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Abstract: The dynamic characteristics of high-speed on/off valves (HSVs) are a key factor in measur-
ing their performance, and determining the control accuracy of valve-controlled systems. Further-
more, the hysteresis characteristics of HSVs can seriously affect their dynamic characteristics. This
study evaluated the hysteresis characteristics of HSVs in a valve-controlled hydraulic control system,
and considered the pressure changes in front of the valve during the opening and closing process of
the valve core. A time-delay compensation control (TDCC) based on pulse-width modulation (PWM)
was proposed. The reference PWM signal was used to control the opening and closing time of the
HSV, while the loading signal was composed of an opening compensation PWM, an excitation PWM,
an opening holding PWM, and a closing compensation PWM. Using an opening compensation PWM
to start the initial current, combined with current feedback and pressure changes in front of the valve,
the amplitude and duty cycle of different PWM signals were determined in real time. This reduced
the time delay and working current of the HSV during opening and closing. A simulation comparison
analysis was conducted, with a single PWM control and a pre-excitation control algorithm (PECA).
The results showed that, compared to a single PWM control, the TDCC can reduce the overall opening
and closing time delay by 78.1%, and the energy consumption by 64.7%. Compared with PECA, the
overall opening and closing time delay was reduced by 10.9%, and the energy consumption was
reduced by 28%. At the same time, the frequency response of the valve core displacement increased
by 70%, compared to the single PWM control.

Keywords: high-speed on–off valve; PWM; time-delay compensation control; dynamic characteristics

1. Introduction

Digital hydraulic technology controls the discrete output of hydraulic systems, which
has the advantages of discrete flow, digital control signals, and intelligent control [1]. Com-
pared with traditional servo systems, it is less affected by hydraulic fluid contamination [2].
Currently, digital hydraulics are widely used in various fields, such as aircraft braking
systems [3], construction machinery [4,5], wave energy recovery systems, etc. [6]. The
high-speed on/off valve (HSV), as a core control component in digital hydraulic systems,
has many advantages, and a strong research potential, and the output performance of
digital hydraulic systems is directly determined by the dynamic characteristics of HSVs.
An HSV operates when it is either fully open or fully closed. It has advantages, such as a
low pressure loss, a low energy consumption, a strong anti-pollution ability, an easy-to-use
PWM control, and the direct conversion of digital signals into flow signals [7–9], which has
been widely used in valve-controlled hydraulic control systems. The main performance
indicators of HSVs include dynamic characteristics, static flow characteristics, and heat
transfer [10]. The better the dynamic characteristics, the higher the output flow resolution
of HSVs. The better the static flow characteristics, the higher the linearity. As a key factor
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in measuring the performance of HSVs, and determining the control accuracy of valve-
controlled hydraulic systems, improving the dynamic characteristics of HSVs is crucial.
During the stage of new product development, the dynamic performance of an HSV can be
improved, to some extent, by optimizing the electromechanical converter, coil layout, and
valve structure [11,12]. However, for an existing HSV, improving its dynamic characteristics
is mainly achieved through optimizing control strategies, while also reducing the energy
consumption [13]. The optimized control strategies can be mainly divided into external
hardware drive circuit control, intelligent control, and pre-excitation control.

Regarding external hardware drive circuit control strategies, in [14], Zhao et al. studied
the relationship between the power loss and dynamic response of the valve core, and
provided the maximum excitation voltage to achieve the highest energy utilization rate.
In [15], the hardware control driving signal was directly used, without feedback. Although
it reduced the valve core closing time delay, it could not adapt to system changes. In [16],
Fang et al. proposed a nonlinear model for the high-speed on/off valve actuator (HSVA),
and designed a sliding mode controller and observer. Through accurately maintaining
the stability of electromagnetic force, considering the coil temperature rise, the state of
an HSV can be precisely controlled via the driving of the high-speed on/off valve spool
with electromagnetic force. In [17], LinJama et al. designed an AC boost circuit for parallel
digital valve groups, which can output dual-voltage drive signals. However, the charging
and discharging speed of this circuit is relatively slow, resulting in a lower control frequency
of the output signal, with a maximum of only 22 Hz. Although the dynamic characteristics
of HSV cores were improved via the addition of driver circuits, the cost and complexity of
the system were increased, and more space was occupied.

For intelligent control strategies, in [18], Pu et al. combined dual-voltage driving
with fuzzy PID, to accurately control the displacement of the HSV core, reducing the lag
time of the valve core opening. Gao et al. [19] used the coil current to identify the motion
state of the HSV, and applied the relationship between the coil current derivative and the
critical state of the valve core to feedback control. Gao et al. [20] proposed a composite
PWM control strategy, and designed a closed-loop controller, to reduce the closing time
of the HSV. In [21], Gao Qiang used a differential PWM scheme to control the duty cycle
of two HSVs separately, and obtain a more accurate pressure control. In [22], Zhang et al.
estimated the working state of an HSV based on the critical switching current, achieving
the adaptive switching of different system pressures and duty cycles. In addition, some
scholars, such as Simic and Herakovic [23], have applied pulse frequency modulation
(PFM) and pulse number modulation (PNM) techniques in digital valve groups, improving
the response speed and energy efficiency of the independent metering control system of
parallel digital piezoelectric valve groups. The power consumption in the steady state
of the system can be reduced by six times. Intelligent control can improve the dynamic
characteristics and adaptive ability of the system, but it also significantly increases the
complexity of the system, due to the need to design corresponding controllers.

The pre-excitation control strategy is relatively simple and easy to implement. Gener-
ally, the opening and closing lag time of the HSV can be reduced through preloading a signal
to make the current of the valve core close to the critical switch value. Zhong et al. [24,25]
proposed a pre-excitation control algorithm (PECA) based on the principle of multi-voltage
driving, which reduced the lag time of the valve response, and improved the energy
conversion efficiency. In [13], Zhong et al. extended the controllable duty cycle range,
by switching PWM signals with different amplitudes through real-time current feedback.
In [26], Zhong et al. improved the dynamic characteristics of an HSV using current and
maximum pressure feedback, reducing the impact of the maximum pressure of the sys-
tem on dynamic characteristics. The pre-excitation method loads the control signal based
on the highest pressure after the valve core is opened, ensuring that the valve core does
not close during the opening and holding stage. To some extent, this improves the dy-
namic performance of the valve core, and does not significantly increase the complexity of
the system.
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However, after the valve core is opened, the pressure in front of the valve will decrease,
and the current value required to maintain the maximum opening will also decrease. In
this case, the current value generated by the control signal applied, based on the highest
pressure, will be greater than the actual required current value. This will generate excess
energy consumption. Moreover, during the valve core closing stage, the current value
being higher than the actual required current value will also lead to an extension in the
valve core lag time.

The use of PWM signals for control in HSVs has inherent high time delay characteris-
tics, which cannot meet the requirements of applications with high switching frequencies.
In order to reduce the delay duration during the opening and closing processes of HSVs, im-
prove their response speed, and expand their frequency response range, the aforementioned
scholars have proposed various control strategies based on PWM signals. However, none
of these strategies considered the changes in the pre-valve pressure during the opening
and closing processes of the HSV.

Therefore, this study considers the variation in pre-valve hydraulic pressure after
the HSV is opened, and proposes a PWM-based time-delay compensation control (TDCC)
strategy. This strategy aims to reduce the time delay of the HSV, improve the response
speed of the HSV, expand its frequency response range, and further reduce the energy
consumption. The TDCC integrates four different functional PWM signals, and controls
the opening and closing of the HSV through a reference PWM (RPWM) signal. The loading
sequence of the four PWM signals compensates for one signal before the moment of valve
opening, namely the opening compensation PWM (OCPWM), which brings the HSV to the
state of being about to open, but not fully open, reducing the delay time and motion time
of the valve spool opening. At the moment of valve opening, the rated excitation PWM
(EPWM) signal is loaded, to fully open the valve spool quickly. After the HSV is opened,
the pre-valve pressure decreases, and the opening–holding PWM (OHPWM) signal value
is adjusted based on the pre-valve pressure. When the HSV reaches the closing moment,
a reverse PWM signal, namely the closing compensation PWM (CCPWM), is loaded to
shorten the delay length during closing, and accelerate the closing speed. The values of
the OCPWM and OHPWM signals are obtained through the force balance between the
coil current and the pre-valve pressure. Based on the current feedback, and the pressure
changes in front of the valve, the amplitude and duty cycle of different PWM signals
were determined in real time. This minimized the time delay and working current of
the HSV opening and closing, improved the dynamic characteristics, and reduced the
energy consumption.

2. Mathematical Modelling

The high-speed on/off valve in this study was a dual-position, three-way, normally
closed, cartridge ball valve, with an internal valve core, as shown in Figure 1.
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Adopting a spherical valve core, the spherical diameter was 3.175 mm, the ejector
pin diameter was 1.2 mm, the valve core stroke was 0.46–0.5 mm, the leakage rate was
≤5 mL/min, the valve port diameter was 2.2 mm, the nominal pressure was 5 ± 0.05 Mpa,
the maximum pressure was 6 ± 0.05 MPa, and the nominal flow was 8 ± 1 L/min. There is
no spring between the valve core and the valve sleeve, and the reset relies on hydraulic
pressure (the pressure difference formed by the force surface) to return to its original
position. When energized, the valve core is pushed by an ejector pin to open the P–A oil
port, and the A–T oil port is closed. The HSV uses a pulse-width modulation signal to
control the displacement of the spool, and adjusts the pressure and flow in the hydraulic
system through high-frequency opening and closing. Its driving voltage was 24 V, the coil
turns were 900 turns, and the internal resistance was 10.2 Ω.

The HSV consists of three parts: the electromagnetic module, mechanical module, and
fluid module; the internal coupling relationship of these three parts is shown in Figure 2.
After decoupling, the mathematical analytical models of each part were obtained.
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2.1. Electromagnetic Module

Assuming that magnetic flux exists uniformly in the medium, according to the first
equation of the magnetic circuit, it can be obtained as [20]:

NI =
(

HcLc + HgLg
)
λ = Hcλ[Lc + u(L0 − x)] (1)

where N is the number of coil turns; I is the coil current; Hc is the main magnetic field
strength; Lc is the length of the magnetic circuit of the magnetic core; Hg is the intensity of
the air gap magnetic field; Lg is the length of the air gap magnetic circuit; λ is the magnetic
leakage coefficient; u = Hg/Hc is the relative magnetic permeability; L0 is the initial air
gap length; and x is the displacement of the spool.

The relationship between the magnetic flux density B, the main magnetic field intensity
Hc, the magnetic core permeability uc, the effective sectional area of the armature S, the
magnetic flux ϕ, the flux linkage Ψ, and the coil inductance L is as follows [20]:

Hc =
B
uc

=
ϕ

ucS
(2)

Ψ = Nϕ = LI (3)

From Equations (1)–(3), the coil inductance L can be obtained as:

L =
N2ucS

λ[Lc + u(L0 − x)]
(4)
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It can be seen that the coil inductance is related to the movement of the valve core.
The electromagnetic force after the electromagnetic coil is energized is [13]:

Fm =
λΨ2

2N2µ0S
(5)

where Fm is the electromagnetic force and µ0 is the vacuum magnetic constant.
The mathematical model of the electrical circuit under the working state of the HSV

can be expressed as [25]:

U = IR + L
dI
dt

+
dL
dt

(6)

where U is the coil voltage, and R is the equivalent resistance of the coil. When the armature
is stationary, the equivalent resistance and inductance of the coil are fixed values, which
can be equivalent to a fixed value resistance inductance circuit. Therefore, the dynamic
equation of the coil current can be expressed as [13]:

I = Ii +

(
U
R

− Ii

)(
1 − e−t R

L

)
(7)

where Ii is the initial coil current, and t represents time. Furthermore, the hysteresis time of
the current change can be obtained as [13]:

td =
L
R

ln
U − I0R
U − IR

(8)

2.2. Fluid Module

The volume of flow through the HSV port can be expressed as:

Q = Cd A

√
2∆P

ρ
(9)

where Q is the flow rate of the HSV; Cd is the flow coefficient; A is the effective flow area;
∆P is the valve port pressure difference; and ρ is the density of the oil.

When oil flows through the valve port, due to changes in the flow direction and
velocity, the valve core will be subjected to fluid forces, which can be divided into a steady
flow force and a transient flow force [25].

Fs = 2CvCd A∆P cos θ (10)

Ff = CdωLd
√

2ρ∆P
.
x (11)

where Fs is the steady flow force; Ff is the transient flow force; Cv is the velocity coefficient;
Cd is the flow coefficient; θ is the jet angle; ω is the gradient of the valve port; Ld is the
damping length of the oil; and x is the displacement of the spool.

2.3. Mechanical Module

As shown in Figure 3, the HSV spool is subjected to four forces during movement: the
electromagnetic force, resistance, hydrodynamic force, and oil pressure, resulting in the
force balance equation of the spool, as follows [26]:

m
..
x = Fm −

(
Fs + Ff

)
− Ps As − ξ

.
x (12)

where m represents the mass of the moving component; x is the displacement of the spool;
Fm is the electromagnetic force; Fs is the steady-state hydrodynamic force; Ff is the transient
hydrodynamic force; Ps is the pre-valve pressure; As is the effective working area of the
pressure oil; and ξ is the coefficient of the viscous friction.
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At the critical opening and closing moments of the HSV, the valve core is in a stationary
state. Due to the small value of the hydraulic force, the influence of the hydraulic force on
the valve core is ignored. At this time, the critical electromagnetic force Fcm of the HSV is:

Fcm = Ps As (13)

where Fcm is the critical electromagnetic force.
Due to the relationship between the pressure in front of the valve and the load, the

opening-and-closing state of the HSV affects the change in the pressure in front of the
valve. When the spool is closed, the pressure in front of the valve gradually increases, and
stabilizes at its maximum value. After the valve core is opened, the pressure in front of the
valve gradually decreases, as it is larger than the load pressure. According to Equations (3),
(5) and (13), the critical current for the HSV to switch on and off is:

Ion =
N

Lo f f

√
2µ0SPs As

λ
(14)

Io f f =
N

Lon

√
2µ0SPs As

λ
(15)

where Ion is the critical opening current of the valve core; Io f f is the critical closing cur-

rent of the valve core; Lon =
N2ucS

λ[Lc + u(L0 − xmax)]
is the coil inductance in the fully

open state of the valve core; xmax is the maximum displacement of the valve core; and

Lo f f =
N2ucS

λ[Lc + uL0]
is the coil inductance in the closed state of the valve core. It can be seen

that the critical opening and closing current changes with the pressure changes in front
of the valve. The higher the pressure in front of the valve, the greater the critical current
required for valve core movement.

The voltage value that generates the critical opening and closing current can be
expressed as:

Uon = IonR (16)

Uo f f = Io f f R (17)

where Uon is the critical opening voltage of the spool; Uo f f is the critical closing voltage of
the spool; and R is the equivalent resistance of the coil.

Usually, the current loaded on the coil is accompanied by a thermal effect that causes
a temperature rise, thereby affecting the performance of the electromagnetic coil. The
electrical power and energy consumed by the current through the solenoid valve can be
simplified as [15]:

Wi = Pit (18)

where Pi = I2R is the power in watts [W]; I is the coil current; Wi is the energy consumption
in joules [J]; and t is the time in seconds [s].

3. Time-Delay Characteristics Analysis of HSVs

The time-delay characteristics of HSVs are mainly affected by the delay time. Due to
the presence of inductance and inertia, the valve cannot move immediately upon receiving



Electronics 2023, 12, 3627 7 of 22

the control signal; therefore, it lags behind the control signal, as shown in Figure 4. The
delay time is td = tdon + tdo f f , in which, tdon = tdon1 + tdon2 is the opening delay time,
composed of the opening delay time tdon1 and the opening motion time tdon2. The closing
delay time tdo f f = tdo f f 1 + tdo f f 2 is composed of the closing delay time tdo f f 1 and the
closing motion time tdo f f 2.
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A simulation model of a dual-position, three-way, normally closed HSV was estab-
lished, as shown in Figure 5. Table 1 lists the component names, sub-model models, and
corresponding functions of the AMEsim simulation model. The simulation parameter
settings are shown in Table 2.
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Table 1. Names and functions of the simulation model components.

Serial Number Name [Sub-Model] Function

1 Tank [TK000] Return oil.
2 Quantitative pump [PU001] Provide constant displacement hydraulic oil.
3 Electric motor [PM000] Transmit torque.
4 Relief valve [RV010] Set the pressure value of the oil supply port.
5 Check valve [CV010] Prevent oil backflow.
6 Pressure sensor [PT002] Output oil supply port pressure.
7 Hydraulic chamber [HC01] Simulate the internal cavity of the valve.
8 Zero-force source [F000] Perfect model.
9 Ball poppet valve 1 [BAP21] Normally closed chamber of the HSV.

10 Ball poppet valve 2 [BAP21] Normally open chamber of the HSV.
11 Mass/friction/displacement [MECMAS21] Spool. Displacement/mass/friction.
12 Electromechanical converter [EMLTR01] Electromagnet of the HSV.
13 Current sensor [EBCT00] Output coil current.
14 Variable voltage source [EBVS01] Receive control signals.
15 Constant [CONS00] Duty cycle.
16 PWM generator [PWM1] Generate PWM control signal.
17 Magnetic material properties [EMMM03] Define the material properties of electromagnets.
18 Hydraulic fluid characteristics [FP04] Define the properties of hydraulic oil.

Table 2. Parameters of the HSV in AMEsim.

Parameters Value

Steel ball diameter 3.2 mm
Ejector pin diameter 1.2 mm

Spool stroke xmax 0.5 mm
Valve port diameter 2.2 mm

Effective working area of pressure oil As 3.8 mm2

Moving component mass m 15.1 g
Coil turns N 900 turns

Coil internal resistance R 10.2 Ω
Initial air-gap length Lc 0.6 mm
Armature diameter 7.5 mm

Armature length 22 mm
Effective sectional area of the armature S 44.2 mm2

Relative magnetic permeability u 1
Magnetic core permeability uc 6.05 × 10−4 H/m
Vacuum magnetic constant µ0 4π × 10−7 H/m

Magnetic leakage coefficient λ 1.1
Pump flow rate 8 L/min

We used a single PWM (SPWM) signal to control the opening and closing of the HSV,
with a frequency of 10 Hz, a duty cycle of 0.5, an amplitude of 24, a relief valve pressure of
6 MPa, and a simulation time of 0.5 s. As shown in Figure 6, the red solid line represents
the displacement curve of the valve core, and the blue chain line represents the output
value of the pressure sensor. The results show that the pressure at the oil supply port of
the valve core begins to decrease after the spool is opened, and gradually increases to the
maximum value after the valve core is closed. As the overflow area of the spool is small,
the oil pressure drops after passing through the overflow port of the spool. From this, the
opening and closing status of the valve core can be determined, based on the pressure
changes in front of the valve.
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dashed line represents the coil current curve of the HSV.
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Figure 7. Dynamic characteristics of the SPWM-controlled HSV.

The results showed that the time delay of the valve core during the opening and
closing periods was relatively long (an opening time delay of 7 ms, including an opening
time delay of 4 ms and an opening motion time of 3 ms; a closing time delay of 19 ms,
including a closing time delay of 15 ms and a closing motion time of 4 ms). Furthermore,
there was a significant fluctuation in the coil current when the valve core began to move.
When the valve core moved to the maximum opening, the coil current continued to rise,
resulting in excess energy consumption.
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4. TDCC Based on PWM
4.1. Principle of TDCC

In order to reduce the time delay when the HSV is opened and closed, and to reduce
the excess energy consumption when the valve core is fully open, TDCC based on PWM
was proposed. The control principle is shown in Figure 8.
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Figure 8. Schematic diagram of TDCC.

The duty cycle of the EPWM and CCPWM is related to the feedback of the valve core
movement process. The duty cycle of the OCPWM and OHPWM is also related to the
EPWM and CCPWM. Therefore, before the valve core completes a complete opening and
closing movement, it is necessary to specify the initial duty cycle values for each PWM, to
ensure the normal movement of the valve core.

Before the rising edge of the RPWM arrives, the OCPWM, with the amplitude changing
with the pressure in front of the valve, is loaded. This causes the coil current to rise near
the critical opening current of the valve core, reducing the time it takes for the current to
rise from 0 to the critical opening current of the valve core when the opening signal arrives.
The amplitude of the OCPWM is determined according to Equation (16), and a coefficient
correction is required to ensure that the valve core does not open. Different coefficients are
used to obtain the displacement of the valve core, as shown in Figure 9. According to the
diagram, when the coefficient is 0.95, the valve core does not open in advance; then:

U1 = 0.95Uon = 0.95IonR (19)

τ10 = 1 − τ0 (20)

τ11 = 1 − τ0 − τ40 (21)

τ1 = 1 − τ0 − τ4 (22)

where U1 is the amplitude of the OCPWM; τ0 is the duty cycle of the RPWM; τ10 is
the initial duty cycle of the first cycle for the OCPWM; τ11 is the initial duty cycle of
the second cycle for the OCPWM; τ40 is the initial duty cycle of the first cycle for the
CCPWM; τ1 is the subsequent cycle duty cycle for the OCPWM; and τ4 is the subsequent
cycle duty cycle for the CCPWM. The frequency f1 of the OCPWM is consistent with the
RPWM frequency f0.
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Figure 9. Comparison of the spool displacement with different coefficients in U1.

When the opening signal of the valve core, i.e., the rising edge of the RPWM, arrives,
the EPWM with amplitude U2 = 24 V is loaded, causing the current to rapidly rise, and
open the valve core. The first cycle of the EPWM needs to ensure that the valve core is fully
opened. According to the dynamic response characteristics of the valve core, shown in
Figure 7, the initial duty cycle of the EPWM is taken as τ20 = τ0

2 .
The duty cycle of the subsequent cycles of the EPWM is related to the position status

of the valve core. When the valve core is in a fully open state, the amplitude of the EPWM
changes to 0. Due to the difficulty of installing displacement sensors inside the HSV, the
relationship shown in Figure 6 is used to determine the position and status of the spool,
based on the pressure changes in front of the valve. The derivative of the pressure in front
of the valve is shown in Figure 10. The black double-dotted line represents the derivative
of the pressure in front of the valve, the blue chain line represents the pressure in front of
the valve, and the red solid line represents the displacement of the valve core. It can be
seen that, when the derivative of the pressure in front of the valve is less than zero, this
indicates that the valve core is open. To calculate the time t2 when the derivative from the
rising edge of the RPWM to the pressure in front of the valve is less than zero, in order
to ensure that the valve core is in a fully open state when the amplitude of the excitation
PWM change to 0, a coefficient is needed to correct t2. Different coefficients were used to
obtain the valve core displacement and EPWM signal, as shown in Figure 11. According to
the figure, when the coefficient is 2, the valve core precisely reaches a fully open state when
the amplitude of the EPWM is 0. Then:

τ2 = 2t2 f0 (23)

where τ2 is the duty cycle of the EPWM; t2 is the time from the falling edge of the EPWM to
the derivative of the pressure in front of the valve being less than zero; and f0 is the RPWM
frequency. The frequency f2 of the EPWM is consistent with the RPWM frequency f0.
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When the valve core is fully open, in order to ensure the normal opening of the valve
core, and minimize the current as much as possible, the OHPWM with amplitude U3,
changing with the pressure in front of the valve, also requires a coefficient correction.
Different coefficients were used to obtain the valve core displacement curve, as shown in
Figure 12. The green dotted line in the figure shows the ideal displacement. According to the
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diagram, when the coefficient is greater than or equal to 1.05, the valve core displacement
does not close in advance. Therefore, the coefficient is taken as 1.05; then:

U3 = 1.05Uo f f = 1.05Io f f R (24)

τ30 = τ0 − τ20 =
τ0

2
(25)

τ3 = τ0 − τ2 (26)

where U3 is the amplitude of the OHPWM; τ30 is the initial value of the first cycle duty
cycle of the OHPWM; τ2 is the duty cycle of the EPWM; τ20 is the initial duty cycle of the
EPWM; τ0 is the duty cycle of the RPWM; and τ3 is the duty cycle of subsequent cycles of
the OHPWM. The frequency f3 of the OHPWM is consistent with that of the RPWM.
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When the valve core closing signal, i.e., the falling edge of the RPWM arrives, in
order to enable the valve core to close quickly, the coil current needs to decrease rapidly.
This is carried out via loading the CCPWM with an amplitude of U4 = −24 V, to reduce
the influence of inductance, and quickly unload the coil current. If the duty cycle of the
CCPWM is too large or too small, it will affect the closing time of the spool. If the duty
cycle is too large, it will cause the current to decrease to zero, and then increase in reverse,
causing the electromagnetic force to increase again; if the duty cycle is too small, it will
cause the current to slowly decrease to zero. Therefore, in order to ensure that the coil
current can drop to zero in the first cycle, to facilitate the calculation of the duty cycle of the
CCPWM subsequent cycles, and not cause the valve core to open again, the initial value
τ40 of the duty cycle of the CCPWM first cycle is taken as τ40 = 0.09τ0.

The duty cycle of the CCPWM in subsequent cycles is calculated through collecting the
current value of the coil current through a current sensor, and calculating the time t4 from
the falling edge of RPWM to the zero of the coil current. The duty cycle of the CCPWM is
τ4 = t4 f0. The frequency f4 of the CCPWM is consistent with that of the RPWM.
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If the amplitude of the CCPWM is 0, and the OCPWM is directly loaded, the current
will also increase before the valve core is fully closed, resulting in an increase in the valve
core closing time. Therefore, according to Equation (8), the time for the current sensor to
decrease to 0 is 0.0028 s; that is, the loading time for the CCPWM is 0.0028 s. When the
voltage U1 is loaded, the time for the current to rise to the maximum value is 0.0246 s. In
order to keep the current value small during any time period, according to the frequency of
10 Hz, the duration of the RPWM amplitude 0 at a duty cycle of 0.5 is 0.05 s. Therefore, the
amplitude of the OCPWM needs to become 0 within 0.0226 s after the end of the CCPWM,
with 0.0226/0.0028 = 8.07. In order to increase the current to the maximum value, the
coefficient is rounded down to 8, to correct the duty cycle of subsequent OCPWM cycles:

τ1 = 1 − τ0 − 8τ4 (27)

OCPWM is loaded after the amplitude of the CCPWM changes to 0 for a period of time,
ensuring that the coil current remains at 0 when the amplitude of the CCPWM changes to
0, and the valve core is fully closed.

4.2. Time Series Analysis of TDCC

The pressure in front of the valve, shown in Figure 6, gradually increases from 0 to
the set maximum pressure value at t = 0. Therefore, when the RPWM is directly loaded
onto the HSV at t = 0, the hydraulic pressure overcome is 0, which cannot reflect the actual
dynamic response of the valve core at the maximum working pressure. Therefore, the
RPWM needs to be delayed for a period of time, to ensure that the pressure in front of the
valve rises to the maximum value, which is more in line with actual working conditions.

td0 =
τ10

f0
=

1 − τ0

f0
(28)

The first cycle of the OCPWM does not require a delay, and is directly loaded onto
the HSV electromagnetic coil, according to Equations (19) and (20). Due to the consistency
between the frequency of the OCPWM and RPWM, the duration td11 corresponding to
the initial value of the CCPWM duty cycle needs to be delayed in the second cycle of
the OCPWM:

td11 =
τ40

f0
=

0.09τ0

f0
(29)

The time delay td1 of subsequent cycles of the OCPWM is also related to the duty cycle
of the CCPWM, with a value of:

td1 =
8τ4

f0
= 8t4 (30)

EPWM is loaded at the rising edge of the RPWM, so the delay of the EPWM is the
same as that of the RPWM; that is, td2 = td0. The OHPWM is loaded after the EPWM, and
the frequency of the OHPWM is consistent with the RPWM. Therefore, the delay td30 of the
OHPWM in the first cycle, and the delay td3 in subsequent cycles, are:

td30 = td0 +
τ20

f0
=

1 − τ0

f0
(31)

td3 =
τ2

f0
= 2t2 (32)

The CCPWM is loaded at the falling edge of the RPWM and, in subsequent cycles,
the duty cycle of the CCPWM is related to the current falling time of the previous cycle,
and the falling edge time of the RPWM. Before obtaining the current falling time of the
previous cycle, the duty cycle output is zero. Therefore, it is only necessary to set the time
delay of the initial value of the CCPWM in the first cycle as td40 = 1/ f0, and there is no
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need to delay in subsequent cycles. Based on the above, the control principle flowchart of
the TDCC is shown in Figure 13.
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5. Verification and Analysis of TDCC
5.1. Validation Model Construction

To verify and analyze the dynamic response characteristics of the HSV under the
TDCC and SPWM control strategies, a simulation model of an HSV TDCC strategy based
on PWM was built in AMEsim 2020.1 software, as shown in Figure 14. This used signal
control based on the HSV hydraulic system simulation model shown in Figure 5. The
simulation parameters related to the HSV were consistent with those in Table 2.
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5.2. Analysis of Simulation Results

We set the RPWM frequency to 10 Hz, the duty cycle to 0.5, the amplitude to 24, the
relief valve pressure to 6 MPa, and the simulation time to 0.5 s.

In Figure 15, the dynamic response performance curve of the valve core for TDCC, and
the dynamic curve of the coil current, are shown. The red solid line in the figure represents
the actual displacement curve of the valve core, the green solid dotted line represents
the ideal displacement curve of the valve core, and the purple dashed line represents the
coil current curve of the HSV. The results show that, with the exception of the first cycle
when the initial duty cycle was set, the displacement of the valve core fitted the ideal
displacement well in subsequent cycles. Before the valve core was opened, the coil current
first rose by one step, and then quickly rose to open the valve core. After the valve core
was opened, the current decreased, and then dropped to 0.
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A comparison was made for PECA, and the driving signals of the three control
methods are shown in Figure 16. The red solid line in the figure represents the TDCC (The
first cycle in the figure is the set initial value, and the subsequent cycles are the OCPWM,
EPWM, OHPWM, and CCPWM, with the variable amplitude and variable duty cycle
determined in real time, based on the RPWM, the coil current, and the pressure feedback
in front of the valve), the blue dashed line represents the PECA, and the orange chain
line represents the SPWM. It can be seen that TDCC obtained relevant parameters for
subsequent cycles in the first and second cycles, and entered the formal cycle starting from
the third cycle.
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Figure 16. Drive signal comparison.

Next, for the dynamic response of the valve core, the TDCC was compared with the
PECA and SPWM, and the simulation time was 0.5 s. The displacement curve of the valve
core obtained is shown in Figure 17. We selected the third cycle as the basis for comparative
analysis, and the subsequent cycles were the same as the third cycle. As is shown in
Figure 18, the red solid line represents the TDCC, the blue dashed line represents the PECA,
the orange chain line represents the SPWM, and the green solid dotted line represents the
ideal displacement curve of the valve core. Figure 18a shows the opening stage of the valve
core, and Figure 18b shows the closing stage of the valve core. The comparison results are
shown in Table 3.
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Figure 18. Comparison of the valve core displacement response. (a) Comparison of the valve core
displacement response in the opening stage; (b) comparison of the valve core displacement response
in the closing stage.

Table 3. Comparison of the time delay.

Control Strategy TDCC PECA SPWM

Time Delay Time Time Improve Time Improve

Open
Open hysteresis 2.4 ms 2.5 ms 4% 7 ms 65.7%

Open delay 0.6 ms 0.7 ms 16.7% 4 ms 85%
Open motion 1.8 ms 1.8 ms - 3 ms 40%

Close
Close hysteresis 3.3 ms 3.9 ms 15.4% 19 ms 82.6%

Close delay 1.8 ms 2.4 ms 25% 15 ms 88%
Close motion 1.5 ms 1.5 ms - 4 ms 62.5%

Overall delay 5.7 ms 6.4 ms 10.9% 26 ms 78.1%

Figure 19 shows the current dynamic curve of the electromagnetic coil under the
TDCC, PECA, and SPWM control. The red solid line in the figure represents the coil current
under TDCC control, the blue dashed line represents the coil current under PECA control,
and the orange chain line represents the coil current under the SPWM control. The results
show that, during the opening and holding stage, TDCC was significantly lower than the
SPWM. Due to the gradual decrease in the pressure in front of the valve after the valve core
was opened, the current of TDCC during the opening and holding stage was also slightly
smaller than that of PECA.

We set the simulation time to 20 s, and calculated the energy consumption correspond-
ing to the coil current, according to Equation (18). As shown in Figure 20, the energy
consumption in 20 s was 174.8 J, 242.9 J, and 494.8 J for the TDCC, PECA, and SPWM,
respectively. Comparing the total energy consumed by the three methods within 20 s,
we can obtain the results using the formulas (242.9–174.8)/242.9 and (494.8–174.8)/494.8:
compared to PECA, TDCC reduced the energy consumption by 28%, and compared to the
SPWM, TDCC reduced the energy consumption by 64.7%, indicating that TDCC achieved
a low energy consumption.
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Figure 20. The coil current consumption.

In addition to keeping the duty cycle of 0.5 constant, we changed the frequency
response range of the PWM signal, to test the displacement of the valve core. The displace-
ment response curves of the valve core at different frequencies under the SPWM control
are displayed in Figure 21. The results show that the valve core could close normally after
the frequency exceeded 30 Hz under the SPWM control. As can be seen in Figure 22, the
displacement response curves of the valve core at different frequencies under the TDCC
control show that the valve core response was not ideal, but could close normally at a
frequency of 100 Hz. Compared with the SPWM control, the frequency response range of
the valve core increased by 70%.
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6. Conclusions and Discussion

In this article, a time-delay compensation control strategy based on PWM was pro-
posed, which considered the hysteresis characteristics of HSV switching, and the pressure
changes in front of the valve after the valve core is opened. The amplitude and duty cycle of
the OCPWM and OHPWM were determined through the real-time feedback of the current
and the pressure in front of the valve. By compensating with a PWM signal before the valve
spool opens, the lag time of the valve spool opening is reduced. During the holding phase,
the variation in the pre-valve pressure is considered, effectively reducing the current value
during the holding phase, and thereby reducing the energy consumption of the HSV coil.
Loading the CCPWM when the valve spool closes accelerates the closing speed of the valve
spool. The method proposed in this paper has achieved the following accomplishments:

(1) The established TDCC method can simultaneously reduce the time delay in the HSV
opening and closing. Compared with the SPWM control, the opening time delay was
reduced by 65.7%, the closing time delay was reduced by 82.6%, and the overall time
delay for opening and closing was reduced by 78.1%. Compared with the PECA, the
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opening time delay was reduced by 4%, the closing time delay was reduced by 15.4%,
and the overall time delay for opening and closing was reduced by 10.9%.

(2) The TDCC reduced the excess energy consumption generated by the current. Com-
pared to the PECA, the TDCC reduced the energy consumption by 28%, and compared
to the SPWM, the TDCC reduced the energy consumption by 64.7%.

(3) The proposed method further expands the frequency response range of the valve core
displacement and, compared with the SPWM control, the frequency response range
of the valve core increased by 70%.

The method proposed in this paper improves the performance of the HSV, reduces the
valve energy consumption, and expands the frequency response range of the valve spool. It
can enhance the position accuracy of controlling hydraulic cylinders using HSVs. However,
it may not be suitable for high-pressure and high-flow scenarios. In future research, it may
be possible to make improvements to the OCPWM signal, to increase the coil voltage value
at the critical state of the valve spool, which has great potential for further accelerating
the opening speed of the valve spool. Additionally, the reliability of the method can be
validated through application to a physical model and, based on this, the position control
accuracy of the valve-controlled cylinder can be improved. If resources allow, the structure
of the HSV can be improved, to expand its application range under different pressure and
flow conditions.
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