
Citation: Xiong, W.; Wang, X.; Li, H.

Efficient Large-Scale GPS Trajectory

Compression on Spark: A

Pipeline-Based Approach. Electronics

2023, 12, 3569. https://doi.org/

10.3390/electronics12173569

Academic Editors: Leonidas Akritidis

and Panayiotis Bozanis

Received: 17 July 2023

Revised: 12 August 2023

Accepted: 20 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Large-Scale GPS Trajectory Compression on Spark:
A Pipeline-Based Approach
Wen Xiong 1,2, Xiaoxuan Wang 1,2,* and Hao Li 1

1 School of Information, Yunnan Normal University, Kunming 650500, China; wen.xiong@ynnu.edu.cn (W.X.);
hao_li0520@163.com (H.L.)

2 Engineering Research Center of Computer Vision and Intelligent Control Technology, Yunnan Provincial
Department of Education, Kunming 650500, China

* Correspondence: wangxiaoxuan@ynnu.edu.cn

Abstract: Every day, hundreds of thousands of vehicles, including buses, taxis, and ride-hailing
cars, continuously generate GPS positioning records. Simultaneously, the traffic big data platform of
urban transportation systems has already collected a large amount of GPS trajectory datasets. These
incremental and historical GPS datasets require more and more storage space, placing unprecedented
cost pressure on the big data platform. Therefore, it is imperative to efficiently compress these
large-scale GPS trajectory datasets, saving storage cost and subsequent computing cost. However, a
set of classical trajectory compression algorithms can only be executed in a single-threaded manner
and are limited to running in a single-node environment. Therefore, these trajectory compression
algorithms are insufficient to compress this incremental data, which often amounts to hundreds of
gigabytes, within an acceptable time frame. This paper utilizes Spark, a popular big data processing
engine, to parallelize a set of classical trajectory compression algorithms. These algorithms consist of
the DP (Douglas–Peucker), the TD-TR (Top-Down Time-Ratio), the SW (Sliding Window), SQUISH
(Spatial Quality Simplification Heuristic), and the V-DP (Velocity-Aware Douglas–Peucker). We
systematically evaluate these parallelized algorithms on a very large GPS trajectory dataset, which
contains 117.5 GB of data produced by 20,000 taxis. The experimental results show that: (1) It takes
only 438 s to compress this dataset in a Spark cluster with 14 nodes; (2) These parallelized algorithms
can save an average of 26% on storage cost, and up to 40%. In addition, we design and implement a
pipeline-based solution that automatically performs preprocessing and compression for continuous
GPS trajectories on the Spark platform.

Keywords: trajectory compression; big data; spark; parallelized algorithm

1. Introduction

With the development of urban public transportation systems, the number of vehicles
equipped with GPS (global positioning system) positioning devices is increasing. Every
day, hundreds of thousands of vehicles, including buses, taxis, and ride-hailing cars,
generate a large amount of GPS trajectory datasets. This massive GPS trajectory dataset
contains a lot of valuable spatial and temporal characteristics information, which forms the
foundation for a wide range of smart city applications. These applications include urban
planning, route network construction, vehicle scheduling, emergency management, and
public services [1]. Therefore, it is imperative to preserve this valuable trajectory dataset
for future downstream applications.

However, these incremental and historical trajectory datasets require a lot of stor-
age and computing resources, which brings unprecedented pressure to the owners of the
traffic big data platform. First, the massive GPS trajectory data requires a large amount
of storage space. Second, the massive GPS trajectory data requires many computing re-
sources when the owners perform data analysis and mining tasks. Third, the massive

Electronics 2023, 12, 3569. https://doi.org/10.3390/electronics12173569 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173569
https://doi.org/10.3390/electronics12173569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12173569
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173569?type=check_update&version=1

Electronics 2023, 12, 3569 2 of 21

amount of data renders traditional visualization methods ineffective [2]. In order to alle-
viate the above pressure, GPS trajectories need to be compressed. If we can reduce the
data volume of the original trajectory dataset, we can consequently reduce the costs asso-
ciated with subsequent data storage, movement, computation, and visualization. Many
researchers have explored trajectory compression algorithms, and all of which work well
with small data sizes. Currently, these classical GPS trajectory compression algorithms
include DP (Douglas–Peucker) [3], TD-TR (Top-Down Time-Ratio) [4], SW (Sliding Win-
dow) [5], SQUISH (Spatial Quality Simplification Heuristic) [6], and V-DP (Velocity-Aware
Douglas–Peucker) [7].

The first purpose of GPS trajectory compression is to eliminate the redundant points
that contain less information from the original trajectory while ensuring the accuracy of
vehicle trajectory. The second purpose is to minimize the amount of trajectory data while
satisfying the similarity conditions between the original trajectory and the compressed
trajectory. The compressed trajectory, compared with the original data, will bring a great
improvement to data mining speed due to the reduction in data volume. For example, if we
save the compressed trajectories in a spatial-temporal database, the size of the compressed
table will be significantly smaller than that of the original table, as well as its corresponding
index. That benefits a set of spatial-temporal queries, such as the GPS KNN (k-nearest
neighbors) query and the range query. Currently, trajectory compression research can be
discussed in two dimensions [1]. First, the type of GPS trajectory, GPS trajectory consists of
the trajectory of ground vehicles and the trajectory of AIS (automatic identification system)
vessels in the ocean or river; second, the compression scenario, compression scenario
consists of the offline and online manners. It should be especially noted that this study is
designed to solve the problem of compressing large-scale vehicle GPS trajectories in an
offline environment.

In the case of massive incremental and historical trajectory data, these algorithms are
insufficient to compress an incremental GPS dataset with hundreds of GB in an acceptable
time cost. The reason is that these algorithms can only be executed in a single-threaded
manner and are limited to running in a single-node environment. Some researchers have
used the MapReduce [8] framework in the Hadoop platform to compress GPS trajectory
data and have also achieved good compression efficiency [9–11]. However, the efficiency
and scalability of trajectory compression face challenges in further improvement due to the
inherent limitations of the MapReduce programming model.

The emergence of Spark [12] makes it possible to further improve the efficiency of
large-scale GPS trajectory compression. In detail, the Spark programming model differs
from the MapReduce programming model in two aspects. On one hand, the former is a
disk-based computation engine that requires data exchange between jobs and tasks through
disks as the medium, leading to time-consuming I/O operations. The latter provides in-
memory data exchange between jobs and tasks with the help of Resilient Distributed
Dataset (RDD), which is a memory-based media [13]. On the other hand, the MapReduce
programming model has only two operators, Map and Reduce, through which all complex
computational logic can be expressed. Spark implements a DAG (directed acyclic graph)-
based programming model, which provides more than twenty common operators and is
much more expressive.

Therefore, Spark has an inherent advantage over MapReduce in terms of its design
mechanism. In this paper, we try to parallelize these different classical compression
algorithms in Spark. We then systematically evaluate these parallelized algorithms based
on a large-scale real GPS trajectory dataset. Firstly, the experimental data is preprocessed in
ETL (extract-transform-load) stage; secondly, we conduct the map matching algorithm [14]
on the original GPS trajectory dataset to correct the position errors. Thus, all trajectory
points are matched to the road network; finally, we design a spatial-temporal partitioner for
RDD to dispatch massive trajectory to different nodes and perform trajectory compression
using a group of tasks in a parallel way.

In summary, our contributions are as follows:

Electronics 2023, 12, 3569 3 of 21

(1) We design and implement a pipeline-based solution that automatically performs pre-
processing and compression for continuous GPS trajectories on the Spark platform.
All data-processing steps, such as noise filtering, map matching, data partitioning, and
trajectory compression, can be implemented as user-defined functions. This allows
the operator to finely customize and control the data-processing workflow according
to specific requirements.

(2) We parallelize a set of classical algorithms in Spark to meet the requirements of
compressing large-scale GPS trajectory dataset. These algorithms consist of the DP,
TD-TR, SW, SQUISH, and V-DP. All parallelized algorithms are seamlessly integrated
into the pipeline environment along with data pre-processing steps.

(3) We systematically evaluate these classical algorithms on a very large dataset using
different performance metrics. The experimental results show that: (1) It only takes
438 s to compress 117.5 GB GPS trajectory data on a 14-node Spark cluster; (2) these
parallelized algorithms can save 26% storage cost on average, and up to 40% stor-
age cost.

This paper is organized as follows: Section 1 provides an overview of our research;
Section 2 shows the motivation and background; Section 3 discusses the related work;
Sections 4 and 5 present the problem definition and the research methodology, respectively;
Section 6 describes the experimental results and analysis; Section 7 provides a summary of
our research.

2. Motivation and Background
2.1. A Big Data Platform for Transportation System

In order to safely and efficiently manage the modern public transport system, the city
managers have built a traffic big data platform as an infrastructure. As shown in Figure 1,
the platform is divided into three layers, which are the bottom layer, data warehouse
layer, and application layer, respectively. The bottom layer is the data collection layer,
which has built multiple sensor networks in the past years. Each sensor network contains
thousands of terminals deployed on vehicles or stations, responsible for collecting one
or more types of data. Currently, these types include GPS trajectory dataset, smart card
dataset, and vehicle scheduling. The second layer is the data warehouse layer, in which
it reorganizes the original heterogeneous datasets to different subject databases. The top
layer is the application layer, which supports a wide range of applications. In addition,
these applications can be classified into two categories, decision-making and public service.
All applications adopt machine learning, data mining, and other algorithms to support
decision-making or public service. For example, applications for decision making include
vehicle scheduling and risk management, applications for public service include travel
planning and route choice.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 23

(1) We design and implement a pipeline-based solution that automatically performs pre-
processing and compression for continuous GPS trajectories on the Spark platform.
All data-processing steps, such as noise filtering, map matching, data partitioning,
and trajectory compression, can be implemented as user-defined functions. This al-
lows the operator to finely customize and control the data-processing workflow ac-
cording to specific requirements.

(2) We parallelize a set of classical algorithms in Spark to meet the requirements of com-
pressing large-scale GPS trajectory dataset. These algorithms consist of the DP, TD-
TR, SW, SQUISH, and V-DP. All parallelized algorithms are seamlessly integrated
into the pipeline environment along with data pre-processing steps.

(3) We systematically evaluate these classical algorithms on a very large dataset using
different performance metrics. The experimental results show that: (1) It only takes
438 s to compress 117.5 GB GPS trajectory data on a 14-node Spark cluster; (2) these
parallelized algorithms can save 26% storage cost on average, and up to 40% storage
cost.
This paper is organized as follows: Section 1 provides an overview of our research;

Section 2 shows the motivation and background; Section 3 discusses the related work;
Sections 4 and 5 present the problem definition and the research methodology, respec-
tively; Section 6 describes the experimental results and analysis; Section 7 provides a sum-
mary of our research.

2. Motivation and Background
2.1. A Big Data Platform for Transportation System

In order to safely and efficiently manage the modern public transport system, the city
managers have built a traffic big data platform as an infrastructure. As shown in Figure 1,
the platform is divided into three layers, which are the bottom layer, data warehouse layer,
and application layer, respectively. The bottom layer is the data collection layer, which
has built multiple sensor networks in the past years. Each sensor network contains thou-
sands of terminals deployed on vehicles or stations, responsible for collecting one or more
types of data. Currently, these types include GPS trajectory dataset, smart card dataset,
and vehicle scheduling. The second layer is the data warehouse layer, in which it reorgan-
izes the original heterogeneous datasets to different subject databases. The top layer is the
application layer, which supports a wide range of applications. In addition, these appli-
cations can be classified into two categories, decision-making and public service. All ap-
plications adopt machine learning, data mining, and other algorithms to support decision-
making or public service. For example, applications for decision making include vehicle
scheduling and risk management, applications for public service include travel planning
and route choice.

Figure 1. Transportation big data platform.

Electronics 2023, 12, 3569 4 of 21

2.2. GPS Trajectory and Storage Requirement

Taking the public transportation system in Shenzhen as an example, it includes
19,000 buses, 20,000 taxis, and 80,000 ride-hailing cars. Every day, these vehicles run
on the road network and provide services to millions of urban residents, which continu-
ously produce GPS trajectory data. Currently, the big data platform has already collected a
huge amount of GPS trajectory datasets while the incremental GPS data has been consis-
tently increasing.

The incremental and historical GPS data require more and more storage space, placing
unprecedented pressure on the data owners of the traffic big data platform. Assuming
each vehicle generates one GPS record every 30 s, and each record contains 200 bytes,
every vehicle generates 28,800, 86,400, and 1.0368 million records per day, month, and
year, respectively. All vehicles generate 124.416 billion GPS records annually, resulting in
a corresponding data size of 2488.32GB, consuming three times the storage space as data
replication in HDFS. The cumulative data volume for five years is 36 TB, with incremental
data amounting to 100 GB per day.

Figure 2 displays the time consumption of five different compression algorithms when
compressing 1 GB trajectory data in a single-node environment. The TD-TR algorithm
exhibits the longest time, which takes 320 s, while the SQ algorithm takes the shortest
time, taking 119 s. The average execution time for the five methods is 182 s. It means
the average time cost would exceed 5 h if one of these algorithms is used to compress
100 GB of GPS trajectory dataset. We can conclude that the algorithm executed in a single-
threaded manner running on a single-node cannot meet efficiency requirement for the
subsequent applications.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. Transportation big data platform.

2.2. GPS Trajectory and Storage Requirement
Taking the public transportation system in Shenzhen as an example, it includes 19,000

buses, 20,000 taxis, and 80,000 ride-hailing cars. Every day, these vehicles run on the road
network and provide services to millions of urban residents, which continuously produce
GPS trajectory data. Currently, the big data platform has already collected a huge amount
of GPS trajectory datasets while the incremental GPS data has been consistently increas-
ing.

The incremental and historical GPS data require more and more storage space, plac-
ing unprecedented pressure on the data owners of the traffic big data platform. Assuming
each vehicle generates one GPS record every 30 s, and each record contains 200 bytes,
every vehicle generates 28,800, 86,400, and 1.0368 million records per day, month, and
year, respectively. All vehicles generate 124.416 billion GPS records annually, resulting in
a corresponding data size of 2488.32GB, consuming three times the storage space as data
replication in HDFS. The cumulative data volume for five years is 36 TB, with incremental
data amounting to 100 GB per day.

Figure 2 displays the time consumption of five different compression algorithms
when compressing 1 GB trajectory data in a single-node environment. The TD-TR algo-
rithm exhibits the longest time, which takes 320 s, while the SQ algorithm takes the short-
est time, taking 119 s. The average execution time for the five methods is 182 s. It means
the average time cost would exceed 5 h if one of these algorithms is used to compress 100
GB of GPS trajectory dataset. We can conclude that the algorithm executed in a single-
threaded manner running on a single-node cannot meet efficiency requirement for the
subsequent applications.

To address this deficiency, this paper endeavors to parallelize a set of classic com-
pression algorithms using the big data computing engine Spark. By doing so, it aims to
offer ample computational capabilities to fulfill the requirements of large-scale trajectory
compression and achieve the objective of reducing storage costs.

Figure 2. Compression times of different algorithms with 1 GB data in single node.

3. Related Work
GPS trajectory compression is a classic research problem, and it is an issue of sustain-

ability. Currently, many studies have been carried out on GPS trajectory compression.
This section will first introduce the classic trajectory compression algorithms and their
corresponding derivatives, and then discuss how big data technologies support trajectory
compression scenarios. Ref. [15] conducted a comprehensive comparison of state-of-the-
art trajectory simplification algorithms and assessed their quality using datasets that cap-
ture a range of diverse motion patterns.

The Bellman algorithm proposed in 1961 [16] is considered the first algorithm for
trajectory simplification. The Bellman algorithm uses the dynamic programming method
to find subsequence with N points, which makes the line segment with these points closest

Figure 2. Compression times of different algorithms with 1 GB data in single node.

To address this deficiency, this paper endeavors to parallelize a set of classic com-
pression algorithms using the big data computing engine Spark. By doing so, it aims to
offer ample computational capabilities to fulfill the requirements of large-scale trajectory
compression and achieve the objective of reducing storage costs.

3. Related Work

GPS trajectory compression is a classic research problem, and it is an issue of sus-
tainability. Currently, many studies have been carried out on GPS trajectory compression.
This section will first introduce the classic trajectory compression algorithms and their
corresponding derivatives, and then discuss how big data technologies support trajectory
compression scenarios. Ref. [15] conducted a comprehensive comparison of state-of-the-art
trajectory simplification algorithms and assessed their quality using datasets that capture a
range of diverse motion patterns.

The Bellman algorithm proposed in 1961 [16] is considered the first algorithm for
trajectory simplification. The Bellman algorithm uses the dynamic programming method to
find subsequence with N points, which makes the line segment with these points closest to
the original curve, then greatly minimizes the space distance error between the compressed

Electronics 2023, 12, 3569 5 of 21

trajectory and the original trajectory. But this algorithm has a huge cost, and its time
complexity is O (n3). The DP algorithm proposed by Douglas and Peucker in 1973 has
already became one of the most classic trajectory compression algorithms [4]. The DP
algorithm is widely used due to its simple and efficient compression technology, but it is
only suitable for batch processing and has significant compression errors. This algorithm
considers spatial characteristics but ignores time characteristics.

In 2004, Meratnia et al. proposed a top-down time proportional trajectory compression
algorithm called TD-TR [4]. TD-TR improved the DP algorithm by taking velocity and
temporal characteristics into consideration. In the distance calculation process, synchronous
Euclidean distance was used to replace perpendicular Euclidean distance. Jonathan Muckell
et al., proposed the SQUISH algorithm in 2011 [6]. This algorithm deletes unimportant
trajectory points in the buffer, updates the priority of the trajectory points, that is, using
the priority of the deleted trajectory points to cover the priority of the adjacent trajectory
points to protect the information of trajectory points adjacent to the deleted point. The
algorithm has a time complexity of O (N × logβ) and a space complexity of O (β). Where
N represents the number of trajectory points and β indicates the size of the buffer.

Some studies have extended these classical GPS trajectory compression algorithms [17–19]
by considering the vehicle direction, speed, trajectory shape, and other factors. Some
studies considered the road network [20–24], where the GPS trajectory is located, converted
the original GPS trajectory into segment sequences, and then compressed the segment
sequences. In addition to the compression of vehicle GPS trajectories, some studies explored
the compression problem [25–29] for ship GPS trajectories collected by AIS. Beyond GPS
trajectory compression in offline scenarios, some studies have also delved into real-time
GPS trajectory compression algorithms. Ref. [4] proposed the Opening Window algorithm
(OPW), which is the first online trajectory compression algorithm. TrajCompressor [30]
have proposed an online compression algorithm; first conducting map matching of GPS
and then considering vehicle direction and angle changes.

The above algorithms have achieved good compression results in their respective
scenarios and can meet the data compression requirements of small-scale datasets. With the
continuous increase in trajectory data size, some researchers are beginning to resort to big
data technologies to address the large-scale GPS trajectory compression. Refs. [9,10,12] used
Hadoop/MapReduce, a big data computing engine, to conduct massively parallel com-
pressing for large-scale GPS trajectory dataset. Ref. [29] used GPU for GPS trajectory
compression, which has a significant performance improvement compared to the CPU-
based methods. Ref. [31] employed OpenMP [32] and GPU to explore online trajectory
compression algorithm. It can satisfy the requirement of processing large-scale dataset in
real-time. It would be an optimal solution if it could implement a task scheduler among
different GPU or nodes. However, because of the natural limitations of the MapReduce
and OpenMPI programming models, further improvements in efficiency and scalability
are challenging.

Besides the advantages discussed in Section 1, Spark provides a powerful user-defined
function mechanism, enabling end users to accomplish a series of independent data-
processing steps. For instance, all data-processing steps, such as noise filtering, map
matching, data partitioning, and trajectory compression, can be implemented as user-
defined functions. This capability allows operators to finely customize and control the
data-processing workflow according to their specific requirements. In contrast, other
parallel computing frameworks, such as MapReduce and OpenMPI, lack such capability.
For instance, managing data-processing steps becomes challenging when all steps are
confined within a single pair of Map and Reduce functions. Similarly, the efficiency of
data exchange among different jobs diminishes if each step is implemented within an
isolated job.

In this study, we attempt to adopt Spark, which is a more advanced big data en-
gine than MapReduce, to parallelize trajectory compression algorithms, expecting better
efficiency and scalability.

Electronics 2023, 12, 3569 6 of 21

4. Problem Definition

Definition 1. Point.

A point consists of a geographic coordinate and a timestamp. The coordinate is a
two-dimensional tuple, e.g., (latitude, longitude). The timestamp records the time when the
coordinate is read by a GPS positioning device. As shown in Equation (1):

P = (t, lat, lon) (1)

In Equation (1), t represents the timestamp of point P and (lat, lon) represents the
geographic coordinates. Thus, a point is a tuple with three attributes.

Definition 2. Trajectory.

A GPS trajectory consists of an identity and a sequence of points. The identity is the
unique identity of a vehicle. All points in the sequence are ordered in time dimension. We
denote T as GPS trajectory and T is shown in Equation (2):

T = (ID, P1, P2, · · · , Pn) (2)

In Equation (2), ID is the unique identity of a vehicle, and n is the number of points
and the length of trajectory T.

Definition 3. Perpendicular Euclidean Distance (PED).

The Perpendicular Euclidean distance between the trajectory point Pm(xm, ym) and
trajectory segment PsPe is the shortest distance from Pm to PsPe. The PED is defined in
Equation (3):

PED(Pm) =
|(ye − ys)xm − (xe − xs)ym + xeys − yexs|√

(ye − ys)
2 + (xe − xs)

2
(3)

As shown in Figure 3, assuming that trajectory points P1 and P2 are retained when P3
is discarded, P3′ is the projection point of P3, which is located in trajectory segment P1P2.
According to the definition of Perpendicular Euclidean distance, PED (P3) is the shortest
distance from point P3 to segment P1P2.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 23

In this study, we attempt to adopt Spark, which is a more advanced big data engine
than MapReduce, to parallelize trajectory compression algorithms, expecting better effi-
ciency and scalability.

4. Problem Definition

Definition 1. Point.

A point consists of a geographic coordinate and a timestamp. The coordinate is a two-
dimensional tuple, e.g., (latitude, longitude). The timestamp records the time when the co-
ordinate is read by a GPS positioning device. As shown in Equation (1):

(, ,)P t lat lon= (1)

In Equation (1), t represents the timestamp of point P and (lat, lon) represents the
geographic coordinates. Thus, a point is a tuple with three attributes.

Definition 2. Trajectory.

A GPS trajectory consists of an identity and a sequence of points. The identity is the
unique identity of a vehicle. All points in the sequence are ordered in time dimension. We
denote T as GPS trajectory and T is shown in Equation (2):

1 2(, , , ,)nT ID P P P= (2)

In Equation (2), ID is the unique identity of a vehicle, and n is the number of points
and the length of trajectory T.

Definition 3. Perpendicular Euclidean Distance (PED).

The Perpendicular Euclidean distance between the trajectory point (,)m m mP x y and

trajectory segment s eP P is the shortest distance from mP to s eP P . The PED is defined
in Equation (3):

2 2
|() () |()

() ()

e s m e s m e s e s
m

e s e s

y y x x x y x y y xPED P
y y x x

− − − + −=
+− −

 (3)

As shown in Figure 3, assuming that trajectory points 1P and 2P are retained
when 3P is discarded, 3'P is the projection point of 3P , which is located in trajectory
segment 1 2P P . According to the definition of Perpendicular Euclidean distance, PED (

3P) is the shortest distance from point 3P to segment 1 2P P .

Figure 3. Perpendicular Euclidean distance.

Definition 4. Synchronized Euclidean Distance (SED).

When compared to Perpendicular Euclidean distance, Synchronized Euclidean Dis-
tance consider the time dimension, it assumes the speed between two points is a constant.

Figure 3. Perpendicular Euclidean distance.

Definition 4. Synchronized Euclidean Distance (SED).

When compared to Perpendicular Euclidean distance, Synchronized Euclidean Dis-
tance consider the time dimension, it assumes the speed between two points is a constant.
Assuming that the point on the trajectory segment PsPe, named P′m(t′m, x′m, y′m), is the syn-

Electronics 2023, 12, 3569 7 of 21

chronization point of trajectory point P′m, then the synchronized Euclidean distance from
Pm to P′m(t′m, x′m, y′m) is defined in Equation (4):

SED(Pm) =

√
(xm − x′m)

2 + (ym − y′m)
2 (4)

x′m = xs +
xe − xs

te − ts
(tm − ts) (5)

y′m = ys +
ye − ys

te − ts
(tm − ts) (6)

In these equations, x′m in Equation (5) and y′m in Equation (6) are synchronization points.
As shown in Figure 4, assuming that trajectory points P1 and P2 are retained while P3 is

discarded, P3 is the synchronization point of P3, which is located in trajectory segment P1P2.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 23

Assuming that the point on the trajectory segment s eP P , named m m m m(t' , x' , y')P' , is the
synchronization point of trajectory point mP' , then the synchronized Euclidean distance
from mP to m m m m(t' , x' , y')P' is defined in Equation (4):

2 2() (') (')m m m m mSED P x x y y= +− − (4)

' ()e s
m s m s

e s

x xx x t t
t t

−= + −
−

 (5)

' ()e s
m s m s

e s

y yy y t t
t t

−= + −
−

 (6)

In these equations, 'mx in Equation (5) and 'my in Equation (6) are synchroniza-
tion points.

As shown in Figure 4, assuming that trajectory points 1P and 2P are retained
while 3P is discarded, 3P is the synchronization point of 3P , which is located in tra-
jectory segment 1 2P P .

Figure 4. Synchronous Euclidean distance.

5. Method Design
Figure 5 fully describes the technology roadmap in this paper. The main steps include

data acquisition, data pre-processing, algorithm parallelization, and evaluation.

Figure 5. Technology roadmap.

5.1. Data Pre-Processing
GPS positioning devices deployed on buses and taxis read and transmit GPS records

to the big data platform through mobile Internet or 4G/5G. The big data platform receives
and retains these GPS trajectory datasets. Besides GPS data, the platform also stores other
data sets, for example, bus lines and stations, bus scheduling, road network, smart card
records.

Figure 4. Synchronous Euclidean distance.

5. Method Design

Figure 5 fully describes the technology roadmap in this paper. The main steps include
data acquisition, data pre-processing, algorithm parallelization, and evaluation.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 23

Assuming that the point on the trajectory segment s eP P , named m m m m(t' , x' , y')P' , is the
synchronization point of trajectory point mP' , then the synchronized Euclidean distance
from mP to m m m m(t' , x' , y')P' is defined in Equation (4):

2 2() (') (')m m m m mSED P x x y y= +− − (4)

' ()e s
m s m s

e s

x xx x t t
t t

−= + −
−

 (5)

' ()e s
m s m s

e s

y yy y t t
t t

−= + −
−

 (6)

In these equations, 'mx in Equation (5) and 'my in Equation (6) are synchroniza-
tion points.

As shown in Figure 4, assuming that trajectory points 1P and 2P are retained
while 3P is discarded, 3P is the synchronization point of 3P , which is located in tra-
jectory segment 1 2P P .

Figure 4. Synchronous Euclidean distance.

5. Method Design
Figure 5 fully describes the technology roadmap in this paper. The main steps include

data acquisition, data pre-processing, algorithm parallelization, and evaluation.

Figure 5. Technology roadmap.

5.1. Data Pre-Processing
GPS positioning devices deployed on buses and taxis read and transmit GPS records

to the big data platform through mobile Internet or 4G/5G. The big data platform receives
and retains these GPS trajectory datasets. Besides GPS data, the platform also stores other
data sets, for example, bus lines and stations, bus scheduling, road network, smart card
records.

Figure 5. Technology roadmap.

5.1. Data Pre-Processing

GPS positioning devices deployed on buses and taxis read and transmit GPS records to
the big data platform through mobile Internet or 4G/5G. The big data platform receives and
retains these GPS trajectory datasets. Besides GPS data, the platform also stores other data
sets, for example, bus lines and stations, bus scheduling, road network, smart card records.

Due to the limitations of the positioning device’s accuracy, signal instability, and other
reasons, various data quality issues exist with the original GPS trajectory data. For example,
there are many outliers in GPS points, and many GPS points deviate from the actual road
network. Before trajectory compression, we conduct data pre-processing on the original
GPS dataset. The pre-processing mainly includes two parts, GPS noise filtering and GPS
map matching.

Electronics 2023, 12, 3569 8 of 21

5.1.1. GPS Noise Cancellation

According to data exploration, abnormalities in GPS trajectories can be divided into
three categories: range anomaly, jump anomaly, and position coincidence. Generally, a
vehicle’s trajectory should be located on continuous road segments, and the corresponding
sequence of GPS points should fall on the road network in the digital map. The details of
these three categories are as follows:

• Range anomaly. The normal longitude range is 0–180◦, and the normal latitude range is
0–90◦. A range anomaly point means its longitude or latitude is not within the normal
range. Such abnormal points are usually generated by errors in the positioning devices.

• Jump anomaly. Although the longitude and latitude of GPS are both within the normal
range, obvious jump points still appear. It means a point significantly deviates from
the rest points of the original trajectory. Possible reasons for the deviation include
the accuracy of the positioning device and the obstruction of GPS signals by high-
rise buildings.

• Position coincidence. This kind of point is a sequence of continuous GPS points,
characterized by different time stamps, with a non-zero speed but no changed position.
These kinds of anomalies are often caused by tunnels or viaducts. In detail, the GPS
signal of a vehicle is being blocked and its location cannot be updated on time when
passing through the tunnel or under the viaduct.

This paper utilizes an algorithm based on the heuristic GPS exception filtering [1].
The core idea of this algorithm is to calculate the difference between adjacent points in
distance and time to obtain the instantaneous speed of the bus, and to determine whether it
is an abnormal point by comparing the obtained speed with the specified speed threshold.
During the detection process, we recorded the weights of abnormal data. Finally, abnormal
points with high weight values will be removed from the original trajectory. After that, the
filtered trajectory will be returned.

5.1.2. GPS Map Matching

A set of algorithms, including FMM [14] and ST-Matching [33], can address map
matching for raw GPS trajectories. Based on the evaluation results in Ref. [14], this paper
has employed the Fast Map Matching Algorithm (FMM) to rectify positioning errors in the
original GPS trajectory.

FMM combines HMM (Hidden Markov Model) and pre-computation technology,
which takes an original trajectory, road network as input, and outputs the matched GPS
trajectory. After, a group of points that deviate from the road network are corrected, and all
points of the matched GPS trajectory are located in the road network. Assume the input
trajectory is represented as TR, and the road network graph is denoted G<V, E>. In detail,
E is a set of edges, each edge stands for a road segment. V is a set of vertices, a pair of
one start vertex, one end vertex forms an edge. For each trajectory, it will export a path
and store this path as sequence of edges and their corresponding geometries. Using an
Upper Bound Origin Destination Table (UBODT), pre-computation stores all road network
shortest path pairs within a certain threshold.

In the first stage, the pre-computation algorithm takes the road network graph and the
distance upper bound ∆ of all shortest path pairs as inputs, then calculates the single-source
shortest path and outputs the Upper Bound Origin Destination Table. In the second stage,
based on considering the GPS error and topological constraint, HMM is incorporated with
pre-computation to infer the path that the vehicle passed through. In detail, this stage
can be further divided into four steps: CS (Candidate search), OPI (OPI integrated with
UBODT), CPC (complete path construction), and GC (geometry construction). The CS step
searches for the corresponding candidate edges for each point in the trajectory. Based on
the HMM model, the OPI step firstly constructs a transition graph of candidate trajectories
and queries the SP (shortest path pair) distance among candidate trajectories. Then, it
derives the optimal path of the trajectory. In the CPC step, the SPs of continuous candidate
paths in the optimal path will be connected to construct a complete path. The GC step

Electronics 2023, 12, 3569 9 of 21

constructs the corresponding geometric. Finally, after the above processes, the original GPS
trajectory can be corrected onto the road network of the digital map.

Figure 6 shows the comparison between an original trajectory (left side) and the
corresponding matched trajectory (right side). We can clearly see from this figure that a
group of green circles deviates from the road segments, while all points in the matched
trajectory are located on the road segments.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 23

stage, based on considering the GPS error and topological constraint, HMM is incorpo-
rated with pre-computation to infer the path that the vehicle passed through. In detail,
this stage can be further divided into four steps: CS (Candidate search), OPI (OPI inte-
grated with UBODT), CPC (complete path construction), and GC (geometry construction).
The CS step searches for the corresponding candidate edges for each point in the trajec-
tory. Based on the HMM model, the OPI step firstly constructs a transition graph of can-
didate trajectories and queries the SP (shortest path pair) distance among candidate tra-
jectories. Then, it derives the optimal path of the trajectory. In the CPC step, the SPs of
continuous candidate paths in the optimal path will be connected to construct a complete
path. The GC step constructs the corresponding geometric. Finally, after the above pro-
cesses, the original GPS trajectory can be corrected onto the road network of the digital
map.

Figure 6 shows the comparison between an original trajectory (left side) and the cor-
responding matched trajectory (right side). We can clearly see from this figure that a group
of green circles deviates from the road segments, while all points in the matched trajectory
are located on the road segments.

Figure 6. The comparison between the original trajectory (a) and the matched trajectory (b).

5.2. Trajectory Compression Method
This paper has parallelized five classic trajectory compression algorithms in Spark

platform. These algorithms are DP algorithm, SW algorithm, TD-TR algorithm, SQUISH,
and V-DP algorithm. Due to space limitation, this section only provides detailed descrip-
tions of DP and SW algorithms, details about TD-TR algorithm, SQUISH algorithm, and
V-DP algorithm can be found in Refs. [4,6,7], respectively. We have referenced the ap-
proach outlined in Ref. [7] and made improvements to it. Therefore, we call the improved
algorithm V-DP (Velocity-Aware Douglas–Peucker).

5.2.1. DP Algorithm
The DP algorithm is one of the most classic offline compression algorithms. The prin-

ciple is to reduce the number of points in the original trajectory, and make the compressed
trajectory approximate the original trajectory while ensuring compression ratio. The dis-
tance used in the DP algorithm is the perpendicular Euclidean distance. Figure 7 fully
describes how the DP algorithm compresses an original trajectory with nine points to the
matched trajectory with five points.

The main steps are as follows:
Step 1: Firstly, it connects the head point and tail point of the input trajectory to form

a head-tail segment. Secondly, it calculates the perpendicular Euclidean distance (PED)
from the middle point (the middle point is outside the head point and tail point) to the
straight line. Finally, it finds the maximum distance, and then compares it with the given
compression distance threshold;

Figure 6. The comparison between the original trajectory (a) and the matched trajectory (b).

5.2. Trajectory Compression Method

This paper has parallelized five classic trajectory compression algorithms in Spark plat-
form. These algorithms are DP algorithm, SW algorithm, TD-TR algorithm, SQUISH, and
V-DP algorithm. Due to space limitation, this section only provides detailed descriptions of
DP and SW algorithms, details about TD-TR algorithm, SQUISH algorithm, and V-DP algo-
rithm can be found in Refs. [4,6,7], respectively. We have referenced the approach outlined
in Ref. [7] and made improvements to it. Therefore, we call the improved algorithm V-DP
(Velocity-Aware Douglas–Peucker).

5.2.1. DP Algorithm

The DP algorithm is one of the most classic offline compression algorithms. The
principle is to reduce the number of points in the original trajectory, and make the com-
pressed trajectory approximate the original trajectory while ensuring compression ratio.
The distance used in the DP algorithm is the perpendicular Euclidean distance. Figure 7
fully describes how the DP algorithm compresses an original trajectory with nine points to
the matched trajectory with five points.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 23

Step 2: If maxD δ≤ , it discards all the middle points and only retains the head point
and tail point, then the segment can be approximately viewed as the compressed trajec-
tory of the original trajectory;

Step 3: If maxD δ≥ , then it keeps this point and make it the middle point to further
divide the trajectory into two parts. The system repeats the above steps (step 1, step 2) for
each part until all trajectories’ m axD δ≤ and end compression. Finally, the trajectory
composed of the remaining points is the compressed trajectory.

From the above steps, it can be concluded that the compression accuracy is closely
related to the distance threshold. The larger the threshold, the greater the simplification,
and the more trajectory points will be reduced; On the contrary, the smaller the threshold,
the smaller the simplification, and the more trajectory points will be retained, the more
completely the shape of the original trajectory will be preserved. We take Figure 7 as an
example to illuminate how the DP algorithm compresses a raw GPS trajectory.

Figure 7. Schematic diagram of the DP algorithm.

Given the distance threshold δ , as depicted in Figure 7, the process begins by con-
necting points 1P and 9P to form segment 1 9P P ; the segment belongs to the curve. Af-
ter calculating the distance maxPED from other points to segment 1 9P P , it can be ob-
served that 4()PED P δ> , so the point 4P should be reserved, and the segment 1 9P P

should be cut into two segments, that is, segment 1 4P P and 4 9P P . In the segment 1 4P P
, both the points 2P and 3P are discarded due to 2()PED P δ< and 3()PED P δ< , and

the segment 1 4PP becomes part of the compressed trajectory. Moving to the segment

4 9P P , where 6()PED P δ> , point 6P is reserved, and the segment 4 9P P is split into

two new segments: 4 6P P and 6 9P P . In the segment 4 6P P , due to 5()PED P δ< ,

point 5P is discarded, and the segment 4 6P P becomes part of the compressed trajec-
tory. In the segment 6 9P P , with 8()PED P δ> , point 8P is reserved, leading to the cre-

ation of two new segments: 6 8P P and 8 9P P . The segment 8 9P P becomes a part of the
compressed trajectory. Transitioning to the segment 6 8P P , point 7P is excluded based
on 7()PED P δ< . Following the aforementioned steps, only the points 1P , 4P , 6P , 8P
, and 9P remain. These points are connected to form the compressed trajectory. The
compressed trajectory can be represented as follows: 1 4 6 8 9 , , }{ , ,TR P P P P P= .
The details of the DP algorithm described in Algorithm 1.

Algorithm 1: Douglas–Peucker

Figure 7. Schematic diagram of the DP algorithm.

The main steps are as follows:
Step 1: Firstly, it connects the head point and tail point of the input trajectory to form

a head-tail segment. Secondly, it calculates the perpendicular Euclidean distance (PED)
from the middle point (the middle point is outside the head point and tail point) to the

Electronics 2023, 12, 3569 10 of 21

straight line. Finally, it finds the maximum distance, and then compares it with the given
compression distance threshold;

Step 2: If Dmax ≤ δ, it discards all the middle points and only retains the head point
and tail point, then the segment can be approximately viewed as the compressed trajectory
of the original trajectory;

Step 3: If Dmax ≥ δ, then it keeps this point and make it the middle point to further
divide the trajectory into two parts. The system repeats the above steps (step 1, step 2)
for each part until all trajectories’ Dmax ≤ δ and end compression. Finally, the trajectory
composed of the remaining points is the compressed trajectory.

From the above steps, it can be concluded that the compression accuracy is closely
related to the distance threshold. The larger the threshold, the greater the simplification,
and the more trajectory points will be reduced; On the contrary, the smaller the threshold,
the smaller the simplification, and the more trajectory points will be retained, the more
completely the shape of the original trajectory will be preserved. We take Figure 7 as an
example to illuminate how the DP algorithm compresses a raw GPS trajectory.

Given the distance threshold δ, as depicted in Figure 7, the process begins by con-
necting points P1 and P9 to form segment P1P9; the segment belongs to the curve. After
calculating the distance PEDmax from other points to segment P1P9, it can be observed that
PED(P4) > δ, so the point P4 should be reserved, and the segment P1P9 should be cut into
two segments, that is, segment P1P4 and P4P9. In the segment P1P4, both the points P2 and
P3 are discarded due to PED(P2) < δ and PED(P3) < δ, and the segment P1P4 becomes
part of the compressed trajectory. Moving to the segment P4P9, where PED(P6) > δ, point
P6 is reserved, and the segment P4P9 is split into two new segments: P4P6 and P6P9. In the
segment P4P6, due to PED(P5) < δ, point P5 is discarded, and the segment P4P6 becomes
part of the compressed trajectory. In the segment P6P9, with PED(P8) > δ, point P8 is
reserved, leading to the creation of two new segments: P6P8 and P8P9. The segment P8P9
becomes a part of the compressed trajectory. Transitioning to the segment P6P8, point P7
is excluded based on PED(P7) < δ. Following the aforementioned steps, only the points
P1, P4, P6, P8, and P9 remain. These points are connected to form the compressed trajectory.
The compressed trajectory can be represented as follows: TR = {P1, P4, P6, P8, P9}.

The details of the DP algorithm described in Algorithm 1.

Algorithm 1: Douglas–Peucker

Input: TR, δ. //TR is the original trajectory; δ is the distance threshold.
Output: resTR, // resTR is the output compressed trajectory.
1 procedure DPCompress (TR, δ)
2 dmax ← 0
3 index ← 0
4 resTR← ∅
5 len← TR.lenght− 1
6 for i = 1→ i = len do
7 d = getDistance(TR[i], TR[0], TR[len])// the perpendicular Euclidean distance
8 if d > dmax then
9 index ← i
10 dmax ← d
11 end if
12 end for
13 if dmax > δ then
14 le f tTR = DPCompress(TR(0, index), δ)// the left part
15 rightTR = DPCompress(TR(index, len), δ)// the right part
16 resTR = merge(le f tTR(0, le f tTR.length− 1), rightTR(0, rightTR.length))
17 else
18 resTR = TR(0, len)
19 end if
20 return resTR
21 end procedure

Electronics 2023, 12, 3569 11 of 21

5.2.2. SW Algorithm

Compared to the DP and TD-TR algorithms, the sliding window algorithm is one of the
classical online compression techniques. Its core idea is to initiate a sliding window with an
initial size of 1, starting from a specific point. Trajectory points are then sequentially added
to this window, forming a segment that connects the starting point and the added point.
The algorithm calculates the perpendicular Euclidean distance between the midpoint and
the segment. If the perpendicular Euclidean distance of a midpoint exceeds the predefined
distance threshold, the preceding point of the added point is marked for retention. The
added point then becomes the new starting point for the sliding window. On the other
hand, if the perpendicular Euclidean distances of all midpoints do not exceed the threshold,
the algorithm continues adding new points to the window until it reaches the last point in
the trajectory. We take Figure 8 as an example to illuminate how SW algorithm compresses
a raw GPS trajectory.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 23

Figure 8. Schematic diagram of the SW algorithm.

As shown in Figure 8, given a distance threshold δ , we initially set the window to
size 1, utilizing point 1P as the starting point for the sliding window. The points 2P

and 3P are subsequently added, forming a new segment called 1 3P P . Since
2()PED P δ< , we continue by adding point 4P , creating a segment named 1 4P P . Con-

tinuously, due to 2()PED P δ< and 3()PED P δ< , we proceed to include point 5P , re-

sulting in a segment called 1 5P P . At this moment, the distance from the point P3 to the
segment 1 5P P is 3()PED P δ> ; we designate P4 as a retained point. The point 5P now
serves as the fresh starting point for the sliding window, allowing us to add the points

6P and 7P . With distance 6()PED P δ< , we introduce point 8P , forming a segment

5 8P P . Owing to 6()PED P δ< and 7()PED P δ< , we persist by including point 9P .

This creates a segment 5 9P P , and once again 8P is identified as a retained point because
of 8()PED P δ> . Transitioning the starting point to point 9P , we continue the process

by incorporating points 10P and 11P forming a segment 9 11P P . As point 11P is the
final point of the original trajectory and 10()PED P δ< meets the distance criterion, the
traversal process concludes. By sequentially connecting the starting points of the sliding
window with the retained points, the resulting compressed trajectory is obtained. Within
the illustration, points 1P , 5P , and 9P mark the window’s starting points; points 4P
and 8P are retained; and point 11P represents the trajectory’s termination. Thus, the
compressed trajectory is derived as indicated: 1 4 5 8 9 11{ }, , , , ,TR P P P P P P= .

The details of the SW algorithm described in Algorithm 2.

Algorithm 2: Sliding-Window
Input: TR, δ. //TR is the original trajectory; δ is the distance threshold.
Output: resTR, // resTR is the output compressed trajectory.
1 procedure SWCompress (TR, δ)
2 ← ∅resTR
3 ← ()resTR TR 0
4 ← −. 1len TR lenght
5 ←. 1window size // Initialize the window size to 1
6 for = → =1i i len do
7 ←window window +TR(0)
8 if . 3windowszie > then

Figure 8. Schematic diagram of the SW algorithm.

As shown in Figure 8, given a distance threshold δ, we initially set the window to size
1, utilizing point P1 as the starting point for the sliding window. The points P2 and P3 are
subsequently added, forming a new segment called P1P3. Since PED(P2) < δ, we continue
by adding point P4, creating a segment named P1P4. Continuously, due to PED(P2) < δ
and PED(P3) < δ, we proceed to include point P5, resulting in a segment called P1P5.
At this moment, the distance from the point P3 to the segment P1P5 is PED(P3) > δ; we
designate P4 as a retained point. The point P5 now serves as the fresh starting point for the
sliding window, allowing us to add the points P6 and P7. With distance PED(P6) < δ, we
introduce point P8, forming a segment P5P8. Owing to PED(P6) < δ and PED(P7) < δ, we
persist by including point P9. This creates a segment P5P9, and once again P8 is identified
as a retained point because of PED(P8) > δ. Transitioning the starting point to point P9,
we continue the process by incorporating points P10 and P11 forming a segment P9P11. As
point P11 is the final point of the original trajectory and PED(P10) < δ meets the distance
criterion, the traversal process concludes. By sequentially connecting the starting points
of the sliding window with the retained points, the resulting compressed trajectory is
obtained. Within the illustration, points P1, P5, and P9 mark the window’s starting points;
points P4 and P8 are retained; and point P11 represents the trajectory’s termination. Thus,
the compressed trajectory is derived as indicated: TR = {P1, P4, P5, P8, P9, P11}.

The details of the SW algorithm described in Algorithm 2.

Electronics 2023, 12, 3569 12 of 21

Algorithm 2: Sliding-Window

Input: TR, δ. //TR is the original trajectory; δ is the distance threshold.
Output: resTR, // resTR is the output compressed trajectory.
1 procedure SWCompress (TR, δ)
2 resTR← ∅
3 resTR← TR(0)
4 len← TR.lenght− 1
5 window.size← 1 // Initialize the window size to 1
6 for i = 1→ i = len do
7 window← window + TR(0)
8 if window.szie > 3 then
9 d = getDistance(TR[j], TR[0], TR[i]) // 0 < j < i, calculate PED distance
10 // distance from the middle point to the head and tail point in the window
11 if d > δ then ///determine the size of the distance and update the window
12 resTR← resTR + TR(i− 1)
13 window.update
14 end if
15 end if
16 end for
17 resTR← resTR + TR(len)
18 return resTR
19 end procedure

5.3. Parallel Implementation Based on RDD

Section 5.2 lists five classic trajectory compression algorithms, all of which can only be
executed in a single-threaded manner and are limited to running in a single environment.
In the case of massive incremental and historical trajectory data, these algorithms are
insufficient to compress incremental GPS datasets with hundreds of GBs in an acceptable
time cost.

This subsection will introduce how we employ Spark and RDD to perform pre-
processing and compression on a large-scale trajectory dataset in a parallel way. Spark
provides a programming model based on the Directed Acyclic Graph (DAG), which is more
expressive than MapReduce. RDD (Resilient Distributed Datasets) is a core component
in Spark ecosystem, which organizes dataset in the memory. It is a collection of elements
partitioned across the nodes of the cluster that can be operated in parallel. A RDD consists
of a group of partitions and each RDD depends on other RDDs. DAG maintains the link-
ages among different RDDs according to the source code. The job scheduler optimizes the
workflow of a job and divides the job into different stages according to these linkages.

Figure 9 depicts the workflow of trajectory compression. The input dataset is GPS
positioning records stored in HDFS. A dotted box stands for a RDD, and a gray square
means a partition. An arrow denotes the dependency among different RDDs. All these
RDDs form a pipeline to perform data pre-processing and trajectory compression. The left
side lists the operators being applied on different RDDs, and the right shows the RDDs and
detail elements. The primary steps are as follows:

Step 1: GPS records input. It loads the GPS record dataset from HDFS to memory and
initiates the first RDD. Each GPS record contains approximately twenty fields.

Step 2: Data extraction. It extracts a group of fields from the original GPS record,
which include vehicle identity, time stamp, latitude, and longitude. Each element stands
for a point.

Step 3: Trajectory generation. It employs the GroupBy operator on the RDD generated
in Step 2. In detail, the operator groups and aggregates these trajectory points according
to vehicle identity, then sorts all points for each group by time, and finally generates a
complete trajectory for each vehicle.

Electronics 2023, 12, 3569 13 of 21

Step 4: Noise filtering. It employs the MapValues and a UDF (User Defined Function)
operator on the RDD generated in Step 3. This UDF implements heuristic noise filtering
method to generate filtered GPS trajectories.

Step 5: Trajectory compression. It employs the MapValues and a UDF (User Defined
Function) operator on the RDD generated in Step 4. This UDF implemented a classic
trajectory compression algorithm, which takes a filtered trajectory as input and outputs a
compressed trajectory.

Step 6: Compressed trajectory output. It saves the RDD generated in Step 5 to HDFS.
Based on this workflow, we have implemented a pipeline-based solution that auto-

matically performs preprocessing and compressing for continuous GPS trajectories on the
Spark platform.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 23

Based on this workflow, we have implemented a pipeline-based solution that auto-
matically performs preprocessing and compressing for continuous GPS trajectories on the
Spark platform.

Figure 9. The pipeline and workflow of trajectory compression in Spark.

With the user-defined function mechanism, the end-users can accomplish a series of
independent data-processing steps. For instance, all data-processing steps, such as noise
filtering, map matching, data partitioning, and trajectory compression, could be imple-
mented as user-defined functions. This capability enables operators to finely customize
and control the data-processing workflow based on specific requirements.

5.4. Evaluation Indicator
Generally, the GPS trajectory compression algorithm can be measured from three as-

pects: compression time, compression ratio, and recovery effect.

Definition 5. Compression time T. Compression time refers to the time required to complete com-
pression. Assuming the timestamp of the start of compression is 1T and the timestamp when com-
pression is finished is 2T , then the compression time T can be defined as Equation (7):

2 1T T T= − (7)

Definition 6. Compression ratio. It measures the space saved by a compression algorithm. Assum-
ing the number of an original trajectory points is 1S and the number of corresponding compressed
trajectory points is 2S , then the compression ratio R can be defined as Equation (8):

2

1
1
S

R
S

= − (8)

Under the premise of ensuring compression accuracy, the higher the compression rate, the
better the compression effect will be.

Definition 7. Average SED error. The average SED error refers to the average error between the
position of a discarded point in the original trajectory and its corresponding position in the com-
pressed trajectory; it reflects the trajectory difference before and after compression. The calculation
formula is Equation (9):

1(())/inSED SED P ni= = (9)

Figure 9. The pipeline and workflow of trajectory compression in Spark.

With the user-defined function mechanism, the end-users can accomplish a series of
independent data-processing steps. For instance, all data-processing steps, such as noise
filtering, map matching, data partitioning, and trajectory compression, could be imple-
mented as user-defined functions. This capability enables operators to finely customize
and control the data-processing workflow based on specific requirements.

5.4. Evaluation Indicator

Generally, the GPS trajectory compression algorithm can be measured from three
aspects: compression time, compression ratio, and recovery effect.

Definition 5. Compression time T. Compression time refers to the time required to complete
compression. Assuming the timestamp of the start of compression is T1 and the timestamp when
compression is finished is T2, then the compression time T can be defined as Equation (7):

T = T2 − T1 (7)

Definition 6. Compression ratio. It measures the space saved by a compression algorithm. Assum-
ing the number of an original trajectory points is S1 and the number of corresponding compressed
trajectory points is S2, then the compression ratio R can be defined as Equation (8):

R = 1− S2

S1
(8)

Under the premise of ensuring compression accuracy, the higher the compression rate, the
better the compression effect will be.

Electronics 2023, 12, 3569 14 of 21

Definition 7. Average SED error. The average SED error refers to the average error between the
position of a discarded point in the original trajectory and its corresponding position in the com-
pressed trajectory; it reflects the trajectory difference before and after compression. The calculation
formula is Equation (9):

SED = (∑n
i=1 SED(Pi))/n (9)

In Equation (9), n represents the number of points in the original trajectory, and SED
(Pi) represents the synchronized Euclidean distance between the i-th point in the original
trajectory and its corresponding point in the compressed trajectory.

6. Experimental Result Analysis

This section provides a comprehensive evaluation of the aforementioned methods,
examining their performance in various aspects, including visualized comparison, execu-
tion time, data compression ratio, threshold, average error, and scalability. The evaluation
is conducted in great detail to provide a thorough understanding of the strengths and
limitations of each method.

All experiments in this paper were completed in a Spark cluster with 15 nodes. This
Spark cluster consists of 1 master node and 14 worker nodes, and each node enjoys identical
software and hardware configurations. Each node is a virtual machine and is equipped
with 8 cores and 16 GB memory. The hardware configurations of the underlying physical
machine are two 8-core Intel (R) Xeon (R) Silver 4110 CPUs @ 2.10GHz processors and
32 GB DDR memory. The software versions used are Hadoop-2.7.7, Spark-2.4.0, Scala-2.1.12,
Sbt-1.2.7, etc. Five trajectory compression algorithms are implemented in Spark (Scala),
and visual analysis is conducted in Python 3.6.2.

The trajectory dataset was collected from Shenzhen transportation system in January
2019. This trajectory dataset was generated by 20,000 taxis in 31 days. The number of
GPS records is 1.7 billion, and the corresponding data size is 117.5 GB. Each GPS records
contains many fields, such as vehicle ID, time stamp, latitude, and longitude.

6.1. Compression Visualization Comparison

We employ an example to conduct a visualized comparison among these five trajectory
compression algorithms. The trajectory was produced by a taxi, data collected time is from
2 January 2019 12:28:53 to 2 January 2019 13:51:26, and the number of points in this trajectory
is 224. According to our exploration of the trajectory dataset, the distance threshold was set
to 20 m for all algorithms, and the speed threshold was set to 20 m/s for the V-DP algorithm.

Figure 10 depicts six different trajectories, the first is an original trajectory, and the
other five are compressed trajectories. As aforementioned, there are 224 trajectory points
in the original trajectory. As to five trajectory compression algorithms, the V-DP, SW, DP,
TD-TR, and SQUISH retain 74, 82, 83, 104, and 121 points, respectively. The compression
ratios of these five algorithms are 67%, 63%, 62%, 53%, and 46%, respectively. It is clearly
that the V-DP algorithm has the highest compression ratio.

Comparing the two different trajectories compressed by DP and V-DP algorithms, we
can clearly see a significant difference between different green circles in subfigure (b) and
(c), respectively. In detail, a few points in the green circle of subfigure (c) are removed from
the original trajectory because the trajectory velocity in the green circle is below the speed
threshold. Thus, the V-DP achieves higher compression ratio than that of DP.

In addition, we have another interesting observation among six black circles in all
subfigures. These six black circles can be classified into two categories, the first group
consists of subfigure (b), (c), and (e), and the second group consists of subfigure (d) and
(f). Points in each black circle of the second group are not consecutive while points in
each black circle of the first group are consecutive. This is because the V-DP, DP, and SW
algorithms use perpendicular Euclidean distance to calculate distances, while the TD-TR
and SQUISH algorithms use synchronized Euclidean distances.

Electronics 2023, 12, 3569 15 of 21

Except the above findings, it can also be observed that the red circle in the subfigure
(f) is similar to the subfigure (a), while the other four diagrams do not have trajectory
points of (a), this better characterizes the characteristics of the online SQUISH algorithm.
Finally, after comparing the visualization of the original trajectory and five compressed
trajectories, we found that all compression algorithms are largely identical with minor
differences. Thus, an appropriate compression algorithm does not alter the information of
the original trajectory.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 23

In Equation (9), n represents the number of points in the original trajectory, and SED
(Pi) represents the synchronized Euclidean distance between the i-th point in the original
trajectory and its corresponding point in the compressed trajectory.

6. Experimental Result Analysis
This section provides a comprehensive evaluation of the aforementioned methods,

examining their performance in various aspects, including visualized comparison, execu-
tion time, data compression ratio, threshold, average error, and scalability. The evaluation
is conducted in great detail to provide a thorough understanding of the strengths and
limitations of each method.

All experiments in this paper were completed in a Spark cluster with 15 nodes. This
Spark cluster consists of 1 master node and 14 worker nodes, and each node enjoys iden-
tical software and hardware configurations. Each node is a virtual machine and is
equipped with 8 cores and 16 GB memory. The hardware configurations of the underlying
physical machine are two 8-core Intel (R) Xeon (R) Silver 4110 CPUs @ 2.10GHz processors
and 32 GB DDR memory. The software versions used are Hadoop-2.7.7, Spark-2.4.0, Scala-
2.1.12, Sbt-1.2.7, etc. Five trajectory compression algorithms are implemented in Spark
(Scala), and visual analysis is conducted in Python 3.6.2.

The trajectory dataset was collected from Shenzhen transportation system in January
2019. This trajectory dataset was generated by 20,000 taxis in 31 days. The number of GPS
records is 1.7 billion, and the corresponding data size is 117.5 GB. Each GPS records con-
tains many fields, such as vehicle ID, time stamp, latitude, and longitude.

6.1. Compression Visualization Comparison
We employ an example to conduct a visualized comparison among these five trajec-

tory compression algorithms. The trajectory was produced by a taxi, data collected time
is from 2 January 2019 12:28:53 to 2 January 2019 13:51:26, and the number of points in this
trajectory is 224. According to our exploration of the trajectory dataset, the distance thresh-
old was set to 20 m for all algorithms, and the speed threshold was set to 20 m/s for the V-
DP algorithm.

Figure 10 depicts six different trajectories, the first is an original trajectory, and the
other five are compressed trajectories. As aforementioned, there are 224 trajectory points
in the original trajectory. As to five trajectory compression algorithms, the V-DP, SW, DP,
TD-TR, and SQUISH retain 74, 82, 83, 104, and 121 points, respectively. The compression
ratios of these five algorithms are 67%, 63%, 62%, 53%, and 46%, respectively. It is clearly
that the V-DP algorithm has the highest compression ratio.

Original trajectory diagram with 224 points DP trajectory diagram with 83 points V-DP trajectory diagram with 74 points

(a) (b) (c)

Electronics 2023, 12, x FOR PEER REVIEW 16 of 23

TD-TR trajectory diagram with 104 points SW trajectory diagram with 82 points SQUISH trajectory diagram with 121 points

(d) (e) (f)

Figure 10. Compression visualization diagram. (a) Original trajectory; (b) DP; (c) V-DP; (d) TD-TR;
(e) SW; (f) SQUISH.

Comparing the two different trajectories compressed by DP and V-DP algorithms,
we can clearly see a significant difference between different green circles in subfigure (b)
and (c), respectively. In detail, a few points in the green circle of subfigure (c) are removed
from the original trajectory because the trajectory velocity in the green circle is below the
speed threshold. Thus, the V-DP achieves higher compression ratio than that of DP.

In addition, we have another interesting observation among six black circles in all
subfigures. These six black circles can be classified into two categories, the first group con-
sists of subfigure (b), (c), and (e), and the second group consists of subfigure (d) and (f).
Points in each black circle of the second group are not consecutive while points in each
black circle of the first group are consecutive. This is because the V-DP, DP, and SW algo-
rithms use perpendicular Euclidean distance to calculate distances, while the TD-TR and
SQUISH algorithms use synchronized Euclidean distances.

Except the above findings, it can also be observed that the red circle in the subfigure
(f) is similar to the subfigure (a), while the other four diagrams do not have trajectory
points of (a), this better characterizes the characteristics of the online SQUISH algorithm.
Finally, after comparing the visualization of the original trajectory and five compressed
trajectories, we found that all compression algorithms are largely identical with minor
differences. Thus, an appropriate compression algorithm does not alter the information of
the original trajectory.

6.2. Compression Execution Time
Figure 11 depicts the execution times of five compression algorithms on four different

data sizes. These four datasets are 25%, 50%, 75%, and 100% of the original dataset size,
respectively. The x-axis represents different data sizes, and the y-axis stands for the exe-
cution time. It is obvious that SW has the shortest compression times, 2.31 min, 3.88 min,
5.77 min, and 7.30 min, respectively, while TD-TR has the longest compression times,
which are 8.32 min, 14.51 min, 21.18 min, and 28.35 min, respectively. From the experi-
mental results, it can be seen that as the amount of data increases, the time of various
compression algorithms increases. We can conclude that the execution time is propor-
tional to the input size and these parallelized algorithms present good scalability.

Figure 10. Compression visualization diagram. (a) Original trajectory; (b) DP; (c) V-DP; (d) TD-TR;
(e) SW; (f) SQUISH.

6.2. Compression Execution Time

Figure 11 depicts the execution times of five compression algorithms on four different
data sizes. These four datasets are 25%, 50%, 75%, and 100% of the original dataset
size, respectively. The x-axis represents different data sizes, and the y-axis stands for the
execution time. It is obvious that SW has the shortest compression times, 2.31 min, 3.88 min,
5.77 min, and 7.30 min, respectively, while TD-TR has the longest compression times, which
are 8.32 min, 14.51 min, 21.18 min, and 28.35 min, respectively. From the experimental
results, it can be seen that as the amount of data increases, the time of various compression
algorithms increases. We can conclude that the execution time is proportional to the input
size and these parallelized algorithms present good scalability.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 23

Figure 11. compression times on varying data sizes.

Across four different data sets, the execution time of TD-TR algorithm is 2.65 times
that of the DP algorithm on average. This is because the TD-TR algorithm is a variant of
the DP algorithm, and it employs a synchronized Euclidean distance, which takes time
dimension into consideration. The V-DP algorithm introduces a speed threshold to reduce
the number of points in the original trajectory. Thus, the V-DP algorithm is more efficient
than the DP algorithm. Specifically, the V-DP algorithm reduces the execution time by
11% compared to the DP algorithm. The time complexity of the DP algorithm is O(nlogn),
where n is the number of input trajectory points. When compared to the DP algorithm,
the V-DP algorithm performs a filtering strategy on the original trajectory according to
the speed, reducing the number of input points. Therefore, although the time complexity
of the V-DP algorithm is also O(nlogn), its actual execution time is less than that of the DP
algorithm. Similarly, the time complexity of the TD-TR algorithm is also O(nlogn). It sim-
ultaneously considers the time dimension and the space dimension. In contrast, the DP
algorithm only considers the space dimension. As a result, the TD-TR algorithm exhibits
a significantly higher actual execution time compared to the DP algorithm.

The SW algorithm and SQUISH algorithm are online compression algorithms, the
SW algorithm uses a perpendicular Euclidean distance, while the SQUISH algorithm uses
a synchronized Euclidean distance, and both of them use the window method. Compared
to the SW algorithm, the SQUISHs runtime is longer. In detail, the execution time of SW
algorithm saves 21% time cost over the SQUISH algorithm. The time complexity of the
SW algorithm is O(n), where n is the number of input trajectory points. The SW algorithm
has a typical time complexity that is linear. When compared to the SW algorithm, although
the time complexity of the SQUISH algorithm is also O(n), it uses a Haar wavelet-based
compression technique to reduce the size of trajectory data. Thus, the actual execution
time of it is much higher than that of the SW algorithm.

6.3. Data Compression Ratio
Figure 12 depicts the compression ratios of five compression algorithms on four dif-

ferent data sizes. It can be seen that the V-DP algorithm has the highest compression ratio,
with an average compression ratio of 77%, while the SQUISH algorithm has the lowest
compression ratio of 60%. The average compression ratio of SW is 75%, the average com-
pression ratio of DP is 74%, and the average compression ratio of TD-TR is 64%. It means
that these five algorithms can save storage costs by 23%, 40%, 25%, 26%, and 36%, respec-
tively.

Figure 11. Compression times on varying data sizes.

Electronics 2023, 12, 3569 16 of 21

Across four different data sets, the execution time of TD-TR algorithm is 2.65 times
that of the DP algorithm on average. This is because the TD-TR algorithm is a variant of
the DP algorithm, and it employs a synchronized Euclidean distance, which takes time
dimension into consideration. The V-DP algorithm introduces a speed threshold to reduce
the number of points in the original trajectory. Thus, the V-DP algorithm is more efficient
than the DP algorithm. Specifically, the V-DP algorithm reduces the execution time by
11% compared to the DP algorithm. The time complexity of the DP algorithm is O(nlogn),
where n is the number of input trajectory points. When compared to the DP algorithm,
the V-DP algorithm performs a filtering strategy on the original trajectory according to
the speed, reducing the number of input points. Therefore, although the time complexity
of the V-DP algorithm is also O(nlogn), its actual execution time is less than that of the
DP algorithm. Similarly, the time complexity of the TD-TR algorithm is also O(nlogn). It
simultaneously considers the time dimension and the space dimension. In contrast, the DP
algorithm only considers the space dimension. As a result, the TD-TR algorithm exhibits a
significantly higher actual execution time compared to the DP algorithm.

The SW algorithm and SQUISH algorithm are online compression algorithms, the SW
algorithm uses a perpendicular Euclidean distance, while the SQUISH algorithm uses a
synchronized Euclidean distance, and both of them use the window method. Compared
to the SW algorithm, the SQUISHs runtime is longer. In detail, the execution time of SW
algorithm saves 21% time cost over the SQUISH algorithm. The time complexity of the SW
algorithm is O(n), where n is the number of input trajectory points. The SW algorithm has
a typical time complexity that is linear. When compared to the SW algorithm, although
the time complexity of the SQUISH algorithm is also O(n), it uses a Haar wavelet-based
compression technique to reduce the size of trajectory data. Thus, the actual execution time
of it is much higher than that of the SW algorithm.

6.3. Data Compression Ratio

Figure 12 depicts the compression ratios of five compression algorithms on four
different data sizes. It can be seen that the V-DP algorithm has the highest compression
ratio, with an average compression ratio of 77%, while the SQUISH algorithm has the
lowest compression ratio of 60%. The average compression ratio of SW is 75%, the average
compression ratio of DP is 74%, and the average compression ratio of TD-TR is 64%. It
means that these five algorithms can save storage costs by 23%, 40%, 25%, 26%, and
36%, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 23

Figure 12. Compression ratios on varying data sizes.

In this paper, all algorithms either use a synchronized Euclidean distance or perpen-
dicular Euclidean distance to measure the distance from a point to a segment. When using
the same distance threshold, algorithms using synchronized Euclidean distances (TD-TR,
SQUISH) retain more feature points than those using perpendicular Euclidean distances.
Therefore, among offline algorithms, the compression ratio of the TD-TR algorithm is
lower than that of the DP algorithm and the V-DP algorithm. Among these online algo-
rithms, the compression ratio of the SQUISH algorithm is less than that of the SW algo-
rithm.

6.4. Threshold and Average Error
Considering the unlimited error of the SQUISH algorithm, this paper only compares

the threshold values of the other four algorithms. By setting different threshold distances,
we can conduct a systematical comparison among these four algorithms in terms of ratios
and average distance error.

Figure 13 illustrates that the average error increases continuously as the threshold
increases, revealing a near-proportional relationship. This is because, as the threshold in-
creases, more points will be discarded from the original trajectory, resulting in an increase
in the average error. Utilizing synchronized Euclidean distance, the TD-TR algorithm ex-
hibits the lowest average error. With the threshold set to 5 m, the average errors of the TD-
TR, DP, V-DP, and SW algorithms are 0.87 km, 1.29 km, 2.38 km, and 3.29 km, respectively.
As the threshold increases from 5 to 25 m, the average errors for the TD-TR algorithm
increase to 0.87 km, 2.15 km, 3.60 km, 5.20 km, and 6.95 km, respectively.

Figure 13. Average distance errors on varying thresholds.

Figure 14 depicts the compression ratios across varying thresholds for these four al-
gorithms. The figure indicates that the compression ratio is only marginally affected by
the distance threshold. When the threshold is set to 5 m, the compression ratios for the

Figure 12. Compression ratios on varying data sizes.

In this paper, all algorithms either use a synchronized Euclidean distance or perpen-
dicular Euclidean distance to measure the distance from a point to a segment. When using
the same distance threshold, algorithms using synchronized Euclidean distances (TD-TR,
SQUISH) retain more feature points than those using perpendicular Euclidean distances.
Therefore, among offline algorithms, the compression ratio of the TD-TR algorithm is lower

Electronics 2023, 12, 3569 17 of 21

than that of the DP algorithm and the V-DP algorithm. Among these online algorithms, the
compression ratio of the SQUISH algorithm is less than that of the SW algorithm.

6.4. Threshold and Average Error

Considering the unlimited error of the SQUISH algorithm, this paper only compares
the threshold values of the other four algorithms. By setting different threshold distances,
we can conduct a systematical comparison among these four algorithms in terms of ratios
and average distance error.

Figure 13 illustrates that the average error increases continuously as the threshold
increases, revealing a near-proportional relationship. This is because, as the threshold
increases, more points will be discarded from the original trajectory, resulting in an increase
in the average error. Utilizing synchronized Euclidean distance, the TD-TR algorithm
exhibits the lowest average error. With the threshold set to 5 m, the average errors of
the TD-TR, DP, V-DP, and SW algorithms are 0.87 km, 1.29 km, 2.38 km, and 3.29 km,
respectively. As the threshold increases from 5 to 25 m, the average errors for the TD-TR
algorithm increase to 0.87 km, 2.15 km, 3.60 km, 5.20 km, and 6.95 km, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 23

Figure 12. Compression ratios on varying data sizes.

In this paper, all algorithms either use a synchronized Euclidean distance or perpen-
dicular Euclidean distance to measure the distance from a point to a segment. When using
the same distance threshold, algorithms using synchronized Euclidean distances (TD-TR,
SQUISH) retain more feature points than those using perpendicular Euclidean distances.
Therefore, among offline algorithms, the compression ratio of the TD-TR algorithm is
lower than that of the DP algorithm and the V-DP algorithm. Among these online algo-
rithms, the compression ratio of the SQUISH algorithm is less than that of the SW algo-
rithm.

6.4. Threshold and Average Error
Considering the unlimited error of the SQUISH algorithm, this paper only compares

the threshold values of the other four algorithms. By setting different threshold distances,
we can conduct a systematical comparison among these four algorithms in terms of ratios
and average distance error.

Figure 13 illustrates that the average error increases continuously as the threshold
increases, revealing a near-proportional relationship. This is because, as the threshold in-
creases, more points will be discarded from the original trajectory, resulting in an increase
in the average error. Utilizing synchronized Euclidean distance, the TD-TR algorithm ex-
hibits the lowest average error. With the threshold set to 5 m, the average errors of the TD-
TR, DP, V-DP, and SW algorithms are 0.87 km, 1.29 km, 2.38 km, and 3.29 km, respectively.
As the threshold increases from 5 to 25 m, the average errors for the TD-TR algorithm
increase to 0.87 km, 2.15 km, 3.60 km, 5.20 km, and 6.95 km, respectively.

Figure 13. Average distance errors on varying thresholds.

Figure 14 depicts the compression ratios across varying thresholds for these four al-
gorithms. The figure indicates that the compression ratio is only marginally affected by
the distance threshold. When the threshold is set to 5 m, the compression ratios for the

Figure 13. Average distance errors on varying thresholds.

Figure 14 depicts the compression ratios across varying thresholds for these four
algorithms. The figure indicates that the compression ratio is only marginally affected by
the distance threshold. When the threshold is set to 5 m, the compression ratios for the
DP, TD-TR, SW, and V-DP algorithms are 68.18%, 63.71%, 69.54%, and 70.87%, respectively.
Furthermore, When the threshold is increased fivefold to reach 25 m, the compression ratios
of the DP, TD-TR, SW, and V-DP algorithms increase by only 11.22%, 8.50%, 10.12%, and
9.21%, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 23

DP, TD-TR, SW, and V-DP algorithms are 68.18%, 63.71%, 69.54%, and 70.87%, respec-
tively. Furthermore, When the threshold is increased fivefold to reach 25 m, the compres-
sion ratios of the DP, TD-TR, SW, and V-DP algorithms increase by only 11.22%, 8.50%,
10.12%, and 9.21%, respectively.

Figure 14. Compression ratios on varying thresholds.

6.5. Scalability Comparison
Figure 15 depicts the execution times for five different algorithms on four different

clusters. In this experiment, we take a 27 GB trajectory as the input data and each node
only holds one executor. These four clusters include 8, 10, 12, and 14 nodes, respectively.
As the number of executors continues to increase, the compression time shows a down-
ward trend. In detail, the execution time of V-DP drops from 350 s to 169 s when the num-
ber of executors increases from 8 to 14.

Figure 15. Compression times on varying nodes.

When the cluster size is 14, the average execution time among the five algorithms is
223 s. In another experiment, the V-DP algorithm takes only 438 s to compress 117.5 GB
trajectory data on a Spark cluster with 14 nodes.

In these experiments, we changed the number of executors from 8 to 14 worker nodes
to perform scalability comparison. Each node holds only one executor, and each executor
was assigned 8 cores and 16 GB memory. According to the suggestion of the Spark devel-
opment document, the number of partitions is set to two times the number of cores. For
example, if the total number of cores is set to 80, then the number of partitions is 160. In
our experiments, we increased the number of partitions from 80 to 240 with the step size
of 80, the compression time reaches its optimum when the number of partitions is set to
160.

With regard to memory, we increased the total memory from 128 GB to 224 GB to
evaluate the impact of memory size on performance. For a given dataset with a size of 27
GB and a memory size of 128 GB, the execution times of these five algorithms are 279 s,
688s, 197 s, 328 s, and 350 s, respectively. When the memory size is increased to 224 GB,

Figure 14. Compression ratios on varying thresholds.

6.5. Scalability Comparison

Figure 15 depicts the execution times for five different algorithms on four different
clusters. In this experiment, we take a 27 GB trajectory as the input data and each node only

Electronics 2023, 12, 3569 18 of 21

holds one executor. These four clusters include 8, 10, 12, and 14 nodes, respectively. As
the number of executors continues to increase, the compression time shows a downward
trend. In detail, the execution time of V-DP drops from 350 s to 169 s when the number of
executors increases from 8 to 14.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 23

DP, TD-TR, SW, and V-DP algorithms are 68.18%, 63.71%, 69.54%, and 70.87%, respec-
tively. Furthermore, When the threshold is increased fivefold to reach 25 m, the compres-
sion ratios of the DP, TD-TR, SW, and V-DP algorithms increase by only 11.22%, 8.50%,
10.12%, and 9.21%, respectively.

Figure 14. Compression ratios on varying thresholds.

6.5. Scalability Comparison
Figure 15 depicts the execution times for five different algorithms on four different

clusters. In this experiment, we take a 27 GB trajectory as the input data and each node
only holds one executor. These four clusters include 8, 10, 12, and 14 nodes, respectively.
As the number of executors continues to increase, the compression time shows a down-
ward trend. In detail, the execution time of V-DP drops from 350 s to 169 s when the num-
ber of executors increases from 8 to 14.

Figure 15. Compression times on varying nodes.

When the cluster size is 14, the average execution time among the five algorithms is
223 s. In another experiment, the V-DP algorithm takes only 438 s to compress 117.5 GB
trajectory data on a Spark cluster with 14 nodes.

In these experiments, we changed the number of executors from 8 to 14 worker nodes
to perform scalability comparison. Each node holds only one executor, and each executor
was assigned 8 cores and 16 GB memory. According to the suggestion of the Spark devel-
opment document, the number of partitions is set to two times the number of cores. For
example, if the total number of cores is set to 80, then the number of partitions is 160. In
our experiments, we increased the number of partitions from 80 to 240 with the step size
of 80, the compression time reaches its optimum when the number of partitions is set to
160.

With regard to memory, we increased the total memory from 128 GB to 224 GB to
evaluate the impact of memory size on performance. For a given dataset with a size of 27
GB and a memory size of 128 GB, the execution times of these five algorithms are 279 s,
688s, 197 s, 328 s, and 350 s, respectively. When the memory size is increased to 224 GB,

Figure 15. Compression times on varying nodes.

When the cluster size is 14, the average execution time among the five algorithms is
223 s. In another experiment, the V-DP algorithm takes only 438 s to compress 117.5 GB
trajectory data on a Spark cluster with 14 nodes.

In these experiments, we changed the number of executors from 8 to 14 worker
nodes to perform scalability comparison. Each node holds only one executor, and each
executor was assigned 8 cores and 16 GB memory. According to the suggestion of the Spark
development document, the number of partitions is set to two times the number of cores.
For example, if the total number of cores is set to 80, then the number of partitions is 160. In
our experiments, we increased the number of partitions from 80 to 240 with the step size of
80, the compression time reaches its optimum when the number of partitions is set to 160.

With regard to memory, we increased the total memory from 128 GB to 224 GB to
evaluate the impact of memory size on performance. For a given dataset with a size of
27 GB and a memory size of 128 GB, the execution times of these five algorithms are 279 s,
688s, 197 s, 328 s, and 350 s, respectively. When the memory size is increased to 224 GB, the
execution times of these five algorithms decrease by 32.2%, 33.4%, 27.9%, 35.7%, and 51.7%,
respectively. Figure 15 displays the execution times for each algorithm across different
memory sizes.

6.6. Query Latency Comparison

In this subsection, a set of experiments is used to compare the performance of spatial-
temporal queries before and after compression. Two spatio-temporal queries, consisting of
trajectory KNN (k-nearest neighbors) and range queries, are used in these experiments.

The KNN query takes a point p, a radius r, and an integer k as inputs. It searches for
candidate trajectory segments within the trajectory dataset and outputs a set of segments.
Each segment in this set satisfies a condition: that the segment is located within the area
determined by the center point p and the radius r. The k segments will be retained if the
number of candidate segments is larger than k.

The range query takes two points and two timestamps as inputs, and outputs a set
of trajectory segments. The bottom-left point and upper-right point together define a
rectangular region. The two timestamps represent the start time and end time, respectively.
As a result, these four input parameters collectively constitute a spatio-temporal cube. The
purpose of the range query is to retrieve a set of trajectory segments from the trajectory
dataset, with each segment in the set being located within the spatio-temporal cube.

In these experiments, two datasets are employed. The first dataset consists of original
GPS trajectories and has a size of 117.5 GB. The second dataset comprises compressed
trajectories generated using the D-VP algorithm and has a size of 27 GB. We have cho-

Electronics 2023, 12, 3569 19 of 21

sen GeoMesa [34] as the spatio-temporal database to store these GPS trajectory datasets
and execute the associated queries. For the sake of simplicity, we utilized GeoMesa’s
built-in spatio-temporal indexes. These indexes encompass XZ2 and XZ3, both designed
to efficiently organize point-based spatio-temporal datasets and expedite the process of
data retrieval.

Figure 16a illustrates the KNN query latencies for both the original and compressed
trajectory datasets across four different data sizes. A radius of 2 km is employed for
the KNN query. The query latencies for the original trajectory dataset are 5.6 s, 6.9 s,
7.3 s, and 7.6 s, respectively. In contrast, the query latencies for the compressed trajectory
dataset are 3.9 s, 4.3 s, 4.5 s, and 4.8 s, respectively. In comparison to the original dataset,
the compressed dataset exhibits time savings of 28.9%, 36.9%, 38.3%, and 37.2% for the
respective cases. Notably, a consistent advantage of the compressed trajectory is observed
as the data size reaches a certain threshold.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 23

the execution times of these five algorithms decrease by 32.2%, 33.4%, 27.9%, 35.7%, and
51.7%, respectively. Figure 15 displays the execution times for each algorithm across dif-
ferent memory sizes.

6.6. Query Latency Comparison
In this subsection, a set of experiments is used to compare the performance of spatial-

temporal queries before and after compression. Two spatio-temporal queries, consisting
of trajectory KNN (k-nearest neighbors) and range queries, are used in these experiments.

The KNN query takes a point p, a radius r, and an integer k as inputs. It searches for
candidate trajectory segments within the trajectory dataset and outputs a set of segments.
Each segment in this set satisfies a condition: that the segment is located within the area
determined by the center point p and the radius r. The k segments will be retained if the
number of candidate segments is larger than k.

The range query takes two points and two timestamps as inputs, and outputs a set of
trajectory segments. The bottom-left point and upper-right point together define a rectan-
gular region. The two timestamps represent the start time and end time, respectively. As
a result, these four input parameters collectively constitute a spatio-temporal cube. The
purpose of the range query is to retrieve a set of trajectory segments from the trajectory
dataset, with each segment in the set being located within the spatio-temporal cube.

In these experiments, two datasets are employed. The first dataset consists of original
GPS trajectories and has a size of 117.5 GB. The second dataset comprises compressed
trajectories generated using the D-VP algorithm and has a size of 27 GB. We have chosen
GeoMesa [34] as the spatio-temporal database to store these GPS trajectory datasets and
execute the associated queries. For the sake of simplicity, we utilized GeoMesa’s built-in
spatio-temporal indexes. These indexes encompass XZ2 and XZ3, both designed to effi-
ciently organize point-based spatio-temporal datasets and expedite the process of data
retrieval.

Figure 16a illustrates the KNN query latencies for both the original and compressed
trajectory datasets across four different data sizes. A radius of 2 km is employed for the
KNN query. The query latencies for the original trajectory dataset are 5.6 s, 6.9 s, 7.3 s, and
7.6 s, respectively. In contrast, the query latencies for the compressed trajectory dataset
are 3.9 s, 4.3 s, 4.5 s, and 4.8 s, respectively. In comparison to the original dataset, the
compressed dataset exhibits time savings of 28.9%, 36.9%, 38.3%, and 37.2% for the re-
spective cases. Notably, a consistent advantage of the compressed trajectory is observed
as the data size reaches a certain threshold.

(a) (b)

Figure 16. Trajectory KNN query and range query on varying data sizes; (a) KNN query; (b) range
query.

Figure 16b illustrates the range query latencies for both the original and compressed
trajectory datasets across four different data sizes. A 5 km × 5 km area and a time range of
5 h are defined for the range query. The query latencies for the original trajectory dataset
are 5.6 s, 6.9 s, 7.3 s, and 7.6 s, respectively. In contrast, the query latencies for the com-
pressed trajectory dataset are 1.6 s, 2.0 s, 2.7 s, and 3.5 s, respectively. When compared to

Figure 16. Trajectory KNN query and range query on varying data sizes; (a) KNN query;
(b) range query.

Figure 16b illustrates the range query latencies for both the original and compressed
trajectory datasets across four different data sizes. A 5 km × 5 km area and a time range of
5 h are defined for the range query. The query latencies for the original trajectory dataset are
5.6 s, 6.9 s, 7.3 s, and 7.6 s, respectively. In contrast, the query latencies for the compressed
trajectory dataset are 1.6 s, 2.0 s, 2.7 s, and 3.5 s, respectively. When compared to the original
dataset, the compressed dataset demonstrates time savings of 6.5%, 17.3%, 36.7%, and
45.6%, respectively. It is evident that this trend is observable: the larger the dataset, the
greater the efficiency of the compressed trajectory.

7. Conclusions and Future Work
7.1. Conclusions

In this paper, we parallelize a set of classical trajectory compression algorithms. These
algorithms consist of DP (Douglas–Peucker), TD-TR (Top-Down Time-Ratio), SW (Sliding
Window), SQUISH, and V-DP (Velocity-Aware Douglas–Peucker). We comprehensively
evaluate these parallelized algorithms on a very large GPS trajectory dataset, which contains
117.5 GB of a GPS trajectory dataset produced by 20,000 taxis.

The experimental results show that: (1) It takes only 438 s to compress this dataset in a
Spark cluster with 14 nodes; (2) these parallelized algorithms can save 26% storage cost on
average, and up to 40% storage cost; (3) the compressed trajectory can reduce the query
times by 38.2% and 45.6% for the KNN query and range query, respectively.

In addition, we have designed and implemented a pipeline-based solution that auto-
matically performs preprocessing and compression for continuous GPS trajectories on the
Spark platform.

Compared with the default algorithms executed in single-threaded manner running
in a single node, these parallelized algorithms can compress a large-scale trajectory dataset
in an acceptable time cost and can satisfy the efficient requirement of a large-scale GPS
trajectory dataset.

Electronics 2023, 12, 3569 20 of 21

7.2. Future Work

While the current solution is capable of compressing trajectory data of several hundred
gigabytes in a matter of minutes, it still fails to meet the real-time trajectory compres-
sion needs.

Generally, a streaming-oriented solution is more complex than that of batch processing
mode. A typical streaming-based solution consists of two big data components: a message
middleware and a stream processing engine. The former can be Kafka [35] or Pulsar [36],
while the latter can be Spark Streaming or Flink [37]. For example, Kafka receives GPS
positioning records transmitted from vehicles and notifies the tasks launched by Flink
to retrieve these records. These long-running tasks are designed to implement trajectory
compression in real-time. However, each compression task just holds a partial trajectory
rather than a complete trajectory. Even worse, the points in the partial trajectory are out of
order. This is the challenge we need to address in real-time trajectory compression.

The GPS positioning records are continuously generated by the running buses, and all
GPS records are collected and then transmitted to the pub/sub system Kafka via different
channels. In addition, a group of long-running tasks retrieves GPS records from different
partitions in Kafka. The existence of multiple transmitting paths leads to data quality
problems, such as incomplete data and data being out of order. For example, a set of GPS
points produced by a specific bus may be received by different tasks. Similarly, the points
produced by the same bus and received by the same task are in disorder. We need to design
algorithms that are clever enough to solve this challenge. The potential method needs to
consider three aspects: an appropriately sized time window, vehicle trajectory prediction,
and candidate road segment pre-fetching.

Author Contributions: Conceptualization, W.X. and X.W.; methodology, W.X. and X.W.; software,
H.L.; validation, H.L.; investigation, W.X.; writing—original draft preparation, H.L., W.X. and X.W.;
writing—review and editing, H.L., W.X. and X.W.; visualization, H.L. and W.X. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
(Number: 61862066).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–41. [CrossRef]
2. Liang, M.; Chen, W.J.; Duan, P.; Li, J. Evaluation for typical compression method of trajectory data. Bull. Surv. Mapp. 2019, 0,

60–64.
3. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its

caricature. Cartogr. Int. J. Geogr. Inf. Geovisualization 1973, 10, 112–122. [CrossRef]
4. Meratnia, N.; By, R.D. Spatiotemporal compression techniques for moving point objects. In Proceedings of the International

Conference on Extending Database Technology, Heraklion, Crete, Greece, 14–18 March 2004; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 765–782.

5. Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. An online algorithm for segmenting time series. In Proceedings of the IEEE International
Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001; pp. 289–296.

6. Muckell, J.; Hwang, J.; Patil, V.; Lawson, C.T.; Ping, F.; Ravi, S.S. SQUISH: An online approach for GPS trajectory compression. In
Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, Washington, DC, USA,
23–25 May 2011; pp. 1–8.

7. Feng, Q.S. Mining Resident Travel Hotspots and Paths Based on Taxi Trajectories. Master’s Thesis, Chongqing University,
Chongqing, China, 2016.

8. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
9. Wu, J.G.; Xia, X.; Liu, L.F. Parallel Trajectory compression method based on MapReduce. Comput. Appl. 2017, 37, 1282–1286.
10. Liang, S.Y. Research on the Method and Application of MapReduce in Mobile Track Big Data Mining. Recent Adv. Electr. Electron.

Eng. 2021, 14, 20–28. [CrossRef]

https://doi.org/10.1145/2743025
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.2174/2352096513999200720165146

Electronics 2023, 12, 3569 21 of 21

11. Yao, N.; Peng, D.L. Compression Strategy of Large Scale Trajectory Data Based on MapReduce Architecture. Chin. Comput. Syst.
2017, 38, 941–945.

12. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

13. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Stoica, I.; Franklin, M.J.; Shenker, S. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; pp. 15–28.

14. Can, Y.; Gyozo, G. Fast map matching, an algorithm integrating hidden Markov model with precomputation. Int. J. Geogr. Inf. Sci.
2018, 32, 547–570. [CrossRef]

15. Zhang, D.X.; Ding, M.T.; Yang, D.Y.; Liu, Y.; Fan, J.; Shen, H.T. Trajectory simplification: An experimental study and quality
analysis. Proc. VLDB Endow. 2018, 11, 934–946. [CrossRef]

16. Bellman, R. On the approximation of curves by line segments using dynamic programming. Arch. Intern. Med. 1961, 6, 284.
[CrossRef]

17. Cheng, Q.; Ding, Y.F. Online compression method of GPS trajectory based on road network. Comput. Syst. Appl. 2016, 25, 166–170.
18. Zhang, Q.; Cheng, Y.; Xu, L.; Ge, W. An improved sliding window trajectory data compression algorithm considering motion

characteristics. J. Surv. Mapp. Sci. Technol. 2020, 37, 622–627.
19. Su, J.H.; Zhao, X.J.; Cai, J.H. Vehicle Abnormal Trajectory Detection Using Trajectory Compression and Road Network Division.

Small Microcomput. Syst. 2022, 43, 1438–1444.
20. Yang, X.; Wang, B.; Yang, K.; Liu, C.; Zheng, B. A Novel Representation and Compression for Queries on Trajectories in Road

Networks (Extended Abstract). In Proceedings of the IEEE 35th International Conference on Data Engineering (ICDE), Macao,
China, 8–11 April 2019; pp. 2117–2118. [CrossRef]

21. Zheng, K.; Zhao, Y.; Lian, D.F.; Zheng, B.L.; Liu, G.F.; Zhou, X.F. Reference-Based Framework for Spatio-Temporal Trajectory
Compression and Query Processing. IEEE Trans. Knowl. Data Eng. 2020, 32, 2227–2240. [CrossRef]

22. Zhao, P.; Zhao, Q.; Zhang, G.; Su, Q.; Zhang, Q.; Rao, W. CLEAN: Frequent pattern-based trajectory compression and computation
on road networks. China Commun. 2020, 17, 119–136. [CrossRef]

23. Chen, C.; Ding, Y.; Guo, S.; Wang, Y. DAVT: An Error-Bounded Vehicle Trajectory Data Representation and Compression
Framework. IEEE Trans. Veh. Technol. 2020, 69, 10606–10618. [CrossRef]

24. Han, Y.H.; Sun, W.W.; Zheng, B.H. COMPRESS: A Comprehensive Framework of Trajectory Compression in Road Networks.
ACM Trans. Database Syst. 2017, 42, 1–49. [CrossRef]

25. Zhou, Z.; Zhang, Y.; Yuan, X.; Wang, H. Compressing AIS Trajectory Data Based on the Multi-Objective Peak Douglas–Peucker
Algorithm. IEEE Access 2023, 11, 6802–6821. [CrossRef]

26. Cui, C.; Dong, Z. Ship Space-Time AIS Trajectory Data Compression Method. In Proceedings of the 2022 7th International
Conference on Big Data Analytics, Guangzhou, China, 4–6 March 2022; pp. 40–44. [CrossRef]

27. Makris, A.; Kontopoulos, I.; Alimisis, P.; Tserpes, K. A Comparison of Trajectory Compression Algorithms Over AIS Data. IEEE
Access 2021, 9, 92516–92530. [CrossRef]

28. Liu, J.; Li, H.; Yang, Z.; Wu, K.; Liu, Y.; Liu, R.W. Adaptive Douglas-Peucker Algorithm with Automatic Thresholding for
AIS-Based Vessel Trajectory Compression. IEEE Access 2019, 7, 50677–150692. [CrossRef]

29. Huang, Y.; Li, Y.; Zhang, Z.; Liu, R.W. GPU-Accelerated Compression and Visualization of Large-Scale Vessel Trajectories in
Maritime IoT Industries. IEEE Internet Things J. 2020, 7, 10794–10812. [CrossRef]

30. Chen, C.; Ding, Y.; Xie, X.; Zhang, S.; Wang, Z.; Feng, L. TrajCompressor: An Online Map-matching-based Trajectory Compression
Framework Leveraging Vehicle Heading Direction and Change. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2012–2028. [CrossRef]

31. Han, W.; Deng, Z.; Chu, J.; Zhu, J.; Gao, P.; Shah, T. A parallel online trajectory compression approach for supporting big data
workflow. Computing 2018, 100, 3–20. [CrossRef]

32. OpenMPI. Available online: https://www.open-mpi.org/ (accessed on 6 August 2023).
33. Yin, Y.F.; Shah Rajiv, R.; Wang, G.F.; Zimmermann, R. Feature-based Map Matching for Low-Sampling-Rate GPS Trajectories.

ACM Trans. Spat. Algorithms Syst. 2018, 4, 1–24. [CrossRef]
34. GeoMesa. Available online: https://www.open-mpi.org/ (accessed on 6 August 2023).
35. Kreps, J.; Narkhede, N.; Rao, J. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB, Athens,

Greece, 12–16 June 2011; Volume 11, pp. 1–7.
36. Apache Pulsar. Available online: https://pulsar.apache.org/ (accessed on 6 August 2023).
37. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache flink: Stream and batch processing in a single

engine. Bull. Tech. Comm. Data Eng. 2015, 38.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/2934664
https://doi.org/10.1080/13658816.2017.1400548
https://doi.org/10.14778/3213880.3213885
https://doi.org/10.1145/366573.366611
https://doi.org/10.1109/ICDE.2019.00253
https://doi.org/10.1109/TKDE.2019.2914449
https://doi.org/10.23919/JCC.2020.05.011
https://doi.org/10.1109/TVT.2020.3015214
https://doi.org/10.1145/3015457
https://doi.org/10.1109/ACCESS.2023.3234121
https://doi.org/10.1109/ICBDA55095.2022.9760355
https://doi.org/10.1109/ACCESS.2021.3092948
https://doi.org/10.1109/ACCESS.2019.2947111
https://doi.org/10.1109/JIOT.2020.2989398
https://doi.org/10.1109/TITS.2019.2910591
https://doi.org/10.1007/s00607-017-0563-8
https://www.open-mpi.org/
https://doi.org/10.1145/3223049
https://www.open-mpi.org/
https://pulsar.apache.org/

	Introduction
	Motivation and Background
	A Big Data Platform for Transportation System
	GPS Trajectory and Storage Requirement

	Related Work
	Problem Definition
	Method Design
	Data Pre-Processing
	GPS Noise Cancellation
	GPS Map Matching

	Trajectory Compression Method
	DP Algorithm
	SW Algorithm

	Parallel Implementation Based on RDD
	Evaluation Indicator

	Experimental Result Analysis
	Compression Visualization Comparison
	Compression Execution Time
	Data Compression Ratio
	Threshold and Average Error
	Scalability Comparison
	Query Latency Comparison

	Conclusions and Future Work
	Conclusions
	Future Work

	References

