layer on top of the FPN and transfers semantic information
of different scales from shallow to deep. This enriches the semantic information transfer
without affecting the location information of the fused feature map, enhancing the net-
work integration effect. However, PAFPN does not fuse the original feature information,
resulting in the partial loss of this information and affecting the model’s detection accuracy.
To address this issue, this paper introduces a bidirectional feature pyramid network (BiFPN)
network based on the neck part of the original model. This is a weighted bidirectional
(top-down and bottom-up) feature pyramid network, as shown in Figure 4b.

(a) PAFPN (b) BiFPN

Figure 4. Structural comparison of PANFPN and BiFPN modules.

Compared to PAFPN, BiFPN can enhance network feature fusion through a simple
residual operation by adding a residual link to the original feature. This strengthens the
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network’s representation ability. At the same time, BiFPN recognizes that input feature
maps of different scales have varying contributions to the network. Therefore, single-input
edge nodes that contain less information and have lower contributions to feature fusion are
removed from the PAFPN network. This reduces the computational overhead and allows
for the better adjustment of each scale feature map’s contribution by increasing the weight
value after fusion, thereby improving the network’s detection speed.

Similar to traditional target detection networks, the feature fusion layer of the YOLOv7
original network is its third layer. Although the BiFPN network adds a new fusion step to
the original features and carefully optimizes the network structure to enhance its feature
fusion and representation capabilities, the actual detection process of prohibited objects is
affected by complex environments. The chaotic placement of contraband and small target
objects that are easily obstructed by obstacles during the shooting process can result in the
low efficiency of feature fusion and false or missed detections. This paper improves upon
the BiFPN network and proposes the BiFPN-P3 model to enhance its ability to locate high-
quality features, accelerate the flow of semantic information at different scales, and improve
the detection accuracy.

In Figure 5, we retain the feature fusion layer of P3 in the original BiFPN network
to preserve its shallow semantic information. Although this approach resulted in a slight
increase in computational cost, the improved network architecture enhanced the attention
to key information during feature fusion. This made the model more suitable for detecting
contraband in complex scenarios.

Figure 5. The BiFPN-P3 module.

3.4. SA Module

Channel attention and spatial attention are used to capture the dependency rela-
tionships between image channels and the pixel-level relationships in space, respectively.
The SA module efficiently combines these two attention mechanisms without increasing
the computational requirements. By adding the SA module to the neck module of YOLOv7,
the efficient spatial channel dual attention mechanism (SA) can be fused simultaneously
to effectively improve the model’s detection performance. As shown in Figure 6, the SA
module first groups image channel feature maps to obtain grouped sub-feature maps.
The shuffle unit [39] is then used to apply the channel attention mechanism and spatial
attention mechanism to each sub-feature map to extract features and capture feature map
dependencies. Finally, the channel shuffle operation is used to fuse the summarized feature
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maps, establish information communication between sub-feature maps, and use the fused
feature maps as the output of the SA module.

X

G

C

w

h
c

Group Split

c/2g

c/2g

Fuse

Fuse

GN

Fc(.)

Fc(.)

Aggregate
Channel Shuffle

Figure 6. Shuffle attention mechanism structure.

The processing steps of the SA mechanism in the network are divided into the follow-
ing three steps.

1. Feature grouping: The feature map S ∈ RCHW of a given length, width, and channel
number W, H, and C is divided into G groups along the channel dimension, denoted
as X = [X1,. . . ,XG], Xk ∈ RCHW . Each sub-feature Xk will gradually capture specific
semantic information with training. This part corresponds to the section marked as
Group on the leftmost side of the figure above.

2. Attention mixing: The generated feature Xk is divided into two branches along the
channel dimension. The two sub-features are denoted as Xk1, Xk2 ∈ RCHW , as shown
in the section marked as Split in the middle of the figure. During the processing
of feature Xk1, a group normalization operation is used to accelerate convergence
and avoid excessive differences in the values of different features, which can lead to
confusion in the learning of lower layer networks. The representation of the enhanced
input is then transformed through Fc(·). The specific formula is as follows:

X
′
k1 = σ(W1GN(Xk1) + b1)Xk1 (3)

In the equation, GN represents group normalization; W1 and b1 denote the scaling
and shifting of the processed feature map. The enhanced feature representation is
obtained through the sigmoid activation function.
For feature Xk2, the channel attention mechanism is employed. To reduce the complexity
of the module and improve the processing efficiency, a fast and effective single-layer
transformation mode consisting of global average pooling (GAP), scaling, and sigmoid
activation is utilized for feature processing. First, channel statistics are generated through
GAP to produce channel-level statistics. The specific formula is as follows:

s = Fgp(Xk2) =
1

H ×W

H

∑
i=1

W

∑
j=1

Xk2(i, j) (4)

In the equation, 1
H×W ∑H

i=1∑W
j=1Xk2(i, j) denotes the contraction calculation of Xk2

along the spatial dimension HW. The generated S is then screened to obtain the final
feature map X

′
k2. The specific formula is as follows:

X
′
k2 = σ(W2 · (s) + b2) · Xk2 (5)

Finally, the results of the two types of attention are combined through a concatenation
layer to obtain X

′
k = [X

′
k1,X

′
k2].
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3. Feature aggregation: Similar to ShuffleNetv2, a channel shuffle operation is employed
to aggregate all features and facilitate cross-group information exchange along the
channel dimension, resulting in the final output feature map.

The aforementioned operations on the feature maps effectively integrate semantic and
spatial information across different scales. The terminal attention mechanism improves the
model’s focus and enhances its detection efficiency in complex scenes.

4. Experimental Results and Analysis
4.1. Dataset

In order to verify the practicality and effectiveness of YOLO-CID in the field of X-ray
contraband detection, we used two public datasets: PIDray and CLCXray. PIDray is a
large-scale X-ray benchmark dataset for real-world contraband item detection, covering the
detection of prohibited items in various situations, especially intentionally hidden items.
The dataset contains more than 47,000 images of prohibited items in 12 categories with pixel-
level annotations, including high-quality annotated segmentation masks and bounding
boxes. It is currently the largest prohibited item detection dataset. The distribution of each
class is shown in Figure 7. The test set is divided into three subsets, easy, hard, and hidden,
with the hidden test set focusing on detecting contraband intentionally hidden in clutter.
We used the hidden test set as our experiment’s test set and divided the PIDray dataset
into a training set and a test set at a ratio of 8:2.

Figure 7. Class distribution of the PIDray dataset. The red bar represents the number of each class in
the PIDray dataset.

CLCXray was jointly constructed by Tongji University, Beijing University of Posts and
Telecommunications, and the University of the Chinese Academy of Sciences. It contains
9565 X-ray security images in 12 categories, including five types of knives (blades, daggers,
knives, scissors, Swiss Army knives) and seven types of liquid containers (cans, beverage
cartons, glass bottles, plastic bottles, vacuum cups, spray cans, tin cans). The distribution
of each class is shown in Figure 8. In our experiment, we used 6696 images as the training
set and 2869 images as the test set. Our partitioning of the modified dataset was consistent
with that of PIDray.



Electronics 2023, 12, 3636 11 of 18

Figure 8. Class distribution of the CLCXray dataset. The blue bar represents the number of each class
in the CLCXray dataset.

We demonstrated the superiority of the YOLO-CID algorithm through ablation and
comparative experiments on the PIDray dataset and CLCXray dataset. The experiments
were conducted on a Windows 10 64-bit operating system with an Intel i7-9700k processor
and GeForce GTX3060 GPU. The acceleration environment was CUDA 11.6, the deep
learning framework was Pytorch 1.12.1, and the programming language was Python 3.7.17.
The experimental parameter settings are presented in Table 1.

Table 1. Configuration parameters of the experimental platform.

Parameters Settings

Weights Yolov7.pt
Epochs 300

Batch size 16
Hyperparameter file hyp.scratch.p5.yaml

4.2. Analysis of Ablation Experiments

Three improvements were proposed for the original YOLOv7 algorithm. To verify the
value of the proposed modules, ablation experiments were designed by gradually adding
the improved modules. The model was trained and tested; ‘

√
’ indicates the use of this

modular approach. The results are shown in Table 2.

Table 2. Experimental results of MCS algorithm ablation on the test set of the PIDray dataset and
CLCXray dataset.

Group MP-OD BiFPN-P3 SA
mAP (%) F1 Score (%)

PIDray CLCXray PIDray CLCXray

G1 64.2 75.2 72.7 78.5
G2

√
66.1 77.8 73.4 80.4

G3
√ √

69.3 78.7 75.3 81.9

G4
√ √ √

70.3 80.2 77.4 82.5
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The results show that all three improvement points of the YOLO-CID algorithm
improved the model’s detection performance. In scheme 1, the MP-OD module was used in
the backbone network to improve the model’s positioning rate. Compared with the original
model, the mAP increased by 1.9% and 2.6%, and the F1 score increased by 0.6% and 1.9%.
In scheme 2, the PAFPN network of the original model was modified. The results show that
the mAP increased by 5.1% and 3.5%, and the F1 score increased by 2.6% and 3.4%. Finally,
the shuffle attention mechanism was introduced to increase the detection accuracy by 6.1%
and 5.0%, and the F1 score increased by 4.7% and 4.0%. These three changes effectively
increased the network’s accuracy in identifying contraband.

4.3. Algorithm Performance Analysis

According to the experimental results of scheme 1 and scheme 4, under the same
conditions, the evaluation index of YOLO-CID exceeded that of the original YOLOv7
algorithm. The mAP50 values on the PIDray and CLCXray datasets reached 70.3% and
80.2%, respectively. The YOLO-CID algorithm significantly improves the detection ability
of contraband in complex situations and effectively addresses the issues of missed and false
detections in X-ray object detection.

Figure 9 compares the detection accuracy of each category between YOLO-CID and
the original YOLOv7 algorithm on the PIDray dataset. As shown, the detection accuracy
of our proposed algorithm is higher than that of the original YOLOv7 for all categories.
In particular, the detection of lighters, sprayers, and knives has been significantly improved
compared to the original model.

Figure 9. Single-class average precision comparison.

Figure 10 presents the confusion matrix for the PIDray dataset using the YOLOv7
model, while Figure 11 displays the confusion matrix for the same test set using the YOLO-
CID model. A comparison of the two figures reveals that the detection accuracy for each
class has been significantly improved with the YOLO-CID algorithm relative to the original
algorithm. This suggests that the YOLO-CID model places greater emphasis on feature
information and exhibits superior performance.



Electronics 2023, 12, 3636 13 of 18

Figure 10. Confusion matrix for YOLOv7 network model.

Figure 11. Confusion matrix for YOLO-CID network model.
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Figure 12 presents the detection results for the YOLO-CID network model and the
original YOLOv7 network model on the hidden test set, while Figure 13 presents the
detection results for the YOLO-CID network model and the original YOLOv7 network
model on the CLCXray test set. It can be seen that YOLO-CID exhibits stronger adaptability
and generalization ability in detecting X-ray contraband under simulated real conditions.
Compared to the YOLOv7 algorithm, YOLO-CID displays a higher level of confidence when
detecting the same object. Additionally, the YOLO-CID algorithm has greatly improved the
issues of missed and false detections in contraband detection, demonstrating its superiority
and practicality.

Figure 12. Some examples of the detection result on the test set of the PIDray dataset. The first row is
the result of YOLOv7, and the second row is the result of YOLO-CID. We used the same four images
to compare the performance of the detection models.

Figure 13. Some examples of the detection result on the test set of the CLCXray dataset. The first
row is the result of YOLOv7, and the second row is the result of YOLO-CID. We used the same four
images to compare the performance of the detection models.
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4.4. Comparative Experimental Analysis

Table 3 shows the experimental results of different algorithm models on the test set of
the PIDray dataset, while Table 4 presents the results on the test set of the CLCXray dataset.
The average accuracy of the YOLO-CID algorithm is 70.3% and 80.2%, which are 6.1% and
5.0% higher than in the case of YOLOv7, respectively. The real-time detection speed is
40 frames per second and 43 frames per second, respectively. These results demonstrate
that the YOLO-CID algorithm outperforms both single-stage and two-stage algorithms,
exhibiting high detection accuracy while meeting the requirements of real-time detection.

Table 3. Experimental results comparing different algorithmic models on the PIDray dataset test set.

Model AP50 (50%) FPS

Faster R-CNN [40] 42.1 13.9
SSD512 [41] 43.8 16.1

YOLOv3 [42] 69.0 34.9
YOLOv5s [30] 65.5 39.2

YOLOv7 64.2 39.0
Ours 70.3 40.6

Table 4. Experimental results comparing different algorithmic models on the CLCXray dataset
test set.

Model AP50 (50%) FPS

Cascade R-CNN [43] 71.4 18.0
SSD512 [41] 66.4 21.6

YOLOv3 [42] 67.2 36.7
YOLOv6s [44] 71.2 39.9

YOLOv7 75.2 41.2
Ours 80.2 43.3

Figure 14 illustrates the convergence of the loss functions for various models on
the PIDray dataset. As depicted, the bounding box loss of the YOLO-CID algorithm
decreased more rapidly during training and it exhibited lower loss values compared to
other algorithms. Additionally, its mean average precision (mAP) value was higher. These
results demonstrate that the improved algorithm converges more quickly and exhibits a
higher degree of alignment between predicted and ground truth frames, thereby proving
its effectiveness and superiority.

(a) box Loss (b) mAP

Figure 14. Comparison of evaluation indexes under different models: (a) bounding box loss curve,
(b) map curve.
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5. Conclusions

To perform real-time X-ray contraband detection, we improved the original YOLOv7
network. We designed the MP-OD module in the backbone of YOLOv7 to enhance the
timeliness of feature extraction, optimize the convolutional layer structure of the network,
improve the model’s ability to extract key information from complex background images,
and reduce resource waste. In the neck component, we replaced the path aggregation
network of the original model with a simplified version of BiFPN-P3, a bidirectional
weighted feature pyramid network, and removed single-input edge nodes containing less
PAN information to reduce the computational overhead. We also added an SA mechanism
to enhance the model’s attention to effective feature information without increasing the
computational complexity. Ablation experiments on the extended PIDray and CLCXray
datasets showed that these strategies effectively improved the timeliness and detection
accuracy in complex background scenes. Comparative experiments with other classic
object detection algorithms showed that under the same conditions, our improved YOLOv7
model achieved the highest F1 score and AP value and had a faster detection speed than the
other five algorithms, demonstrating its effectiveness for real-time contraband detection.
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