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Abstract: In recent years, facial expression recognition (FER) has garnered significant attention within
the realm of computer vision research. This paper presents an innovative network called the Dual-
Direction Attention Mixed Feature Network (DDAMFN) specifically designed for FER, boasting
both robustness and lightweight characteristics. The network architecture comprises two primary
components: the Mixed Feature Network (MFN) serving as the backbone, and the Dual-Direction
Attention Network (DDAN) functioning as the head. To enhance the network’s capability in the MFN,
resilient features are extracted by utilizing mixed-size kernels. Additionally, a new Dual-Direction
Attention (DDA) head that generates attention maps in two orientations is proposed, enabling the
model to capture long-range dependencies effectively. To further improve the accuracy, a novel
attention loss mechanism for the DDAN is introduced with different heads focusing on distinct areas
of the input. Experimental evaluations on several widely used public datasets, including AffectNet,
RAF-DB, and FERPlus, demonstrate the superiority of the DDAMFN compared to other existing
models, which establishes that the DDAMFN as the state-of-the-art model in the field of FER.

Keywords: MobileFaceNets; coordinate attention; facial expression recognition; MixConv

1. Introduction

Facial expression plays an important role in human communication, serving as a
crucial signal for understanding emotions and attitudes. Consequently, it is necessary for
computers to acquire the ability to discern and interpret facial expressions.

The relationship between visual perception, environment mapping algorithms, and
facial expression recognition (FER) based on biometric authentication computer vision has
been clearly illustrated by [1–3], so it makes sense to use deep learning methods to solve FER
problems. The prevailing architecture for FER networks typically consists of a backbone and
heads. However, the most recent methods predominantly concentrate on the heads or neck
regions and merely employ VGG [4] or ResNet [5] as their backbones. It is worth noting that
these backbones, which were originally designed for more extensive datasets, may extract
redundant information from images, leading to overfitting in relatively smaller datasets.
This work proposes an innovative backbone called the Mixed Feature Network (MFN). The
MFN is built upon the foundation of MobileFaceNets [6], a renowned lightweight network
specifically tailored for face verification tasks. The MFN is enhanced by introducing mixed
depthwise convolutional kernels [7], which exploit advantages from different size kernels.
Furthermore, coordinate attention [8] is introduced into the MFN architecture to facilitate
the capture of long-range dependencies. Thus, meaningful features for FER are extracted.
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Moreover, FER encounters two significant challenges: small inter-class difference and
large intra-class difference. To address these challenges, it is crucial to establish connections
among various facial regions, such as the mouth, eyes, nose, etc. Attention mechanisms
offer a potential solution in this regard. Specifically, the Dual-Direction Attention (DDA)
head is applied to the proposed method, which aims to construct attention maps based
on the extracted feature information. Derived from previous work [8], attention heads
that generate attention maps from both vertical and horizontal directions are designed.
Subsequently, multiplying the attention map obtained from the Dual-Direction Attention
Network (DDAN) with the input feature map results in a new feature map. This feature
map undergoes a linear Global Depthwise Convolution (GDConv) layer [6], followed by a
reshaping operation. A fully connected layer is employed to generate the conclusive results.
By integrating the proposed DDA head and subsequent processing steps, the model’s
ability can be enhanced.

Finally, this work integrates the MFN and the DDAN, presenting a novel model named
the Dual-Direction Attention Mixed Feature Network (DDAMFN).

In order to visually illustrate the efficacy of the DDAMFN, a comparative analysis
involving ResNet_50, MFN, and DDAMFN models was conducted. All models were
trained on the AffectNet-7 dataset and tested on the same test datum. The Grad-CAM [9]
was applied to capture insights into the features extracted by the respective backbone
architectures. This technique facilitates the creation of heat maps highlighting important
regions in an image for prediction through gradient-based localization. The outcomes of
this analysis are presented in Figure 1. A comprehensive evaluation of the results showcases
distinctive patterns in attention focus among the models. It is obvious that the MFN focuses
on more particular areas than the ResNet_50. For the DDAMFN, the DDAN allows the
MFN to locate more appropriate areas.
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Figure 1. Heat maps on seven images: neutral (Row 1), happy (Row 2), sad (Row 3), surprise (Row 4),
fear (Row 5), disgust (Row 6), and angry (Row 7). Column 1: original images. Column 2: ResNet_50.
Column 3: MFN. Column 4: DDAMFN (MFN + DDAN). It is obvious that the MFN focuses on more
particular areas than ResNet_50. The DDAN allows the MFN to locate more appropriate areas.
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Moreover, when extensive experiments were conducted on various benchmark datasets,
the DDAMFN model demonstrated a remarkable performance, establishing it as the current
state-of-the-art network in FER. The contributions of our research can be summarized as
follows:

(1) In order to enhance the quality of extracted features for FER, this work proposes a
novel backbone network called the MFN. The MFN capitalizes on the utilization of
diverse kernel sizes, thereby facilitating the acquisition of robust features. Addition-
ally, the inclusion of coordinate attention layers within the MFN architecture enables
the capture of long-range dependencies, further augmenting its effectiveness in FER
tasks.

(2) To effectively detect subtle variations across different facial expressions, the DDAN
is introduced. By generating attentions from two distinct directions, the DDAN
aims to comprehensively capture relevant facial regions and improve discriminative
capabilities for FER.

(3) A novel attention loss mechanism is applied to ensure the attention heads of DDAN
are focusing on distinct areas, which leads to a notable enhancement in overall perfor-
mance and discriminative power of the model.

(4) Extensive evaluations are conducted on prominent FER datasets, including AffectNet,
RAF-DB, and FERPlus, to assess the performance of the DDAMFN. The experimental
results demonstrate its state-of-the-art performance, with accuracy of 67.03% on
AffectNet-7, 64.25% on AffectNet-8, 91.35% on RAF-DB, and 90.74% on FERPlus.
These exceptional results highlight the efficacy and superiority of the DDAMFN in
the realm of FER.

2. Materials and Methods

This section begins by providing a comprehensive overview of the related works
pertaining to two key aspects of FER: backbone architectures and attention mechanisms.
Building upon this foundation, this paper then shifts the focus to the method used to
address the FER problem.

2.1. Related Works
2.1.1. FER

FER has been a prominent research area for decades. Traditional FER methods rely
on handcrafted features or shallow learning techniques, including Non-Negative Matrix
Factorization (NMF) [10], Local Binary Patterns (LBPs) [11], and sparse learning [12].
However, these approaches often struggle to effectively handle challenging real-world
scenarios characterized by blurring and occlusions.

In recent years, deep learning techniques have revolutionized computer vision, leading
to significant advancements in FER. Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and Generative Adversarial Networks (GANs) have been em-
ployed to tackle the intricate challenges of FER. Notably, state-of-the-art classification
models such as VGG [4] and ResNet [5] have served as backbones for FER systems, exhibit-
ing exceptional performance. Building upon this progress, our approach introduces a novel
backbone network, the MFN, specifically designed to extract information from various
kernel sizes. Notably, the MFN exhibits lightweight characteristics while achieving supe-
rior performance in FER tasks, representing a notable advancement in the field. The MFN
backbone network holds significant promise for enhancing FER accuracy and effectiveness.

2.1.2. Attention Mechanism

The application of attention mechanisms in various visual tasks has gained consid-
erable attention in recent years. Researchers have explored the integration of attention
mechanisms into deep Convolutional Neural Networks (CNNs) to extract more informative
features from images. Notable works in this field include the introduction of a squeeze-
and-excitation block by [13], which focuses on obtaining useful information from different
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channels. Another approach, SGE [14], partitions spatial-wise features into groups to
establish spatial connections and enhance feature representation. Furthermore, CBAM [15]
combines channel attention and spatial attention mechanisms to capture richer information
through a unified framework.

Recently, the Transformer [16] has emerged as a powerful paradigm for numerous
tasks, surpassing the performance of traditional Recurrent Neural Networks (RNNs) and
CNNs. The Transformer’s reliance on multi-head attention mechanisms has enabled it to
excel in diverse domains. This recent success has prompted researchers to explore and
adapt Transformer-based approaches to address various visual tasks.

Several research papers have introduced attention mechanisms to FER. Notably, [17]
proposed the utilization of multiple non-overlapping region attention to capture informa-
tion from distinct facial regions. Furthermore, [18] explored the application of Transformers
in FER tasks. However, these existing methods face limitations in learning comprehensive
information from facial images.

Derived from [6], a novel dual-direction attention head was applied to the DDAMFN.
This integration facilitates the modeling of long-range dependencies, allowing for the
capture of holistic and contextual facial information. By connecting the dual-direction
attention head to the MFN backbone, the limitations of existing methods were overcome
and more effective learning of comprehensive information from facial images was achieved.

2.2. Method

The architectural overview of the DDAMFN is depicted in Figure 2, comprising two
main components: the MFN and the DDAN. Initially, facial images are fed into the MFN,
which produces basic feature maps as outputs. Subsequently, attention maps are generated
in both the vertical and horizontal directions through the DDAN. Eventually, attention
maps are reshaped to specific dimensions, and the expression category of the images is
predicted by a fully connected layer.
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Figure 2. The overall structure of the DDAMFN. Here, “GDConv” refers to Global Depthwise
Convolution. The method contains two main novel steps. Firstly, the MFN is applied to extract basic
features from facial images. Next, the DDAN is built with multiple DDA heads able to generate
attention maps from both horizontal and vertical orientations. Following the DDAN module, the
feature undergoes a linear GDConv layer and reshapes the feature map. Finally, a fully connected
layer is employed to produce the classification result.

The MFN leverages convolution kernels of varying sizes, as inspired by [7], to capture
diverse spatial information from the facial images. On the other hand, the DDAN module
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incorporates a series of effective dual-direction attention heads. Each attention head
generates an attention map, and a comparative analysis is performed to determine the most
informative attention map.

Overall, the DDAMFN framework effectively combines the feature extraction capabili-
ties of the MFN with the discriminative power of the DDAN’s attention mechanism. By
integrating these components, the DDAMFN could achieve an improved performance in
FER tasks.

2.2.1. MFN

In this section, a detailed description of the architecture of the MFN is provided.
Considering the potential overfitting issues associated with the use of heavy network
architectures on small FER datasets, a lightweight network, MobileFaceNet [6], was adopted
as the foundation. As illustrated in Figure 3, a combination of two primary building blocks,
a residual bottleneck and a non-residual block, was employed.

The residual bottleneck block was designed to capture complex features and facilitate
information propagation within the network. The block leverages residual connections
to mitigate the degradation problem and improve the flow of gradients during training.
On the other hand, the non-residual block aims to enhance the model’s representational
capacity by incorporating non-residual connections. This block enables the MFN to capture
diverse and discriminative facial features for effective FER.

By employing this architecture, the MFN strikes a balance between model complexity
and generalization ability, making it well suited for FER tasks.

The upper-left section of Figure 2 presents the primary structure of the MFN, while
Table 1 provides a comprehensive overview of each layer’s specifications. Derived from [7],
the MixConv operation, which consists of multiple-size kernels arranged as depicted in
Figure 4, was integrated into our network’s bottleneck. By leveraging this configuration,
the MFN can effectively capture diverse and informative features from input images,
surpassing the capabilities of the MobileFaceNet architecture. PreLU was also employed
as the activation function, performing better than ReLU on extracting facial features [6].
Additionally, this work carefully adjusted the network depth [19] and introduced the
coordinate attention mechanism [8] into each bottleneck within the MFN backbone. This
attention mechanism facilitates the modeling of long-range dependencies and enables the
generation of more accurate positional information compared to the Channel and Spatial
Attention Module (CBAM) used in [19].
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Table 1. The proposed MFN architecture. For the table, n refers to the number of repetitions, c refers
to output channels, t refers to the expansion factor, and s refers to stride.

Input Operator t c n S

112× 112× 3 conv3 × 3 - 64 1 2

56× 56× 64 depthwise conv3 × 3 - 64 1 1

56× 56× 64 bottleneck
(MixConv 3 × 3, 5 × 5, 7 × 7) 2 64 1 2

28× 28× 64 bottleneck
(MixConv 3 × 3, 5 × 5) 2 128 9 1

28× 28× 128 bottleneck
(MixConv 3 × 3, 5 × 5, 7 × 7) 4 128 1 2

14× 14× 128 bottleneck
(MixConv 3 × 3, 5 × 5) 2 128 16 1

14× 14× 128
bottleneck

(MixConv 3 × 3, 5 × 5,
7 × 7, 9 × 9)

8 256 1 2

7× 7× 256 bottleneck
(MixConv 3 × 3, 5 × 5, 7 × 7) 2 256 6 1

7× 7× 256 Conv1 × 1 - 512 1 1

7× 7× 512 linear GDConv7 × 7 - 512 1 1

1× 1× 512 linear - 256 1 1
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During the preliminary training phase for face recognition, the MFN generated a
256-dimension feature map. However, during the subsequent fine-tuning stage for FER,
this work only utilized the pretrained weights before the last two layers. A 7 × 7 × 512
feature map was obtained from the MFN, which serves as input for the DDAN.

2.2.2. DDAN

The DDAN consists of multiple independent DDA heads, each contributing to captur-
ing long-range dependencies within the network. The fundamental structure of coordinate
attention [8] was adopted as the basis for the DDAN module.

The detailed structure of the DDAN is depicted in the upper-right portion of Figure 2.
Similar to the approach in [8], attention heads initially generate direction-aware feature
maps from both the horizontal and vertical directions. However, the average pooling
operation is replaced by linear GDConv, which helps to learn very different importances at
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different spatial positions [6]. This modification emphasizes the importance of different
facial areas, enhancing the discriminative power of the attention mechanism. Subsequently,
DDA heads generate two attention maps (xh, xw) for both directions using the same
structure as outlined in [8]. To obtain the final attention map, we can multiply xh and xw
element-wise, resulting in an attention map of the same size as the input feature map. This
process can be represented as follows:

ai = xh ∗ xw (1)

Following the generation of attention maps from the multiple dual-direction heads,
comparing these attention maps and selecting the one with the highest saliency is a crucial
step. This process results in the creation of the optimal attention map am, as illustrated
in Figure 2. Subsequently, the output of the DDAN is obtained through element-wise
multiplication between the input feature map and am.

To ensure that each dual-direction head focuses on distinct facial areas, a novel loss
function is introduced to the DDAN module, referred to as the attention loss.

Attention loss: The Mean Squared Error (MSE) loss is calculated between each pair of
attention maps generated from different dual-direction heads. The attention loss is then
defined as the reciprocal of the sum of these MSE losses, which can be mathematically
expressed as follows:

Latt =
1

∑n
i=0 ∑n

k=0 MSE(a i, ak)
, (i 6= j) (2)

where n is the number of attention heads. ai and ak are attentions maps yielded from two
different heads.

2.2.3. Loss

As depicted in Figure 2, the feature map of size 7 × 7 × 512, obtained from the DDAN,
undergoes a linear GDConv layer and a linear layer. This transformed feature map is then
reshaped to a 512 d vector. The class confidence is obtained via a fully connected layer.

Regarding the loss function, the standard cross-entropy loss is employed in the training
process. This loss function effectively measures the discrepancy between predicted class
probabilities and the ground truth labels, facilitating the optimization of the model’s
parameters. The overall loss function can be expressed as follows:

L = Lcls + λaLatt, (3)

where Lcls stands for standard cross entropy loss and Latt is attention loss. λa is a hyperpa-
rameter. The default of λa is 0.1.

3. Results

In this section, comprehensive experimental results, attained by the DDAMFN on three
widely used benchmark datasets, AffectNet, RAF-DB, and FERPlus, are displayed. The
experimental evaluation began with a series of ablation experiments, where the individual
contributions of each component within the DDAMFN were analyzed. This allowed us
to assess the significance of each component in enhancing the overall performance of the
DDAMFN. Subsequently, a comparative analysis with other state-of-the-art networks was
performed to ascertain the superiority of the DDAMFN.

The meticulous experimentation demonstrated the efficacy and effectiveness of the
DDAMFN in FER. The results obtained highlight the substantial contributions made by the
various components within the DDAMFN. Moreover, the comparison with existing net-
works substantiates the exceptional performance of the DDAMFN, solidifying its position
as the top-performing model in the field of FER.
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3.1. Datasets

AffectNet [20]: AffectNet is currently the most extensive publicly available dataset
for FER. It consists of two distinct benchmarks: AffectNet-7 and AffectNet-8. AffectNet-7
comprises 283,901 images for training and 3500 images for testing, with seven emotion
categories including neutral (74,874), happy (134,415), sad (25,459), surprise (14,090), fear
(6378), angry (24,882), and disgust (3803). AffectNet-8 introduces an additional category of
“contempt” (3750) and expands the training set to 287,651 images, along with 4000 images
for testing.

AffectNet was chosen due to its prominence as one of the largest publicly available FER
datasets. Its extensive collection of labeled facial images covers a wide range of expressions,
and it contains multiple benchmarks (AffectNet-7 and AffectNet-8) with varying numbers
of emotion categories.

RAF-DB [21]: RAF-DB is a real-world facial expression database sourced from the
Internet. It encompasses 29,672 facial images annotated with seven basic emotion labels
and eleven compound emotion labels. Within RAF-DB, there are 12,271 training samples
(surprise (1290), fear (281), disgust (717), happy (4772), sad (1982), angry (705), and neutral
(2524)) and 3068 testing samples available for FER.

RAF-DB was chosen for its real-world diversity and challenging conditions. It is a
valuable dataset for evaluating FER methods under varying factors such as pose, lighting,
and occlusion.

FERPlus [22]: FERPlus derives from the FER2013 dataset [23], originally compiled
using the Google image search API. FERPlus incorporates 28,709 training images and
3589 validation images. Each image within FERPlus is annotated with one of the eight
emotion categories: neutral, happy, sad, surprise, fear, angry, disgust, or contempt. In this
research, 27,298 images were used for training (neutral (9462), happy (7879), sad (3262),
surprise (3488), fear (592), disgust (141), and contempt (136)).

FERPlus was selected as it enhances the FER2013 dataset by addressing some of its
limitations. The dataset contains more balanced and accurate annotations.

These benchmark datasets serve as fundamental resources for evaluating the perfor-
mance of FER models, allowing us to assess the effectiveness and generalization capabilities
of our method.

3.2. Implementation

In preprocessing, RetinaFace [24] is used to detect faces and landmarks (5 points for
two eyes, noses, and two mouth corners) within the AffectNet, RAF-DB, and FERPlus
datasets. All face images were aligned to a standardized size of 112 × 112 pixels. To
mitigate overfitting, various data augmentation techniques were employed. Specifically, for
AffectNet, horizontal flipping, random affine, and erasing were applied. And horizontal
flipping, random rotations, and erasing were set for RAF-DB. For FERPlus, horizontal
flipping, color jittering, random rotations, and erasing were utilized. These augmenta-
tion techniques enhanced the robustness and generalization ability of DDAMFN during
training.

To ensure a fair comparison with other backbone architectures, the MFN backbone
was pretrained on the Ms-Celeb-1M dataset [25]. This pretraining step enabled a consistent
benchmarking of the DDAMFN.

All experiments were conducted using the PyTorch 1.8.0 toolbox, and the models
were trained on a server equipped with a TESLA P40 24G GPU. All tasks were trained for
40 epochs, while the number of attention heads in the DDAN module was set to the default
value of 2.

During the training process, the ADAM optimization algorithm was employed to
optimize the models’ parameters. Specifically, for AffectNet-7 and AffectNet-8, an initial
learning rate of 0.0001 and a batch size of 256 were used. For RAF-DB and FERPlus, a larger
learning rate of 0.01 was set. These parameter settings were selected to facilitate efficient
and effective model optimization across the respective datasets.
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The DDAMFN was trained 5 times on each dataset, and the average accuracy (the
proportion of correctly predicted instances out of the total instances in the test datum) was
calculated to display an overall view of the model’s performance.

3.3. Ablation Studies

Effectiveness of the MFN: to evaluate the effectiveness of the MFN backbone, a series
of comparative experiments were conducted.

Table 2 presents the performance of different backbones on the RAF-DB dataset. The
MFN achieved an accuracy of 90.32% on RAF-DB, surpassing the performance of the
other three backbones. Furthermore, the MFN backbone consists of only 3.973 million
parameters, which is the second lowest among the compared backbones. It is significantly
smaller than ResNet-18 and ResNet-50. Additionally, the computational complexity of
the MFN, as measured by the number of floating-point operations (FLOPs), is merely
550.74 million. This is higher than the computational complexity of MobileFaceNet but
substantially smaller than that of the other two networks.

Table 2. Evaluation (%) of the MFN and other networks on RAF-DB.

Methods Accuracy (%) Params Flops

MobileFaceNet 87.52 1.148 M 230.34 M
ResNet-18 87.47 16.78 M 2.6 G
ResNet-50 89.63 41.56 M 6.31 G

MFN (our backbone) 90.32 3.973 M 550.74 M
DDAMFN (ours) 91.35 4.106 M 551.22 M

These results demonstrate that the MFN backbone is not only accurate but also
lightweight and computationally efficient. It outperformed other backbones in terms
of accuracy while maintaining a significantly smaller number of parameters and lower
computational complexity. This highlights the effectiveness of the MFN as the preferred
backbone for our subsequent experiments.

Furthermore, Table 2 also reveals that even with the addition of the DDAN to the MFN
backbone, the number of parameters and FLOPs remained considerably smaller compared
to ResNet models. This suggests that the combined model retains its lightweight nature
while maintaining high accuracy.

Effectiveness of the DDAN: to ascertain the effectiveness of the DDAN, an ablation
study was conducted to evaluate the impact of both the MFN and the DDAN on the
RAF-DB and AffectNet-7 datasets (as presented in Table 3).

Table 3. Evaluation (%) of the MFN and the DDAN on RAF-DB and AffectNet-7.

MFN DDAN RAF-DB AffectNet-7
√

- 90.32 66.19√ √
91.35 67.03

The results shown in Table 3 indicate that the inclusion of the DDAN in the backbone
network led to performance improvements of 1.06% and 1.04% for RAF-DB and AffectNet-
7, respectively, compared to using the MFN alone. These findings suggest that the DDAN
plays a crucial role in enhancing the performance of the MFN by enabling the generation of
more comprehensive attention maps from the extracted features. By incorporating DDAN,
the model can better focus on relevant regions and capture essential information, resulting
in improved recognition accuracy.

These results substantiate the effectiveness of the DDAN in augmenting the capabilities
of the MFN and underscore its contribution to the overall performance enhancement in
FER tasks.
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Number of the attention heads: In order to examine the influence of the number of
the DDA heads on the model’s performance, experiments with varying numbers of DDA
heads on the RAF-DB and AffectNet-7 datasets were conducted. The results are presented
in Table 4.

Table 4. Evaluation (%) of influence of number of DDA heads on RAF-DB and AffectNet-7.

- RAF-DB AffectNet-7

0 90.32 66.19
1 90.67 66.32
2 91.35 67.03
3 91.11 67.06
4 91.21 67.06

As seen in Table 4, the model with two DDA heads achieved a notably superior
performance on the RAF-DB dataset compared to models with different numbers of DDA
heads. Furthermore, on the AffectNet-7 dataset, the two-head model performed only
slightly worse (0.03% lower) than the models with three or four DDA heads. These findings
clearly indicate that the DDAN architecture with two DDA heads outperformed the models
with different numbers of DDA heads in terms of recognition accuracy on both datasets.

The results from Table 4 demonstrate that the selection of two DDA heads strikes
a favorable balance between capturing sufficient attention information and maintaining
optimal model performance. It highlights the significance of the appropriate number of
DDA heads in achieving superior performance in FER tasks.

Effectiveness of loss function for the DDAN: To assess the effectiveness of the loss
function employed for the DDAN, an evaluation is shown in Table 5. The results indicate
that the attention loss function significantly impacts the performance of the DDAN.

Table 5. Ablation studies for the loss function in the DDAN.

Methods RAF-DB AffectNet-7

- 90.86 66.39
Attention loss 91.35 67.03

From the obtained results, it is evident that the novel attention loss function plays a
crucial role in enhancing the performance of the DDAN. The inclusion of this loss function
leads to improved performance, emphasizing the importance of guiding the attention heads
to focus on different areas and facilitating better discrimination between facial expressions.

These findings highlight the effectiveness of the attention loss function in optimizing
the attention mechanism within the DDAN. By encouraging attention heads to attend to
diverse facial regions, the loss function enhances the discriminative power and overall
performance of the DDAN architecture in FER tasks.

3.4. Comparison with State-of-the-Art Methods

A comprehensive comparison of the DDAMFN model with other existing models on
AffectNet, RAF-DB, and FERPlus datasets is shown in Tables 6–9.
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Table 6. Performance comparison for AffectNet-7.

Methods Accuracy (%)

DLN [26] 63.7
MViT [27] 64.57
DACL [28] 65.20
DAN [17] 65.69
TransFER [18] 66.23
Emotion-GCN [29] 66.46

DDAMFN (ours) 67.03

Table 7. Performance comparison for AffectNet-8.

Methods Accuracy (%)

RAN [30] 59.50
SCN [31] 60.23
PSR [32] 60.68
MViT [27] 61.40
DAN [17] 62.02
EfficientNet-B2 [33] 63.03

DDAMFN (ours) 64.25

Table 8. Performance comparison for RAF-DB.

Methods Accuracy (%)

RAN [30] 86.90
SCN [31] 87.03
DACL [28] 87.78
MViT [27] 88.62
PSR [32] 88.98
DAN [17] 89.70
TransFER [18] 90.91

DDAMFN (ours) 91.35

Table 9. Performance comparison for FERPlus.

Methods Accuracy (%)

PLD [22] 85.10
RAN [30] 88.55
SeNet50 [34] 88.80
RAN-VGG16 [30] 89.16
SCN [31] 89.35
KTN [35] 89.70
TransFER [18] 90.83

DDAMFN (ours) 90.74

The DDAMFN model achieved an outstanding performance on three datasets, attain-
ing an accuracy of 67.03% on AffectNet-7, 64.24% on AffectNet-8, and 91.35% on RAF-DB.
These results represent the best performance among existing models on these benchmarks.
Notably, on the AffectNet dataset, the DDAMFN outperformed the Emotion-GCN [29]
by 0.57% on AffectNet-7 and the EfficientNet-B2 [33] by 1.22% on AffectNet-8. More-
over, on the RAF-DB dataset, the DDAMFN surpassed the previous best result achieved
by TransFER [18] by 0.44%. These improvements establish the DDAMFN model as the
state-of-the-art approach for FER on these specific benchmarks.
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Furthermore, on the FERPlus dataset, the DDAMFN model achieved the second-best
result of 90.74%, falling only 0.1% short of the TransFER model. These findings indicate
the effectiveness and generalization capabilities of the DDAMFN model across different
datasets.

The DDAMFN model has been proven to be the state-of-the-art approach for FER,
outperforming existing models on AffectNet and RAF-DB and achieving competitive results
on FERPlus. These results demonstrate the effectiveness and robustness of the DDAMFN
model in addressing the challenges of FER across diverse datasets.

3.5. K-Fold Cross-Validation

To rigorously evaluate the effectiveness and reliability of the DDAMFN, K-fold cross-
validation was conducted on the training dataset. In this process, dataset D was randomly
partitioned into k mutually exclusive subsets of equal size. Subsequently, k − 1 subsets
were employed for training the model and the remaining subset was used for testing. This
procedure was repeated for every subset, and the results were collected to calculate the
average accuracy. This validation technique ensures that all data points participate in both
training and prediction, effectively mitigating the risk of overfitting.

To assess the robustness of the DDAMFN, K-fold cross-validation was performed on
the RAF-DB and FERPlus datasets, as these smaller datasets are susceptible to overfitting,
potentially leading to instability. The results are presented in Table 10 (K = 10).

Table 10. The results of K-fold cross-validation.

Accuracy (%)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

RAF-DB 90.69 90.23 89.89 90.82 89.83 91.02 91.82 90.55 90.55 90.95 90.635

FERPlus 89.78 90.98 90.36 90.7 90.6 90.43 91.11 89.95 90.29 90.6 90.48

Analysis of the results in Table 10 revealed that the DDAMFN achieved an impressive
accuracy of 90.635% on RAF-DB and 90.48% on FERPlus. These outcomes demonstrate
consistently high performance on both datasets, underscoring the reliability of our approach
in FER tasks.

In conclusion, the K-fold cross-validation further confirmed the effectiveness and
robustness of the DDAMFN. The notable performances achieved on RAF-DB and FERPlus
datasets attest to the high reliability of the DDAMFN in handling FER tasks.

4. Discussion

In this section, the possible explanations behind the experimental results are dis-
cussed by examining previous studies and hypotheses. Additionally, the potential areas in
which our findings could exert influence are explored. Finally, the future research direc-
tions stemming from our investigation of class imbalance and cross-dataset validation are
emphasized.

4.1. Possible Explanation and Future Influences

From Figure 1, this work speculates that the remarkable results achieved by the
DDAMFN in FER can be attributed to its emphasis on specific facial regions that are
highly relevant to human facial expressions. To further substantiate this supposition, an
empirically rigorous adversarial attack study aimed at validating the significance of the
focused areas for classification was conducted.

First, we trained the DDAMFN on AffectNet-7. Subsequently, the AffectNet-7 test
dataset was used as test images. These images were input to the DDAMFN to generate heat
maps via the method depicted in Figure 1, which facilitates the extraction of both focused
and unfocused areas within the images. In the pursuit of investigating the impact of
manipulating these areas, the original unfocused regions were retained without alterations.
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However, random noise was introduced to the focused regions through the following
transformation:

new_ f ocused_areas = original_ f ocused_areas ∗ (1− ε) + random_noise ∗ ε (4)

Here, ε represents a weight parameter, with values chosen as 0.1, 0.2, 0.3, 0.4, 0.5,
and 1.0. To make the experiment more rigorous, the converse scenario, called “negative
samples”, was tested. This involved ensuring the focused regions remained unchanged
while introducing random noise to the unfocused areas, as defined by

new_un f ocused_areas = random_noise ∗ 1.0 (5)

The outcomes of this perturbation process are visually depicted in Figure 5.
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After processing, the images were tested on the DDAMFN, and accuracies were
recorded. The results are shown in Table 11.

Table 11. The results of the adversarial attack study.

ε 0 0.1 0.2 0.3 0.4 0.5 1.0 Negative Sample

Accuracy 67.03% 62.30% 50.44% 28.47% 20.49% 18.95% 16.95% 62.26%

As seen in Table 11, for the focused areas, as the weight of noise increased, the accuracy
of noise decreased. This means that the focused areas are very critical for classification. For
unfocused areas, although they were covered with 100% random noise, the accuracy only
dropped by 4.77%. The results indicate that the key regions focused by the DDAMFN are
more important for FER than other regions, which allowed our model to have a higher
performance.

The implications of our findings extend beyond the scope of FER. The DDAMFN
holds the potential to influence future research in this field as well as other classification
tasks. Moreover, the model exhibits promising applications in areas such as Emotional
Robots, Human–Computer Interaction (HCI), Security Monitoring, and Healthcare. Our
goal is not only to excel in dataset performance, but also to make meaningful contributions
to improving the world we live in.

4.2. Future Directions

In this section, the insights gained from analyzing class imbalance and cross-dataset
validation results are leveraged to delineate the directions for future development.

4.2.1. Class Imbalance

In the classification task, the accuracy is not fully persuasive since the performance for
each category is not shown. Thus, a confusion matrix (which shows classification variations
across different expressions) was leveraged to explore the class imbalance problems in FER.
Figure 6a–d presents the confusion matrix of the DDAMFN model tested on four datasets,
offering valuable insights into the model’s performance.
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The analysis of the confusion matrix revealed that the DDAMFN achieved the highest
performance for the “Happy” expression category. This indicates that “Happy” expressions
are relatively easier for the DDAMFN to recognize accurately. However, for the AffectNet
dataset, the DDAMFN had a lower performance for the “Disgust” category, which is often
confused with the “Angry” category. Similarly, on the RAF-DB and FERPlus datasets, our
model encountered challenges with the “Fear” and “Disgust” categories. These categories
exhibit confusion patterns with “Surprise” and “Angry,”, respectively. The underlying
rationale for the confusion may be attributed to the presence of shared and overlapping
signals employed to convey these facial expressions, which results in some expressions
possessing perceptual similarities, leading to challenges in accurate differentiation [36].

To further enhance the DDAMFN’s performance, future research will focus on main-
taining the model’s existing strengths while addressing these specific confusion problems,
for example, using auxiliary action unit graphs [37] to correct annotations before training.
During the face detection process, we could also introduce a multi-point landmark detection
method (e.g., 68 landmarks, localizing all facial organs and extracting particular features) to
fuse with the features from the backbone, in order to better discriminate between confused
expressions.
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By addressing the observed confusion problems, this work aimed to achieve a better
performance and deeper understanding of the intricacies involved in accurately recognizing
facial expressions. Future research efforts will contribute to advancing the field of FER and
further improving the performance of the DDAMFN model.

4.2.2. Cross-Dataset Validation

To assess the generalization ability of the DDAMFN, cross-dataset validations on four
datasets, AffectNet-7, AffectNet-8, RAF-DB, and FERPlus, were conducted. The datasets
were divided into two groups, (AffectNet-7, RAF-DB) and (AffectNet-8, FERPlus), based
on the number of facial expression categories. Due to the larger size of AffectNet-7/8
compared to RAF-DB/FERPlus, training was conducted on AffectNet-7/8, and testing was
conducted on RAF-DB/FERPlus for the cross-dataset validation. The outcomes of this
evaluation are presented in Table 12.

Table 12. The results of cross-dataset validation.

Trained on Tested on Accuracy (%)

AffectNet-7 RAF-DB 75.6

AffectNet-8 FERPlus 63.14

Table 12 shows that the DDAMFN achieved 75.6% accuracy on RAF-DB and 63.14%
accuracy on FERPlus, showcasing a tendency for universality. After utilizing more images
and improving the layers and structures in our network, the DDAMFN exhibited enhanced
functionality in FER for fewer or even zero sample tasks. Additionally, the integration
of generation models and Contrastive Language–Image Pretraining (CLIP) techniques
could further enhance the performance of the DDAMFN on these tasks, unlocking new
possibilities for advancing the state of the art in FER. For example, generation models
can create synthetic facial expression images that are visually similar to real ones. By
generating new samples, particularly for underrepresented classes, the number imbalance
issue can be alleviated, leading to better generalization and performance. Also, CLIP’s
learned representations can be transferred to FER tasks. This transfer enables our model to
benefit from the knowledge encoded in CLIP, contributing to better feature extraction and
classification.

5. Conclusions

In this paper, a novel and effective approach for FER, termed the DDAMFN, has
been proposed. The DDAMFN comprises two key components: the MFN and the DDAN.
The MFN leverages the benefits of different-sized kernels to generate comprehensive and
discriminative features for expression classification. Meanwhile, the DDAN captures
long-range dependencies through newly introduced DDA heads.

Through extensive experiments conducted on four FER datasets (AffectNet-7,
AffectNet-8, RAF-DB, and FERPlus), the DDAMFN has demonstrated state-of-the-art
performance (67.03% on AffectNet-7, the best, 0.57% surpassing the second; 64.24% on
AffectNet-8, the best, 1.22% surpassing the second; 91.35% on RAF-DB, the best, 0.44%
surpassing the second; 90.74% on FERPlus, almost same as the best), surpassing existing
approaches. These results confirm the effectiveness and superiority of the DDAMFN in the
field of FER. By proposing a novel lighter backbone and applying Mixconv and coordinate
attention in the model for FER, the DDAMFN will contribute to the advancement of the
network structure for FER and serve as a catalyst for future developments in computer
vision tasks. Furthermore, we eagerly anticipate the application of the model in diverse
domains of artificial intelligence, fostering progress in various applications and facilitating
advancements in AI-driven technologies.
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