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Abstract: This paper proposes a solid-state-LiDAR-inertial-visual fusion framework containing two
subsystems: the solid-state-LiDAR-inertial odometry (SSLIO) subsystem and the visual-inertial
odometry (VIO) subsystem. Our SSLIO subsystem has two novelties that enable it to handle drastic
acceleration and angular velocity changes: (1) the quadratic motion model is adopted in the in-frame
motion compensation step of the LiDAR feature points, and (2) the system has a weight function for
each residual term to ensure consistency in geometry and reflectivity. The VIO subsystem renders
the global map in addition to further optimizing the state output by the SSLIO. To save computing
resources, we calibrate our VIO subsystem’s extrinsic parameter indirectly in advance, instead of
using real-time estimation. We test the SSLIO subsystem using publicly available datasets and a steep
ramp experiment, and show that our SSLIO exhibits better performance than the state-of-the-art
LiDAR-inertial SLAM algorithm Point-LIO in terms of coping with strong vibrations transmitted to
the sensors due to the violent motion of the crawler robot. Furthermore, we present several outdoor
field experiments evaluating our framework. The results show that our proposed multi-sensor
fusion framework can achieve good robustness, localization and mapping accuracy, as well as strong
real-time performance.

Keywords: SLAM; solid-state LiDAR; multi-sensor fusion; quadratic motion model; ESIKF

1. Introduction

Simultaneous localization and mapping (SLAM) is an essential skill that numerous
robots rely on to navigate through unfamiliar surroundings. SLAM is widely used in
such applications as unmanned aerial vehicles (UAVs) [1], autonomous ground vehicles
(AGVs) [2], and underwater vehicles [3]. Over the last decade, researchers have consistently
shown that multi-sensor fusion SLAM is an effective approach to accomplishing precise
and robust pose estimation for robots during navigation tasks. In the mainstream SLAM
technology research nowadays, light detection and ranging (LiDAR), cameras, and the
inertial measurement unit (IMU) are the most commonly used sensors [4], but the camera
works poorly in poor lighting conditions, LiDAR is sensitive to rain and fog, and IMU
measurements are independent of environmental features but have cumulative errors.
In order to balance the disadvantages of the three aforementioned sensors and utilize
their respective advantages, SLAM systems based on their fusion show higher accuracy
and environmental adaptability than single sensors [5,6]. In this section, we delve into
the existing body of research relevant to our work, while also exploring the cutting-edge
developments that have emerged in this field. These include an in-depth analysis of
the solid-state-LiDAR-inertial fusion framework and the advancements made in LiDAR-
inertial-visual odometry and mapping techniques. Accordingly, we present the need for
our work.

Based on the presence or absence of mechanical rotating parts, LiDAR can be catego-
rized into mechanical LiDAR and solid-state LiDAR, the latter being small and lightweight
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and suitable for applications in robotics [7,8]. Over the past few years, the field of SLAM
has witnessed a growing utilization of solid-state LiDAR technology owing to the tech-
nology’s low cost and high resolution. Rapid advancements in solid-state LiDAR have
significantly contributed to its widespread adoption in SLAM applications [9]. We first
introduce cutting-edge pose estimation and mapping methods that rely solely on solid-
state LiDAR, and then we discuss the framework for solid-state-LiDAR-inertial fusion. To
address the challenges posed by the narrow field of view (FoV) and the non-repetitive
scanning pattern of LIVOX LiDAR, Loam_livox [10] incorporates a point selection process
on the raw LiDAR data to identify and extract the “good points”. Additionally, an iterated
Kalman filter (KF) is employed for accurate state estimation. The general solid-state-LiDAR
SLAM algorithm based on the KF only considers the noise during LiDAR measurements.
In contrast, VoxelMap [11] further calculates the noise accompanying the search points in
the voxel map in the point-to-plane scan match, improving the LiDAR odometry accuracy
while substantially increasing the computational burden. The corresponding mapping
method is called probabilistic adaptive voxel mapping. SSL_SLAM [12] uses Gauss–Newton
optimization for state estimation and Intel L515 for localization and mapping.

However, pure solid-state LiDAR SLAM technology is prone to low performance in
LiDAR degradation scenarios, such as single geometry. Therefore, the IMU, which can
provide high-frequency angular velocity and linear acceleration measurements, has become
the favored candidate in the field of multi-sensor fusion SLAM technology because it is
unaffected by external environmental factors, such as illumination, geometry, texture, and
weather. FAST-LIO [13] uses the error-state iterated KF (ESIKF) to fuse LiDAR feature points
and IMU data for state estimation, and the proposed efficient Kalman gain calculation
method only relies on the state dimension, instead of the measurement dimension. Com-
pared with FAST-LIO, the improvement in FAST-LIO2 [14] lies in the use of an incremental
k-d Tree (ikd-Tree [15]) to support operations such as adding and deleting points in the map.
The ikd-Tree and the new Kalman gain calculation method keep the computation load of
the FAST-LIO series algorithms low. The LiDAR-inertial odometry (LIO) of Point-LIO [16]
belongs to the point-by-point LIO framework. When each point is measured by LiDAR, its
state is updated (i.e., the point-by-point state estimation). This method does not need to
deal with artificial in-frame motion distortion theoretically. Diverging from FAST-LIO2,
Faster-LIO [17] utilizes an incremental voxel (iVox) as a spatial data structure for organizing
the map point cloud. iVox enables efficient incremental insertion and parallel approximate
k-NN (nearest neighbor) queries. Unlike LOAM [18], which extracts features based on the
local smoothness of the LiDAR points, LiLiOM [19] takes a different approach: being a
new feature extraction method specifically for LIVOX HORIZON LiDAR that utilizes IMU
pre-integration along with keyframes within a sliding window optimization framework for
efficient local factor graph optimization.

Recently, researchers have focused on using the reflectivity of LiDAR measurement
points to increase the robustness of SLAM systems [20]. They have also focused on LiDAR
point motion compensation studies to increase algorithmic accuracy. To exploit the high
resolution of LIVOX AVIA LiDAR, RI-LIO [21] combines geometry measurement and
reflectivity image measurement to construct a state estimation framework based on the
iterated extended KF. Most LiDAR-inertial fusion frameworks use IMU measurements
for the motion compensation of one frame of LiDAR points after another (e.g., LiLiOM
and FAST-LIO2). However, Liu et al. [22] used iterated point-level motion compensation
to obtain a tightly coupled LIO. Ma et al. [23] estimated the angular velocity and linear
velocity at any moment between two IMU measurements by a second-order polynomial for
in-frame motion distortion compensation; however, this direct estimation of linear velocity,
rather than acceleration, is unsuitable for the case of drastic acceleration changes.

The color camera provides both texture information about the robot’s operating envi-
ronment and a constraint for state estimation. R2LIVE [24] is the first multi-sensor SLAM
system that fuses solid-state LiDAR, IMU, and a color camera. This is divided into an LIO
subsystem and a visual-inertial odometry (VIO) subsystem, which operate independently.
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R2LIVE uses ESIKF and factor graph optimization to minimize LiDAR measurement resid-
uals and camera measurement residuals to estimate the state of the system, which can
handle LiDAR degradation or poor lighting scenarios. However, the generated maps are
not RGB point-cloud maps, limiting its extended applications in virtual reality (VR) and
game development, for example. Compared to R2LIVE, the LIO and VIO subsystems
of R3LIVE [25] are interdependent, reducing their robustness in scenarios such as poor
lighting conditions. In addition, the LIO subsystem of R3LIVE uses backward propagation
in the in-frame motion compensation segment to calculate the relative pose of the LiDAR
body frame at any moment between two adjacent IMU measurements, using IMU inputs
that are IMU left measurements. This reduces the ability of R3LIVE to handle drastic
acceleration changes. Instead of relying on advance calibration to obtain the extrinsic
parameters, both R3LIVE and R2LIVE employ online estimation techniques to dynami-
cally calibrate the spatial relationship between the IMU and the camera. This approach
leads to an increased computational load in real-time processing. The LIO subsystem of
FAST-LIVO [26] is similar to that in [14], while the VIO subsystem uses the sparse-direct
visual alignment measurement to obtain photometric errors and finally fuses the LiDAR
measurement and visual measurement by ESIKF to estimate the system state. LVI-SAM [27]
is a LiDAR-inertial-visual odometry framework based on factor graph optimization. Its
VIO and LIO are essentially VINS-Mono [28] and LIO-SAM [29], respectively. However, no
applicable version of LVI-SAM has been developed for solid-state LiDAR.

To handle the instantaneous and dramatic changes in acceleration and angular velocity
encountered by the robot during navigation tasks and to improve the ability of LIO in the
LiDAR-inertial-visual fusion framework to handle this situation, we designed a solid-state
LiDAR, camera, and IMU fusion localization and mapping system using ESIKF and a quadratic
motion model for IMU measurements. Our system consists of a solid-state-LiDAR-inertial
odometry (SSLIO) subsystem and a VIO subsystem. Our main contributions are as follows:

1. In the SSLIO subsystem, in-frame motion compensation is performed by using a
quadratic motion model (i.e., a variable angular velocity and variable linear accel-
eration model), and the experimental results prove that this method can effectively
handle drastic changes in acceleration and angular velocity.

2. A weight function that ensures geometric and reflectivity consistency is designed
for each LiDAR feature point when calculating the LiDAR measurement residuals
in the ESIKF framework of the SSLIO subsystem. All extrinsic parameters (e.g.,
extrinsic parameters between camera and IMU) are not estimated online, saving
system computational resources. In addition, the colorful point cloud maps obtained
by our algorithm, which show the texture of the environment, can be further applied
to VR, game development, and other industries.

3. A variety of indoor and outdoor field experiments were conducted using a crawler
robot (see Figure 1) to validate the robustness and accuracy of the system. Some field
experiment results obtained are shown in Figure 2; regarding the roads surrounding the
buildings, the algorithm proposed by us shows high accuracy in mapping, so it can meet
the requirements of the navigation tasks of mobile robots.

Figure 1. Experimental platform for validation. The hardware sensors consist of a LIVOX AVIA
LiDAR, a monocular camera, an industrial computer, and a GNSS RTK system. The hardware sensors
are carried by a crawler robot.
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(a) (b)

Figure 2. An example of mapping around the A2 building and A3 building of Raytron Technology Co.
(called Raytron). (a) the color image depicting the mapping region taken from a top view by a DJI
Mavic3 drone; (b) the mapping result (top view) of the proposed algorithm.

2. Framework Overview
2.1. System Pipeline

Figure 3 provides an overview of our system pipeline. The SSLIO subsystem extracts
the plane feature points from the accumulated LiDAR raw points, then performs the motion
distortion compensation on the feature points based on the backward propagation of the
quadratic motion model, and finally calculates the residuals and updates the subsystem
state by ESIKF. The LiDAR feature points are transformed into the global frame to form the
global map geometry structure represented by the ikd-Tree.

The VIO subsystem first selects the tracking points from the global map geometry
structure to calculate the frame-to-frame PnP re-projection error and then uses ESIKF
to perform the first update of the VIO subsystem state; then, it calculates the frame-to-
map photometric error and uses ESIKF to perform the second state update, at which
time the VIO subsystem state is used as the odometry output of the whole system. The
obtained optimal state and state covariance are used for (1) global map RGB coloring (i.e.,
rendering the texture) and tracked points update, and (2) as the initial point for the forward
propagation of the IMU in the subsequent scan of the SSLIO or IMU pre-integration in
the next frame update of VIO. However, in order to improve the real-time performance
of the system, unlike [25], which performs real-time estimation of the camera and IMU
extrinsic parameter, our VIO calibrates this extrinsic parameter in advance. The detailed
implementation procedure of our VIO subsystem can be found in [24,25].

Figure 3. System pipeline of our proposed algorithm framework. The system is generally divided
into the solid-state-LiDAR-inertial odometry (SSLIO) subsystem (the blue part) and visual-inertial
odometry (VIO) subsystem (the green part).

2.2. Nomenclature and Full State Vector

Table 1 presents the key nomenclature used in this paper.
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Table 1. Important nomenclature.

Symbols Meanings
G(·) Component of the state in global frame.
L(·) Component of the state in LiDAR frame.

ITL

Extrinsic for transformation between LiDAR frame to IMU frame(the extrinsic pa-
rameter T includes the rotation matrix R and the translation vector p, i.e., T = (R, p),
the same below).

ITC Extrinsic for transformation between camera frame to IMU frame.
x, x̂, x̄ Ground-truth state, propagation state, and ESIKF update state, respectively.

x̃ Error-state (i.e., the difference between the ground-truth x and its corresponding
estimation x̂).

In this paper, the full-state variable is x defined as

x ∧=
[

GRT
I

G pT
I

GυT
I bT

g bT
a

GgT I tC

]T
∈ M ∧

= SO(3)×R16 (1)

where the dimension of the state manifold spaceM is dim(M) = 19. The initial IMU body
frame I is used as the reference global frame G. In Equation (1), GRI and G pI denote the
rotation matrix and translation vector of the IMU with regard to the global frame, respectively;
Gg and GυI are the acceleration of gravity and IMU velocity with regard to the global frame,
respectively; and ba and bg are the biases of the accelerometer and gyroscope, respectively, for
which the mathematical treatment is detailed in [28]. I tC represents the temporal difference
between the timestamps of the camera data and IMU data. It plays a crucial role in the
computation of the real-time time calibration factor within the VIO subsystem [30].

2.3. Extrinsic Calibration between Sensors

It is assumed that the exact extrinsic parameter ITL between the solid-state LiDAR and
the IMU is known, and the camera and the solid-state LiDAR are rigidly connected together
by a fixture. The exact extrinsic parameter LTC between the camera and the LiDAR is first
obtained using the targetless calibration method [31], and then the extrinsic parameter ITC
between the camera and the IMU can be calculated by the following transformation equation:

ITC =
(

I RC, I pC

)
= ITL

LTC (2)

3. Solid-State-LiDAR-Inertial Odometry Subsystem

The state update acquired upon the convergence of the ESIKF within the VIO subsys-
tem serves as the most recent state of the entire system. This updated state is then employed
as the initial point for the forward propagation of the IMU data in the subsequent scan of
the SSLIO subsystem state update.

Our SSLIO subsystem is similar to Point-LIO, and the state estimation method is the
tightly coupled error-state iterated Kalman filter. However, our SSLIO has two key novelties:
(1) Unlike Point-LIO, which uses a point-by-point framework (i.e., the system state is
updated once for each point measured by the LiDAR), our proposed SSLIO framework
accumulates LiDAR points into one frame before processing (i.e., the state is updated frame
by frame). Furthermore, it employs a quadratic motion model to handle the distortion
of LiDAR point clouds caused by motion. (2) To exploit the high resolution of solid-state
LiDAR, we designed a metric weighting function for the feature point residual term when
constructing the LiDAR measurement model, which ensures both geometric consistency in
feature correlation, like Point-LIO, and reflectivity consistency [19]. We assume that the
extrinsic parameter is known. In fact, for rigidly connected LiDAR and IMU, their precise
extrinsic parameter can be calibrated beforehand [32], while some manufacturers have
produced a LiDAR with a built-in IMU (e.g., AVIA and MID-360 produced by LIVOX),
whose precise extrinsic parameter is detailed in the product specifications.
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Unlike most researchers’ derivation of the error-state Kalman filter on European space,
such as in [33], to make our algorithm more suitable for mobile robot system, we use the
� (“boxplus”) operation and its inverse � (“boxminus”) from [16,34] to parameterize the
error-state on the n-dimensional differentiable manifoldM:

� : M×Rn →M; � : M×M→ Rn

SO(3) : R � r = RExp(r); R1 � R2 = Log
(

RT
2 R1

)
Rn : c � d = c + d; c � d = c− d

where Exp(·) and Log(·) denote the exponential map and logarithmic map on SO(3),
respectively, which are essentially Rodrigues’ transformations. Detailed definitions of �
and � can be found in [34].

3.1. IMU State Transition Model

Since the SSLIO subsystem does not need to consider camera data, the state x repre-
sented by Equation (1) does not need to include the temporal difference I tC; that is, the
state x in the SSLIO subsystem is simplified as shown below:

x ∧=
[

GRT
I

G pT
I

GυT
I bT

g bT
a

GgT
]T
∈ M ∧

= SO(3)×R15 (3)

Moreover, the corresponding dimension of the differentiable manifold spaceM is
dim(M) = 18.

The standard IMU continuous-time kinematic model (see [33] for a detailed derivation)
is

GṘI =
GRI

⌊
ωm − bg − ng

⌋
×

Gυ̇I =
GRI(am − ba − na) +

Gg

ḃg = nbg, ḃa = nba

(4)

where am and ωm are the measurements of the accelerometer and gyroscope, na and ng
denote the noise during the measurement, nba and nbg are Gaussian noise, and for the
definition of the symbol b·c×, the reader can refer to [28]. The derivatives of Gg and G pI

are 0 and GυI , respectively.
To accommodate the discrete time interval ∆T (i.e., the time interval between two

adjacent IMU measurements, denoted as ∆T), the continuous-time kinematic model rep-
resented by Equation (4) can be transformed into a discrete-time kinematic model [34]:

xi+1 = xi � (∆T • F(xi, ui, wi)) (5)

where xi denotes the state variable x at the moment τi, function F can be seen in [13], and
the input vector u and the process noise w are defined in [34].

3.2. Preprocessing of Raw LiDAR Points and Forward Propagation

The AVIA solid-state LiDAR samples roughly 240 k LiDAR points per second, and its
built-in IMU takes 200 measurements per second, i.e., 240 kHz and 200 Hz for the LiDAR
and IMU, respectively. The data obtained by the conventional mechanical spinning LiDAR
for each 360◦ scan are called a scan (or a frame), but for the AVIA LiDAR, a scan needs to
be defined artificially. In this paper, LiDAR points collected within 100 ms are defined as a
scan so that LiDAR raw points and IMU measurements can be packaged and sent to an
SSLIO subsystem at a frequency of 10 Hz for fusion.

As shown in Figure 4a, tk denotes the end moment of the k-th solid-state LiDAR
scan, τi denotes the i-th sampling moment of IMU during a solid-state LiDAR scan, and ρj
denotes the sampling moment of the j-th LiDAR feature point during a solid-state LiDAR
scan. The raw points accumulated by the LiDAR during (tk−1, tk] are called a LiDAR scan,
and feature extraction is carried out on the raw points within a scan. As shown in Figure 4b,
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for all feature points extracted in a scan, plane feature points far outnumber edge feature
points. To ensure the robustness of the subsequent state estimation, we only select plane
feature points [35]. Please refer to [10] for detailed steps of the feature extraction. It is
assumed that the number of feature points extracted during (tk−1, tk] is m, and each feature
point sampled at time ρj is denoted as Lj p f j

(Lj denotes the local frame of the solid-state
LiDAR at moment ρj). Note the sampling time of the m-th feature point ρm = tk (i.e., the
last feature point). There are multiple IMU measurements during (tk−1, tk], and each IMU
measurement is sampled at τi with the state xi as in Equation (3).

(a) (b)

Figure 4. LiDAR measurement processing schematic. (a) IMU forward propagation and backward
propagation; (b) extracted plane (blue) and edge (yellow) features.

As shown in Figure 4a, the optimal state and covariance matrix of the whole system
are assumed to be x̄∗k−1 and f̄ff∗k−1 at tk−1, respectively, by fusing the most recent LiDAR
scan and the last frame image. Once the system receives a new IMU measurement input, it
initiates the forward propagation process. In this process, the value of wi is set to 0. Based
on Equation (5), the forward propagation is

x̂i+1 = x̂i � (∆T • F(x̂i, ui, wi))

f̂ffi+1 = Fx̃if̂ffiFT
x̃i
+ Fwi ΦiFT

wi

(6)

where Φi is the covariance matrix of wi, and the calculation of the Jacobian matrix Fx̃i and
Fwi can be referred to in the appendix of [13]. At the beginning of the forward propagation,
x̂0 = x̄∗k−1 , f̂ff0 = f̄ff∗k−1; at the end of forward propagation (i.e., the end of the new k-th scan
at tk), the state propagation is x̂k (xk denotes the state variable x at the moment of tk), and
the covariance matrix is f̂ffk.

3.3. Motion Distortion Compensation Based on the Quadratic Motion Model

The difference between the LiDAR point sampling frequency and the IMU mea-
surement frequency is huge; when performing in-frame (or in-scan) motion distortion
compensation [36], if the angular velocity and acceleration between two adjacent IMU
measurement are assumed to be constant (i.e., constant model), this assumption will be
inappropriate to deal with in-frame motion distortion when facing situations such as dras-
tic acceleration and angular velocity changes. To enable our SSLIO subsystem to cope
with severe in-frame motion distortion, inspired by [23], we innovatively propose the
quadratic motion model; that is, we fit the acceleration and angular velocity at any moment
between two adjacent IMU measurements by a second-order polynomial depicting this
variable motion:

ω = ζ0 + ζ1∆ṫ + ζ2∆ṫ2, a =ϑ0 + ϑ1∆ṫ + ϑ2∆ṫ2 (7)

where ∆ṫ is the time difference of ρj from the right IMU measurement (the right measure-
ment in two adjacent IMU measurements; that is, for ρj ∈ [τi−1, τi), ∆ṫ is the time difference
between ρj and τi). Compared to the constant model, the quadratic motion model adds
first-order and second-order terms, and ζα, ϑα(α = 0, 1, 2) is the coefficient being estimated.
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Assuming that a series of data obtained by IMU measurements is available, the acceler-
ation can be written as aη , aη−1, aη+1, the angular velocity can be written as ωη , ωη−1, ωη+1,
and the subscript η denotes the discrete series. According to Equation (7), we have 1 ∆ṫ1 ∆ṫ1

2

1 0 0
1 ∆ṫ2 ∆ṫ2

2

 ζ0
ζ1
ζ2

 =

 ωη−1
ωη

ωη+1

,

 1 ∆ṫ1 ∆ṫ1
2

1 0 0
1 ∆ṫ2 ∆ṫ2

2

 ϑ0
ϑ1
ϑ2

 =

 aη−1
aη

aη+1


(8)

where ∆ṫ1 = tη−1 − tη , ∆ṫ2 = tη+1 − tη , tη−1, tη and tη+1 are the corresponding IMU
measurement sample times; for example, you can take τi−1, τi and τi+1 respectively, and
the specific setting method can be determined according to the IMU frequency. Our
quadratic motion model is essentially an interpolation method. As shown in Figure 4a,
when interpolating the acceleration and angular velocity of ρj at any moment in any interval
[τi−1, τi] during the period (tk−1, tk], our motion model takes into account the effect of the
change of acceleration and angular velocity in the previous interval on it. Therefore, when
our motion model interpolates the acceleration and angular velocity of ρj at any moment in
any interval [τi, τi+1] during the period (tk−1, tk], we uniformly use the data of the moments
τi−1, τi and τi+1. Equation (8) can be simplified as

ΓΩ =
...
ω, Γ∂ =

...a (9)

where Γ =

 1 ∆ṫ1 ∆ṫ1
2

1 0 0
1 ∆ṫ2 ∆ṫ2

2

,Ω =

 ζ0
ζ1
ζ2

, ...
ω =

 ωη−1
ωη

ωη+1

, ∂ =

 ϑ0
ϑ1
ϑ2

,
...a =

 aη−1
aη

aη+1

.

Using the generalized invertible matrix, we can estimate the coefficient vector as

Ω̂ =
(

ΓTΓ
)−1

ΓT ...
ω, ∂̂ =

(
ΓTΓ

)−1
ΓT ...a (10)

where ΓT is the transpose of matrix Γ, Ω̂ =
[

ζ̂0 ζ̂1 ζ̂2
]T , ∂̂ =

[
ϑ̂0 ϑ̂1 ϑ̂2

]T .
Substituting the estimated results Ω̂ and ∂̂ into Equation (7), the angular velocity ω̂

and acceleration â at any moment ρj between the two adjacent IMU measurements can be
obtained as given below:

ω̂ = ζ̂0 + ζ̂1∆ṫ + ζ̂2∆ṫ2, â = ϑ̂0 + ϑ̂1∆ṫ + ϑ̂2∆ṫ2 (11)

To eliminate the feature point motion distortion within the new scan and compensate
for the relative motion between ρj and tk, we use backward propagation (i.e., x̂j−1 =
x̂j �

(
−∆T • F

(
x̂j, uj, wj

))
, xj denotes the state variable x at the moment of ρj) to obtain the

pose of the body frame at feature points sampling moment ρj relative to tk: Ik
^

TIj (Ij and
Ik denote the IMU body frame at the ρj and tk, respectively). This relative pose converts

the coordinate value Lj p f j
of the sampled points under the LiDAR local frame Lj at the

respective sampling moment ρj to the coordinate value Lk p f j
under the LiDAR local frame

Lk at the end moment tk of the scan (see Figure 4a). For all feature points collected at the
ρj moment (ρj ∈ [τi−1, τi)) between two adjacent IMU measurements, we now have the
measurement

(
ami−1 , ωmi−1

)
and the estimation (â,ω̂) at ρj obtained from Equation (11).

We can now take their average value as the backward propagation input, as given below:

ainput
i−1 =

ami−1 + â
2

=
ami−1 + ϑ̂0 + ϑ̂1∆ṫ + ϑ̂2∆ṫ2

2

ω
input
i−1 =

ωmi−1 + ω̂

2
=

ωmi−1 + ζ̂0 + ζ̂1∆ṫ + ζ̂2∆ṫ2

2

(12)
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During the IMU backward propagation, the estimation ^x j of xj in relation to xk is as
follows:

Ik
^pIj−1

= Ik
^pIj
− Ik

^
υ Ij ∆t, starting f rom Ik

^pIm
= 0;

Ik
^
υ Ij−1 = Ik

^
υ Ij − Ik

^

RIj(a
input
i−1 − b̂ak )∆t− Ik ĝk∆t, starting f rom Ik

^
υ Im = GR̂T

Ik
G^

υ Ik , Ik ĝk =
GR̂T

Ik
Gĝk;

Ik
^

RIj−1 = Ik
^

RIj Exp((b̂gk −ω
input
i−1 )∆t), starting f rom Ik

^

RIm = I

(13)

where Ik
^

RIj and Ik
^pIj

are the rotation matrix and translation vector of Ik
^

TIj , respectively,
and the Exp(·) operation rules refer to [16,34].

The transformation of Lj p f j
by the relative pose Ik

^

TIj is obtained from Equation (13) as
given below:

Lk p f j
= IT−1

L
Ik

^

TIj
ITL

Lj p f j
(14)

3.4. Point-to-Plane Residual Computation

With the in-frame motion distortion removal in Equation (14), we treat all the plane
feature points

{
Lk p f j

}
within this new scan as being collected at tk. Assuming that the

latest iteration of the SSLIO subsystem ESIKF is the γ-th one, the state estimation is x̂γ
k .

When γ = 0, x̂γ
k = x̂k, x̂k is the predicted state obtained from the forward propagation

Equation (6). When the measurement noise is not considered, we transform
{

Lk p f j

}
to G:

G p̂γ
f j

; j = 1, . . . , m. We search the global map for the five points pj
1, pj

2, pj
3, pj

4 and pj
5 that

are closest to the point G p̂γ
f j

, which lie on the same tiny plane ♦j. The measurement model

is built using the distance between the global frame coordinate value G p̂γ
f j

of the estimated
feature point and the plane patch ♦j (see concrete derivation in [16]):

0 = oj
(
xk, Lnj

)
= GϕT

j

(
GT̂γ

Ik
ITL

(
Lk p f j

+ Lnj

)
− Gcj

)
(15)

where Gϕj is the normal vector of the plane patch ♦j, LiDAR measurement noise Lnj is
composed of ranging noise and beam-directing noise [31], Gcj is the center of the plane
patch ♦j, and GT̂γ

Ik
is the pose of I relative to G at tk.

The measurement model represented by Equation (15) only considers the geometric
consistency of the LiDAR feature points, and we designed a metric weighting function to
ensure the reflectivity consistency:

νj

(
Lj p f j

)
= λGϕT

j • Gϕj • exp
(
−

5
∑

ι=1

∣∣∣r(Lj p f j

)
− rι

∣∣∣) (16)

where r
(

Lj p f j

)
is the reflectivity (i.e., intensity) measured when the LiDAR acquires feature

point Lj p f j
, rι denotes the reflectivity of pj

ι (ι = 1, 2, 3, 4, 5), νj

(
Lj p f j

)
denotes the weight,

and λ is a constant experience value. Combining Equations (15) and (16), we obtain the
new measurement model as given below:

0 = oj

(
xk, Lnj

)
= νj

(
Lj p f j

)
GϕT

j

(
GT̂γ

Ik
ITL

(
Lk p f j

+ Lnj

)
− Gcj

)
(17)

The approximate form of the measurement model (17) can be obtained by first-order
approximation at x̂γ

k :

0 = oj

(
xk, Lnj

)
' oj

(
x̂γ

k , 0
)
+ Oγ

j x̃γ
k + rj = Zγ

j + Oγ
j x̃γ

k + rj (18)
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where error-state x̃γ
k = xk � x̂γ

k (or equivalently xk = x̂γ
k � x̃γ

k ), and Oγ
j is the Jacobian matrix,

i.e., the partial differential of oj in Equation (17) with respect to x̃γ
k . The Zγ

j shown below is
the point-to-plane residual used to construct the maximum a posteriori estimation (MAP)
problem:

Zγ
j = oj

(
x̂γ

k , 0
)
= νj

(
Lj p f j

)
GϕT

j

(
GT̂γ

Ik
ITL

Lk p f j
− Gcj

)
(19)

Moreover, owing to the LiDAR raw measurement noise Lnj, a total measurement

noise rj = νj

(
Lj p f j

)
GϕT

j
GT̂γ

Ik
ITL

Lnj ∈ N
(
0,<j

)
with covariance <j is obtained. In the

practical robot application, we set<j to a constant value according to the specific operating
environment of the robot, and the effect is excellent.

3.5. ESIKF Update

The prior distribution of error-state is as follows:

xk � x̂k =
(
x̂γ

k � x̃γ
k
)
� x̂k = x̂γ

k � x̂k + Jγx̃γ
k ∼ N

(
0, f̂ffk

)
(20)

where Jγ is the Jacobian matrix of xk � x̂k with respect to x̂γ
k at 0. Refer to [14] for calculation

of Jγ.
The observation distribution of error-state can be obtained from the measurement

model (18) given below:
−rj = Zγ

j + Oγ
j x̃γ

k ∼ N
(
0,<j

)
(21)

The MAP problem of x̃γ
k is obtained by combining Equations (20) and (21) as given

below:

min
x̃γ

k

(
‖xk � x̂k‖2

f̂ffk
+

m
∑

j=1

∥∥∥Zγ
j + Oγ

j x̃γ
k

∥∥∥2

<j

)
(22)

Similarly to [16], the IKFoM [34] framework is used to solve the MAP problem, and
the optimal x̄k and f̄ffk of the SSLIO subsystem can be obtained. We use state update x̄k
to transform the LiDAR plane feature points to G: G p̄j =

GT̄γ
Ik

ITL
Lk p f j

; j = 1, . . . , m. The

points
{G p̄j

}
that are appended to the global map eventually form the geometry structure

of the global map.

4. Field Experiments and Evaluation Results

We used the Point-LIO publicly available dataset (available online https://github.
com/hku-mars/Point-LIO (accessed on 5 July 2023)) and our own dataset for experiments.

4.1. Experimental Platform

To gather real-world data, we engineered a hardware system comprising a crawler
robot and a sensor suite as depicted in Figure 1. The sensor suite consists of an AVIA
LiDAR, AVIA, a HIKVISION MV-CA013-A0UC global shutter camera, a high-precision
GNSS real-time kinematic (GNSS RTK) system, and an industrial computer. The AVIA
LiDAR incorporates a BMI088 IMU and features an elliptical FoV measuring 70.4◦ (hor-
izontal) × 77.2◦ (vertical). For target objects with 80% reflectivity and at 20 m away, the
random error of LiDAR range is less than 2 cm and the random error of angle is less than
0.05 degrees. The BMI088 model IMU has an accelerometer and gyroscope with zero offset
of ±20 mg and ±1 degree/s, respectively. The camera is equipped with a lens with an
FoV of 82.9◦(horizontal) × 66.5◦(vertical). The GNSS RTK system was used to provide the
reference ground-truth for our algorithm for quantitative evaluation. The industrial computer
used for data collection is equipped with an ARM rev0(v8l)×6 CPU and 8 GB RAM.

4.2. Extrinsic Calibration between Camera and IMU

We used the targetless calibration method [31] to obtain the extrinsic calibration
LTC =

(LRC, L pC
)

between AVIA LiDAR and the HIKVISION camera. The basic idea

https://github.com/hku-mars/Point-LIO
https://github.com/hku-mars/Point-LIO
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of this calibration method is to extract natural edge features from a natural scene image
(see Figure 5a) and corresponding scene LiDAR point cloud (see Figure 5b), and then
match and align the edge features obtained by these two sensors. The maximum likelihood
estimation equation of the extrinsic calibration LTC estimation was established, and then
the estimation problem was solved iteratively. The LiDAR point cloud was projected onto
the camera image using the initial extrinsic parameter before calibration and the optimal
extrinsic parameter after calibration; the obtained calibration results can be evaluated.
Figure 5c,d depict the LiDAR point cloud projection in the upper layer, while the lower
layer illustrates the camera-captured image. From the red boxes marked in Figure 5c,d,
evidently, it is observable that the initial extrinsic cannot make the LiDAR point cloud
projection and image match well before calibration, while the calibrated extrinsic enables
the projection and image to match well, indicating that the calibration results are accurate.
After we obtained the exact LTC , the ITC could be calculated using Equation (2).

(a) (b) (c) (d)

Figure 5. Extrinsic calibration between AVIA LiDAR and the HIKVISION camera. (a) natural scene
image; (b) LiDAR point cloud; (c) before calibration; (d) after calibration.

4.3. Experiment-1: Experimental Verification of the Validity of Quadratic Motion Model and
Weight Function

To verify the effectiveness of the quadratic motion model and weight function in our
SSLIO subsystem, we turned off the VIO subsystem and the global map RGB coloring
function of our algorithm, and then conducted experiments using the public dataset and
our private datasets.

4.3.1. Experiment-1.1: Public Dataset Experiment

To verify the robustness of the SSLIO subsystem at a high angular velocity, we used
the “spinning_ platform” sequence from the Point-LIO public dataset to build a map. The
“spinning_ platform” sequence collected data with AVIA fixed on a rotating platform, and
the duration of the sequence was 130 s. In the first 40 s, the angular velocity of the rotating
platform around the z-axis increased from 0 to 35 rad/s (35 rad/s is the angular velocity
measurement limit of the built-in IMU of AVIA). Because our SSLIO subsystem is a tightly
coupled LIO, we discarded the data collected during the last 90 s of the sequence, and
used only the first 40 s of the sequence (because the actual angular velocity exceeded the
built-in IMU angular velocity range of 35 rad/s for a long time in the last 90 s). Even if
the angular velocity exceeded 30 rad/s, the map geometry built by our SSLIO subsystem
basically reflects the real experimental environment as shown in Figure 6 (see [16] for the
specific dataset acquisition environment).

Figure 6. Mapping results of SSLIO subsystem using “spinning_ platform” sequence.
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4.3.2. Experiment-1.2: Fast Crossing of the Steep Ramp Experiment Test

Motion distortion compensation based on the quadratic motion model helps the
algorithm handle motion distortion, so we conducted a steep ramp experiment to verify the
ability of the SSLIO subsystem to handle severe motion distortion. As shown in Figure 7a,b,
the steep ramp test platform consists of an upward ramp, a plane, and a downward ramp,
and it is located in a spacious plant with only one floor (as shown in the Figure 7c, the red
box marks the location of the steep ramp).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7. Steep ramp experiment test. (a) steep ramp test platform (front view); (b) steep ramp test
platform diagram (side view); (c) internal environment of the plant; (d) acceleration curves; (e) angular
velocity curves; (f) our proposed SSLIO subsystem mapping results; (g) Point-LIO mapping results.

During the experiment, the crawler robot first rotated in the ground, quickly rushed
through the steep ramp test platform, and finally rotated in the ground. When the robot was
moving fast on the steep ramp test platform, it would generate strong vibration. Owing to
the absence of dampers, the vibration originating from the crawler robot chassis was directly



Electronics 2023, 12, 3633 13 of 19

transferred to the sensor suite, resulting in significant shaking. Figure 7d,e, exhibit the IMU
measurements, revealing significant variations in both the acceleration and angular velocity
(we suspect that the actual instantaneous acceleration maximum may have exceeded the
measurement range of the IMU, i.e., 30 m/s2, but we lack equipment with a larger range to
measure the actual maximum acceleration). Our proposed SSLIO subsystem and Point-LIO
mapping results are shown in Figure 7f,g, respectively. The map generated by Point-LIO
has a serious drift, and the plant that has only one floor becomes a plant with two floors in
the map, while the mapping accuracy of our SSLIO for this plant is much better than that
of Point-LIO.

In order to objectively illustrate that our proposed quadratic motion model has practi-
cal engineering utility, the dataset collected in the above-mentioned steep ramp experiment
test was used to conduct mapping experiments in two cases: without quadratic motion
model in SSLIO subsystem (called SSLIO-WQMM) and with piecewise linear model in
SSLIO subsystem (called SSLIO-PLM) [37,38], respectively. The duration of the aforemen-
tioned collected steep ramp experiment test dataset totaled 56 s. As shown in Figure 8a,
the SSLIO subsystem without quadratic motion model has serious drift in the odometry
output and mapping results. The pose estimation and mapping of the whole subsystem
starts to drift around the 25th second (when the acceleration and angular velocity start to
change drastically), and the direction of drift is shown by the red arrows, and even the final
estimated odometry trajectory is far beyond the area shown in the figure, which does not
match with the actual motion trajectory of the crawler robot. The acceleration and angular
velocity between the two adjacent IMU measurements are interpolated using a simple
piecewise linear model and used in the backward propagation of SSLIO, called SSLIO,
using a piecewise linear model, i.e., SSLIO-PLM. The final mapping result of this approach
is shown in Figure 8b. Although the mapping result is much better compared to that of
the SSLIO subsystem without a quadratic motion model, there is still a drift downward
compared to the actual environment, such as the area marked by the red box, and such a
mapping result will have an adverse effect on the robot’s subsequent tasks, such as path
planning.

(a) (b)

Figure 8. Validation of effect of quadratic motion model. (a) The results of our SSLIO subsystem
mapping without quadratic motion model; (b) the results of our SSLIO subsystem mapping when
using a piecewise linear model.

The experimental findings demonstrate that our quadratic motion model handles the
motion distortion well, even when the acceleration and angular velocity vary drastically
within a sample interval of the IMU.

4.3.3. Experiment-1.3: Validation Experiment on the Validity of Weighting Function

To verify that the weight function designed by our algorithm can improve the construc-
tion accuracy of the global map geometry, we used the data collected between buildings
B1 and B3 within Raytron (called B1B3_seq) for the validation experiments. During the ac-
quisition of the B1B3_seq sequence, the crawler robot occasionally passed through a speed
bump on the road, thus generating instantaneous and dramatic changes in acceleration.
The maps were constructed using our proposed complete SSLIO subsystem and the SSLIO
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subsystem with the weight function omitted (called SSLIO-WFO), respectively. Figure 9a
shows the SSLIO subsystem mapping result, and the mapping results are consistent with
the data collection environment. In terms of mapping details, the experimental results
indicate that SSLIO outperforms SSLIO-WFO in terms of accuracy. For example, for the
small area marked by red box in Figure 9a, SSLIO-WFO mapping result is shown in
Figure 9b, there is an extra wall that does not exist in the actual scene, and the actual scene
taken by drone is shown in Figure 9c; the SSLIO mapping result for this area is shown in
Figure 9d. The experimental results show that the weight function we designed makes a
positive contribution to the map accuracy improvement.

(a)

(b)

(c)

(d)

Figure 9. Weighting function validation experiment. (a) Mapping result of SSLIO subsystem using
B1B3_seq; (b) small-area SSLIO-WFO mapping result; (c) small-area drone image; (d) small-area
SSLIO mapping result.

4.4. Experiment-2: Quantitative Evaluation of Localization Accuracy Using GNSS RTK

By conducting a trajectory comparison between our proposed algorithm, VINS-
Mono [28], and LiLiOM [19] against the ground-truth trajectory acquired through the
GNSS RTK system, we were able to assess the quantitative accuracy of each algorithm.
The trajectories were projected onto the Y-X plane as depicted in Figure 10. The difference
between VINS-Mono and the ground-truth trajectory is large, and the LiLiOM trajectory
and the trajectory of our system match the ground-truth trajectory fairly well. However,
the length of the LiLiOM trajectory differs more from the ground-truth trajectory than our
proposed algorithm (the length of the trajectory of each algorithm is shown in Table 2).
Table 2 presents the root mean square error (RMSE) of the absolute pose error (APE) for
the rotation angle, measured in radians (rad). Moreover, the rotation error of our proposed
algorithm framework is smaller. The VINS-Mono trajectory is too different to have a
reference for its rotation error, so it is not listed.
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Figure 10. The comparison of trajectories in Experiment-2.

Table 2. The comparison of trajectory length estimated by different algorithms.

Ground Truth Proposed LiLiOM VINS-Mono

Length of 851.671 856.067 882.419 1136.503trajectory (m)
Rotation error (rad) × 0.0108 0.0380 ×

4.5. Experiment-3: Outdoor Large-Scale Challenging Factory Environment Mapping

This experiment collected multiple sequence datasets (i.e., B1B3_seq, A1A2A3_seq,
and B1B3B4_seq, respectively) within Raytron, where many building facades are composed
of glass, and there are often circular pipes above the roads, making it challenging to local-
ization and mapping [39]. The mapping of the three sequences is shown in Figure 11a–c.
Our proposed algorithm can accurately reconstruct RGB-colored, 3D-dense, large-scene
modern factory plant environments, and the maps can be used for outdoor robot navigation.
However, when our proposed algorithm framework builds the map, RGB color distortion
is easily seen for the tiny branches on the trees on both sides of the road, as shown in
Figure 11b, where the originally yellowish branches turn white instead.

(a) (b) (c)

Figure 11. The result of each sequence mapping. (a) B1B3_seq; (b) A1A2A3_seq; and (c) B1B3B4_seq.

The APE of each sequence is shown in Figure 12a–c. Each sequence trajectory reference
length and RMSE of APE with regard to the translational part is shown in Table 3, and the
reference is provided by the GNSS RTK system.

Table 3. The reference length of each sequence trajectory and APE.

B1B3_seq A1A2A3_seq B1B3B4_seq

Length of reference 586.931 655.166 709.091trajectory (m)
RMSE (m) 0.524 1.449 1.529
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(a) (b) (c)

Figure 12. The result of each sequence APE. (a) B1B3_seq; (b) A1A2A3_seq; and (c) B1B3B4_seq.

4.6. Run-Time Analysis

The computing platform on which our algorithm runs is a desktop computer with an
i9-11900 CPU and 48 GB RAM. We used the three sequences of data collected in Experiment-
3 for the run-time analysis. Compared to the multi-sensor fusion algorithm R3LIVE, since
our main difference and novelties are in the SSLIO subsystem, we compared the average
time consumption of our SSLIO subsystem with that of the LIO subsystem of R3LIVE for
processing each frame LiDAR point (as shown in Table 4). Our SSLIO subsystem takes
longer than the LIO subsystem of R3LIVE because of the quadratic motion model in the
motion compensation and the calculation of the residual term weight for each LiDAR
feature point. However, our SSLIO subsystem still requires less than 100 ms per frame (i.e.,
cumulative time per LiDAR point frame), meeting the real-time requirement.

Table 4. SSLIO (or LIO) subsystem average time consumption per frame.

B1B3_seq A1A2A3_seq B1B3B4_seq

SSLIO per-frame 27.15 26.97 27.23cost time (ms)
LIO per-frame 19.35 19.94 20.11cost time (ms)

5. Discussion

Our solid-state-LiDAR-inertial-visual fusion system is divided into two modules:
the SSLIO subsystem and the VIO subsystem. SSLIO utilizes the point clouds obtained
from LiDAR scans to form the geometry of the global map, and VIO, in addition to
further refining the state output obtained from SSLIO, will also color the global map.
The results of the field experiments and evaluations illustrate that our proposed ESIKF-
based multi-sensor fusion SLAM system can provide robust localization and mapping
for robots in challenging situations. This section will delve into the practical engineering
implications of our algorithm and its advantages over existing classical algorithms, explore
different research paths, and elucidate the shortcomings of our system and directions for
extended applications.

Our main innovation lies in the SSLIO subsystem, including the quadratic motion
model and the weight function designed by utilizing the reflectivity information. Through
the steep ramp experiment test, it is demonstrated that our proposed quadratic motion
model not only can cope with drastic changes in acceleration and angular velocity more ef-
fectively than SSLIO-WQMM and SSLIO-PLM but also shows better motion compensation
capability compared with the state-of-the-art solid-state LiDAR-inertial SLAM algorithm
Point-LIO. This is of great significance when the robot performs real-world engineering
tasks, such as rapidly crossing rocky hillsides and speed bumps on the ground, where
the robot transmits vibrations to the IMU and causes drastic changes in acceleration and
angular velocity measurements. The accumulation time of a frame of our LiDAR point
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cloud is 100 ms, while our SSLIO processes each frame in less than 30 ms on average, which
greatly satisfies the real-time requirement.

In addition, in order to reduce the number of state components that need to be
estimated during state estimation, we used an indirect approach to calibrate the extrinsic
parameters of the VIO subsystem in advance.

In order to verify the robustness and accuracy of the whole system for localization
in outdoor environments, we quantitatively evaluated our algorithm using a GNSS RTK
device and compared it with the classical algorithms VINS-Mono and LiLiOM. The ex-
perimental results show that under the same environment, compared to VINS-Mono and
LiLiOM, the robot trajectory estimated by our proposed algorithm not only matches the
reference trajectory provided by the GNSS RTK equipment better but also has a smaller
APE regarding the rotation.

However, our algorithm is prone to color distortion for objects such as small branches
when mapping, and we still need to further improve our VIO coloring function.

In terms of SLAM, to further improve the robustness of our proposed algorithm in
robot navigation tasks, we can incorporate loop closure detection, such as DBoW2 [40],
intensity scan context [20], and STD [41]. To avoid the estimation of the temporal difference
between IMU and camera data, we can employ hardware synchronization to synchronize
the timestamps of the three sensors [26]. If further extended, our algorithm can be used for
game development and VR [25].

6. Conclusions

This paper introduces a framework for odometry and mapping, utilizing an ESIKF,
which integrates data from solid-state LiDAR, a camera, and IMU. We used the quadratic
motion model in the motion compensation of the SSLIO subsystem; in addition, we de-
signed a weight function for the LiDAR point residual term to ensure the geometric
consistency and reflectivity consistency in feature association. To evaluate our work, af-
ter calibrating the extrinsic parameter between the camera and IMU, we carried out a
public dataset experiment, a steep ramp experiment, localization accuracy quantitative
evaluation experiments, outdoor large-scene modern factory plant mapping experiments,
and run-time analysis in the field. The experimental results showed that (1) our tightly
coupled SSLIO subsystem can handle instantaneous and drastic acceleration and angular
velocity changes, and the accuracy of SSLIO can still meet the mapping requirements
even when the acceleration and angular velocity reach 30 m/s2 and 35 rad/s, respectively.
(2) High-performance localization and mapping are achieved by our proposed multi-sensor
fusion SLAM framework, as well as its guaranteed real-time performance. However, our
algorithm is prone to RGB color distortion when handling tiny cylindrical objects and
therefore needs to be improved.
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