
Citation: Chen, X.; Fu, Y. A Novel

JSF-Based Fast Implementation

Method for Multiple-Point

Multiplication. Electronics 2023, 12,

3530. https://doi.org/10.3390/

electronics12163530

Academic Editors: Cheng-Chi Lee

and Andrei Kelarev

Received: 13 July 2023

Revised: 8 August 2023

Accepted: 16 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel JSF-Based Fast Implementation Method for
Multiple-Point Multiplication
Xinze Chen 1,2 and Yong Fu 1,2,3,*

1 Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong
Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250014, China

2 Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for
Computer Science, Jinan 250014, China

3 Quan Cheng Laboratory, Jinan 250103, China
* Correspondence: fuy@sdas.org

Abstract: ECC is a popular public-key cryptographic algorithm, but it lacks an effective solution to
multiple-point multiplication. This paper proposes a novel JSF-based fast implementation method
for multiple-point multiplication. The proposed method requires a small storage space and has high
performance, making it suitable for resource-constrained IoT application scenarios. This method
stores and encodes the required coordinates in the pre-computation phase and uses table lookup
operations to eliminate the conditional judgment operations in JSF-5, which improves the efficiency
by about 70% compared to the conventional JSF-5 in generating the sparse form. This paper utilizes
Co-Z combined with safegcd to achieve low computational complexity for curve coordinate pre-
computation, which further reduces the complexity of multiple-point multiplication in the execution
phase of the algorithm. The experiments were performed with two short Weierstrass elliptic curves,
nistp256r1 and SM2. In comparison to the various CPU architectures used in the experiments, our
proposed method showed an improvement of about 3% over 5-NAF.

Keywords: elliptic curve; ECDSA; JSF; scalar multiplication

1. Introduction
1.1. Related Work

Elliptic curve cryptography (ECC) is a public-key cryptography algorithm, which
has been a rapidly developing branch of cryptography in recent years, based on elliptic
curve theory from number theory. The method constructs a public-key cryptosystem on an
elliptic curve’s finite group of domain points. Compared to ElGamal [1] and RSA [2], the
key length required for ECC to achieve equivalent security is shorter, making it suitable
for the IoT [3–6]. Blockchain [7] is widely used in [8]. Single-point multiplication is the
most critical operation in ECC and is denoted as kP, where P ∈ E(Fp) is a point on the
elliptic curve E/Fq, and k is a scalar. kP indicates that the points P on the elliptic curve
are summed k times. Multiple-point multiplication is the most important operation in the
elliptic curve digital signature algorithm [9] (ECDSA) and it is denoted kP + lQ.

In recent years, optimizing the single-point multiplication in elliptic curve cryptog-
raphy (ECC) has been an important research direction for many scholars. Currently, the
mainstream algorithms include the binary double-and-add method [10], non-adjacent form
(NAF) [11,12], and windowed non-adjacent form [13]. The core idea of these algorithms is
to reduce the average Hamming weight of the scalar to decrease the extra computation in
ECC. However, some algorithms may introduce additional pre-computation [14,15]. The
ECDSA requires more optimization for multiple-point multiplication, and to achieve this,
joint sparse form (JSF) was proposed in [12], but the complexity of computing JSF coeffi-
cients is high. The joint Hamming weight of the scalar generated by JSF has no advantage

Electronics 2023, 12, 3530. https://doi.org/10.3390/electronics12163530 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163530
https://doi.org/10.3390/electronics12163530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-4470-7838
https://orcid.org/0000-0003-1704-1506
https://doi.org/10.3390/electronics12163530
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163530?type=check_update&version=2

Electronics 2023, 12, 3530 2 of 30

over NAF. Based on JSF, Li et al. [16] extended the character set to a five-element joint
sparse form, JSF-5, which can reduce the average joint Hamming weight from 0.5 l to 0.38 l,
where l is the length of data. Then, Wang et al. [17] proposed a new JSF-5 algorithm based
on this, which can further reduce the average joint Hamming weight to l/3. Although
JSF has been continuously improved to reduce the average joint Hamming weight, the
difficulty of computing the joint sparse form of multiple points has yet to be addressed. In
this paper, we propose an improved method to generate JSF-5.

For optimizing multiple-point multiplication, Ref. [18] proposed a bucket set construc-
tion that can be utilized in the context of Pippenger’s bucket method to speed up MSM
over fixed points with the help of pre-computation. Ref. [19] proposed Topgun, a novel and
high-performance hardware architecture for point multiplication over Curve25519. Ref. [20]
presented a novel crypto-accelerator architecture for a resource-constrained embedded
system that utilizes ECC.

In recent years, there have been numerous studies on optimizing single-point multipli-
cation but relatively few studies on optimizing multiple-point multiplication. Research on
multiple-point multiplication has mainly focused on optimizing hardware circuit designs.
Some studies have proposed excellent optimization algorithms but they still follow the
original computational approach, where the coordinates of the points involved in the
execution phase are still in the Jacobian coordinate system.

Safegcd is a fast, constant-time inversion algorithm; traditional binary Euclidean
inversion takes over 13,000 clock cycles. In [21], safegcd required 8543 clock cycles on
the Intel Kaby Lake architecture, and the researchers have continued to optimize it. On
the official safegcd website [22], researchers have implemented an optimized version that
requires only 3816 clock cycles on the Intel Kaby Lake architecture. The superiority of
safegcd has also provided new solution approaches for other algorithms. In [23], researchers
proposed three polynomial multiplication methods based on NTT and implemented them
on Cortex-M4 microcontrollers using safegcd. Similarly, researchers [24] have studied
public key compression capabilities using safegcd.

In the standard method for the ECDSA, we input a point like (x, y) as the affine
coordinates and then transform the point into Jacobian coordinates like (X, Y, Z) to compute
the result. However, in the end, we need the final result for the point in affine coordinates.
This transformation needs many inversion operations, and points in Jacobian coordinates
require the computation of the Z coordinate. This is a rather time-consuming operation. We
need the fastest way to invert the coordinates of the points. Safegcd has brought new ideas
for the further optimization of multiple-point multiplication. We can use safegcd to restore
the pre-computed coordinates (X, Y, Z) required for ECC to (x, y). We can significantly
reduce the data length and lower the computational overhead during the ECC execution
phase.

In the ECDSA, summing refers to point addition. Point addition is not the same
as the usual addition. This depends on the operation rules in ECC. We can use the Co-
Z formula to improve the speed of point addition. The Co-Z formula [25] is a point
addition algorithm that allows for very efficient point addition with minimal overhead
and is explicitly designed for projected points that share the same Z coordinates. The
Co-Z formula also has advantages over left-to-right [26] binary methods. Based on this,
researchers [27] have proposed an improved Co-Z addition formula and optimized register
allocation to adapt to different point additions on Weierstrass [28] elliptic curves. In
addition, scholars [29,30] have proposed several improved Montgomery algorithms.

The Co-Z formula has been widely used in compact hardware implementations of
elliptic curve cryptography, especially on binary fields. In particular, in [31], the Co-
Z formula was applied to radio frequency identification and successfully reduced the
required number of registers from nine to six while balancing compactness and security [32].
Additionally, Ref. [33] proposed a compact Montgomery elliptic curve scalar multiplier
structure that saves hardware resources by introducing the Co-Z formula.

Electronics 2023, 12, 3530 3 of 30

However, the efficiency of the Co-Z formula implementation depends on the length of
the Euclidean addition chain. To address this issue, Refs. [34,35] considered the conjugate
point addition algorithm [36], which inherits the previous security properties and can
naturally resist SPA-type attacks [37] and security error attacks [38,39]. Due to the efficiency
of Co-Z, Ref. [40] proposed an improved ECC multiplier processor structure based on Co-Z.
The modular arithmetic components in the processor structure were highly optimized at
the architectural and circuit levels. Then, Ref. [41] proposed an improved Montgomery mul-
tiplication processor structure based on RSD [42]. Ref. [43] proposed a set of Montgomery
scalar multiplication operations based on Co-Z. On general, short Weierstrass curves with
characteristics greater than three, each scalar bit requires only 12 field multiplications using
eight or nine registers. Co-Z was initially proposed to optimize point operations, but now
researchers focus more on saving hardware resources [44–46], and there is relatively little
research on multiple-point multiplication in ECC.

We can change our method to assembly form to obtain more significant optimization.
BMI2 instructions are one of the extensions to the bit-manipulation instruction set provided
by Intel and AMD processors, and they are also an essential part of the x86-64 instruction
set. On a 64-bit platform, we need four 64-bit registers to perform a 256-bit data operation
that involves handling carry flags. However, the operations of the BMI2 instruction set
only affect specific carry flags and support ternary instructions, making them more efficient
and flexible. The BMI2 instruction set allows us to perform up to four large-number
operations simultaneously.

1.2. Objectives and Contribution

The focus of this paper is on optimizing the multiple-point multiplication operation.
The contribution of this paper is its study of the optimized implementation of the NIST
P-256 curve (nistp256r1) [47] and the SM2 [48] curve based on related research [49–53].

We propose the new idea of utilizing the safegcd algorithm for coordinate transforma-
tion during the pre-computation phase. Based on this idea, we optimized and improved the
computations in each stage. We were able to introduce the Co-Z algorithm for optimizing
the double-point operations thanks to our idea. We re-encode and store the results after
pre-computation, making subsequent calculations easier.

We propose an improved encoding method that enhances JSF-5, optimizing the internal
memory encoding method and solving the problem of using many conditionals in the
operation process. When the improved method was run, we observed that the length of
data involved in each round of computations affected efficiency. To address this issue, we
improved the method and introduced the new encoding JSF-5 segmentation method.

Finally, the optimization was implemented at the assembly level, leveraging the BMI2
instruction set. We report the experimental results using four CPU architectures and
validate our theory. Our research has promising applications in the fields of information
encryption, information communication security, blockchain and the IoT. It offers a new
method to optimizing ECC, providing novel solutions.

Our improved JSF-5 method differs significantly from the original JSF-5 algorithm.
Firstly, our approach leverages the advantages of the BMI2 instruction sets, eliminating the
overhead of conditional checks during runtime. This trade-off allows us to significantly im-
prove performance while sacrificing only a small portion of the storage space. Additionally,
thanks to the segmented data processing, our method exhibits decreasing time complexity
with each round. Furthermore, we encode the generated sparse form by storing the bilinear
scalar information in an array.

We still want to emphasize that our method may not be the best, but we hope our
research can inspire other researchers and receive positive feedback so that we can improve
together.

This article is organized as follows. Section 2 describes elliptic, nistp256r1, and SM2
curves and provides some basic arithmetic definitions. Section 3 discusses the relevant
optimizations in our proposed method for the pre-computed phase. Accordingly, for the

Electronics 2023, 12, 3530 4 of 30

optimization of the execution phase of the algorithm, we present the relevant optimiza-
tion methods in Section 4. In Section 5, we compare the performance of the proposed
method through experiments. Finally, we provide a conclusion drawn from this research in
Section 6.

2. Preliminaries
2.1. Basic Operation

An elliptic curve E : y2 = x3 + ax + b refers to a set of points defined over the prime
field Fp, where p > 3, a, b ∈ Fp, and 4a3 + 27b2 6= 0. This condition is imposed to ensure
that the curve does not contain singular points. This equation is known as the Weierstrass
standard form of the elliptic curve. Adding P + Q between any two points P and Q on the
curve is defined as a fundamental operation. If P 6= Q, P + Q is called point addition, and
if P = Q, P + Q = 2P is called point doubling. The scalar multiplication k · P on the curve
indicates multiplying a point by a scalar, where k is a non-negative integer.

The performance of various field operations is what primarily determines the effi-
ciency of ECC. The cost associated with the described point operations is measured by
the number of operations performed on the finite field where the elliptic curve is defined.
These operations include field multiplication (M), field squaring (S), and inversion (I) and
are commonly referred to as large-number operations. However, thanks to continuous
hardware advancements and iterations, modern computers have reached a point where the
efficiency of field multiplication and squaring is nearly comparable to that of field addition
(A). As a result, when evaluating the complexity of algorithms, it has become necessary to
account for the cost of field addition.

To increase the computational efficiency of ECC, we can transform the elliptic curve in
affine coordinates (denoted as A) into Jacobian coordinates (denoted as J) for operations.
The point coordinates in the affine coordinate system are represented as (x, y), and the point
coordinates in the Jacobian coordinate system are represented as (X, Y, Z). The conversion
between them is given by x = X/Z2 and y = Y/Z3, with a modulo operation concerning
the order of the prime field. Let P and Q be points in Jacobian coordinates and t be the
computation time. Suppose P = (X1, Y1, Z1) and Q = (X2, Y2, Z2). We want to compute
P + Q and 2P = (X3, Y3, Z3), as shown in Table 1.

After the entire computation process, the ECC must convert the result in Jacobian
coordinates to a point in affine coordinates, which requires a modular inverse operation.

Table 1. Basic operation.

Calculate P + Q, Z2 6= 1

A = X1Z2
1 , B = X2Z2

1 , C = Y1Z3
2 , D = Y2Z3

1
E = B− A, F = D− C

X3 = −E3 − 2AE2 + F2, Y3 = −CE3 + F(AE2 − X3), Z3 = Z1Z2E

Calculate 2P.
If a = −3, the arithmetic cost can be reduced to 4M + 4S + 10A

S = 4X1Y2
1 , M = 3X2

1 + aZ4
1

X3 = M2 − 2S, Y3 = M(S− X3)− 8Y4
1 , Z3 = 2Y1Z1

t(2J) = 4M + 6S + 9A

Calculate P + Q, Z2 6= 1

C = Y1Z3
2 , E = X2 − X1, F = Y2 −Y1

X3 = −E3 − 2X1E2 + F2, Y3 = −CE3 + F(X1E2 − X3)
Z3 = Z2E

t(J + J) = 8M + 3S + 7A

2.2. 256-Bit Curve

This article is based on the short Weierstrass elliptic curve E : y2 = x3 − 3x + b.

Electronics 2023, 12, 3530 5 of 30

The National Institute of Standards and Technology (NIST) [47] is a non-regulatory
federal agency within the Technology Administration of the U.S. Department of Commerce.
Its mission includes the development of federal information processing standards related
to security. NIST curves are cryptographic protocol standards published by the NIST. These
curves have predictable mathematical properties and security and are widely used for
digital signatures, key exchange, and authentication. The most commonly used curves are
the NIST p-256 and p-384 curves, whose names are derived from the bit lengths of the prime
number p used in the curve equation. The nistp256r1 curve is defined on y2 = x3 − 3x + b,
and the results presented in this article are related to optimizing the nistp256r1 curve. The
parameters of the nistp256r1 curve are given in Table A1.

SM2 [48] is an elliptic curve cryptography algorithm developed in China and published
by the Chinese State Cryptography Administration. It has been widely used in various
network communication systems and e-government systems. The official curve used by
the SM2 algorithm is y2 = x3 − 3x + b, and it is recommended to use a prime field with
256 bits of data and fixed parameters, as shown in Table A2.

2.3. Other Operations

In some algorithms, we need to compute and store the triple point during the execution
of ECC. The traditional standard implementation uses the two operations of multiple-point
multiplication 2P and point addition 2P + P. Some scholars [54–56] have studied how to
compute triple points efficiently. Ref. [57] presented an optimized algorithm for calculating
triple points, which is called Tripling. In Table A3, we show the computational complexity
of Tripling. In a common analysis process, the time complexity of an algorithm is measured
based on the number of different operations. In Section 2.1, we present the definitions of
M, S, A, and I. These symbols denote various basic operations in all figures and tables.

The safegcd algorithm is a fast, constant-time modular inverse algorithm used for
computing point coordinate recovery in elliptic curve cryptography. In this paper, the
safegcd algorithm is used to recover the coordinates of points on elliptic curves. Our test
data are shown in Table 2.

Table 2. Clock cycles required by safegcd algorithm for modular inversion with Curve25519 on
different CPU architectures.

Raptor Lake Comet Lake Coffee Lake Zen 4

2975 2876 2970 2818

An improved 2P + Q algorithm was proposed in [56,58] to replace the traditional
double-and-add algorithm that can effectively reduce the number of doubling operations.
Then, the authors of [59,60] improved the original 2P + Q algorithm by combining it with
Co-Z. 2P + Q is more suitable for single-array operations. As shown in Table A4, if the Q
point involved in the operation has a Z-coordinate of one, the complexity of point addition
after processing can be reduced from 12M + 4S + 7A to 8M + 3S + 7A, which improves
the efficiency of the original 2P + Q algorithm.

This section mainly describes and theoretically analyzes the related algorithms for
scalar multiplication kP and various sparse forms. In this section, we learn that the efficiency
of multiple-point multiplication directly affects the overall efficiency of ECC execution.

In the multiple-point multiplication kP + lQ, P and Q are points on the elliptic curve,
and assuming that the order of this elliptic curve is n, then k, l ∈ [1, n− 1]. If the point is
P = (x, y), then −P = (x,−y). After converting the scalar into a sparse form, there are two
approaches to performing the calculation: from left-to-right and from right-to-left [61]. We
use the left-to-right approach in our calculation.

If the scalars k and l are converted to binary sparse form k = ∑ ki2i, l = ∑ li2i, then
the general idea of left-to-right binary multiple-point multiplication can be seen, as in
Algorithm A1.

Electronics 2023, 12, 3530 6 of 30

The sparse forms generated by different scalar transformation methods for scalars
k and l vary in efficiency and may require some pre-computation to store repeatedly
used points.

2.4. Sparse Form
2.4.1. NAF

Unlike conventional binary representation, the NAF uses signed numbers to represent
the scalar k. The w-NAF form is a low-average-Hamming-weight D character represen-
tation form, where w is the base of the number system and is denoted as w-NAF for
convenience. The Hamming weight of the generated sparse form strongly depends on w,
and the average Hamming weight of the generated single scalar is 1/w + 1.

Table 3 shows the average Hamming weight from different NAF documents. The
larger the window size, the more points need to be pre-computed and the higher the overall
computational cost will be. Algorithm A3 implements the w-NAF method.

Table 3. Average Hamming weight recorded in NAF documents for different character sets, where l
is the corresponding NAF length.

w Dw Hamming Weight

2 0,±1 l/3
3 0,±1,±3 l/4
4 0,±1,±3,±5,±7 l/5
5 0,±1,±3,±5,±7,±9,±11,±13,±15 l/6

2.4.2. JSF

JSF is an algorithm for two scalars that considers the bit values of two scalars at
the same position during the generation process, thereby reducing the number of gen-
eration calculations. In comparison, the NAF algorithm for two scalars requires two-
generation calculations. By computing the JSF of multiple scalars, the corresponding
sparse form can be obtained with only one computation, giving the NAF algorithm a
significant advantage.

When the character set size is 3, the JSF form uses a character set of {0,±1}, and the
points to pre-compute are P + Q and P−Q, a total of two points. When the character set
size is 5, we refer to JSF-5, which requires pre-computing 3Q, P + Q, P−Q, 3P + Q, 3P−Q,
P + 3Q, P− 3Q, 3P + 3P, and 3P− 3Q for a total of nine points. Algorithm A4 describes
the flow of the JSF-5 algorithm as presented in the literature. Table 4 compares two different
JSF algorithms.

Table 4. Comparison of different JSF algorithms, where l is the length of the data.

Algorithm Hamming Weight Number of Point Additions

JSF l/2 l/2

JSF-5 l/3 l/3

To be consistent with the actual situation, we generated one million sets of random
data using the Intel random number generator, transformed them into different sparse
forms, and then reconstructed their joint Hamming weight distribution to facilitate the
subsequent theoretical analysis, as shown in Figures 1–6.

The x-axis in the figures represents the number of non-zero elements in sparse form,
and the y-axis represents the number of corresponding data elements among one million
datasets. It can be observed that the window size chosen in the sparse form algorithm
significantly affected the proportion of non-zero elements in the sparse form. In the
case of the NAF algorithm, most of the joint sparse forms generated had 143 non-zero

Electronics 2023, 12, 3530 7 of 30

elements, with 3-NAF having the highest proportion of 114 non-zero elements. Similarly,
we organized the results for other sparse forms, as shown in Table A5.

Electronics 2023, 1, 0 7 of 30

datasets. It can be observed that the window size chosen in the sparse form algorithm
significantly affected the proportion of non-zero elements in the sparse form. In the
case of the NAF algorithm, most of the joint sparse forms generated had 143 non-zero
elements, with 3-NAF having the highest proportion of 114 non-zero elements. Similarly,
we organized the results for other sparse forms, as shown in Table A5.

1 1 5 1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1 5 0 1 5 5 1 6 0 1 6 5 1 7 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

8 0 , 0 0 0

6 0 , 0 0 0

4 0 , 0 0 0

2 0 , 0 0 0

Figure 1. NAF.

9 0 9 5 1 0 0 1 0 5 1 1 0 1 1 5 1 2 0 1 2 5 1 3 0 1 3 5
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 0 0 , 0 0 0

Figure 2. 3-NAF.

Figure 1. NAF.

Electronics 2023, 1, 0 7 of 30

datasets. It can be observed that the window size chosen in the sparse form algorithm
significantly affected the proportion of non-zero elements in the sparse form. In the
case of the NAF algorithm, most of the joint sparse forms generated had 143 non-zero
elements, with 3-NAF having the highest proportion of 114 non-zero elements. Similarly,
we organized the results for other sparse forms, as shown in Table A5.

1 1 5 1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1 5 0 1 5 5 1 6 0 1 6 5 1 7 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

8 0 , 0 0 0

6 0 , 0 0 0

4 0 , 0 0 0

2 0 , 0 0 0

Figure 1. NAF.

9 0 9 5 1 0 0 1 0 5 1 1 0 1 1 5 1 2 0 1 2 5 1 3 0 1 3 5
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 0 0 , 0 0 0

Figure 2. 3-NAF.

Figure 2. 3-NAF.

Electronics 2023, 12, 3530 8 of 30

Electronics 2023, 1, 0 8 of 30

7 5 8 0 8 5 9 0 9 5 1 0 0 1 0 5 1 1 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

1 0 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 2 0 , 0 0 0

Figure 3. 4-NAF.

6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

1 0 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 2 0 , 0 0 0

Figure 4. 5-NAF.

Figure 3. 4-NAF.

Electronics 2023, 1, 0 8 of 30

7 5 8 0 8 5 9 0 9 5 1 0 0 1 0 5 1 1 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

1 0 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 2 0 , 0 0 0

Figure 3. 4-NAF.

6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

1 0 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 2 0 , 0 0 0

Figure 4. 5-NAF.

Figure 4. 5-NAF.

Electronics 2023, 12, 3530 9 of 30

Electronics 2023, 1, 0 9 of 30

1 1 5 1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1 5 0 1 5 5 1 6 0 1 6 5 1 7 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

8 0 , 0 0 0

6 0 , 0 0 0

4 0 , 0 0 0

2 0 , 0 0 0

Figure 5. JSF.

8 5 9 0 9 5 1 0 0 1 0 5 1 1 0 1 1 5
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

1 0 0 , 0 0 0

1 2 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 4 0 , 0 0 0

Figure 6. JSF-5.

3. Using Coordinate Inversion for Pre-Computed Data

In this section, we discuss and propose an optimization scheme for multiple-point
multiplication and analyze the algorithm based on the various optimization algorithms
introduced in the previous section.

3.1. Pre-Computed Complexity Analysis

Due to the high efficiency of safegcd, we can reduce the coordinates of the pre-
computed points (X, Y, Z) in various JSFs back to (x, y) using modulo inverse operations,
where the reduced Z coordinate is 1 by default. The concern at this point is whether the

Figure 5. JSF.

Electronics 2023, 1, 0 9 of 30

1 1 5 1 2 0 1 2 5 1 3 0 1 3 5 1 4 0 1 4 5 1 5 0 1 5 5 1 6 0 1 6 5 1 7 0
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

8 0 , 0 0 0

6 0 , 0 0 0

4 0 , 0 0 0

2 0 , 0 0 0

Figure 5. JSF.

8 5 9 0 9 5 1 0 0 1 0 5 1 1 0 1 1 5
0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

1 4 0 0 0 0

0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

8 0 , 0 0 0

1 0 0 , 0 0 0

1 2 0 , 0 0 0

Nu
mb

ers

N o n - Z e r o E l e m e n t s

1 4 0 , 0 0 0

Figure 6. JSF-5.

3. Using Coordinate Inversion for Pre-Computed Data

In this section, we discuss and propose an optimization scheme for multiple-point
multiplication and analyze the algorithm based on the various optimization algorithms
introduced in the previous section.

3.1. Pre-Computed Complexity Analysis

Due to the high efficiency of safegcd, we can reduce the coordinates of the pre-
computed points (X, Y, Z) in various JSFs back to (x, y) using modulo inverse operations,
where the reduced Z coordinate is 1 by default. The concern at this point is whether the

Figure 6. JSF-5.

3. Using Coordinate Inversion for Pre-Computed Data

In this section, we discuss and propose an optimization scheme for multiple-point
multiplication and analyze the algorithm based on the various optimization algorithms
introduced in the previous section.

Electronics 2023, 12, 3530 10 of 30

3.1. Pre-Computed Complexity Analysis

Due to the high efficiency of safegcd, we can reduce the coordinates of the pre-
computed points (X, Y, Z) in various JSFs back to (x, y) using modulo inverse operations,
where the reduced Z coordinate is 1 by default. The concern at this point is whether the
overhead of the execution phase saved by using two coordinate inversions is more than the
additional time overhead consumed in the NAF. Table 5 compares our proposed method
based on optimization ideas. Next, we analyzed each algorithm execution phase based on
the data in Section 2, as shown in Table 6.

Table 5. Sums of different basic operations in theory for pre-computation phase.

Algorithm Sum of Basic Operation Case One Case Two Case Three

NAF 0 0 0 0
3-NAF 12M + 7S + 17A 21M 22.7M 26.1M
4-NAF 36M + 15S + 31A 54.2M 57.3M 63.5M
5-NAF 84A + 31S + 59A 120.6M 126.5M 138.3M

JSF 10M + 4S + 11A + I 95.4M 86.5M 78.7M
Proposed method 67M + 22S + 56A + I 175.8M 171.4M 172.6M

Table 6. Sums of different basic operations in theory for execution phase.

Algorithm Sum of Basic Operation Case One Case Two Case Three

NAF 2396M + 1536S + 3754A + I 4455.6M 4821M 5561.8M
3-NAF 2320M + 1475S + 3460A + I 4272M 4608M 5290M
4-NAF 2060M + 1391S + 3278A + I 3908.4M 4226.2M 4871.8M
5-NAF 1880M + 1321S + 3152A + I 3647.2M 3952.4M 4572.8M

JSF 2311M + 1167S + 3132A + I 3951M 4254.2M 4870.6M
Proposed JSF-5 1951M + 1127S + 2972A + I 3527M 3814.2M 4398.6M

Table 7 shows the statistics for the combined overhead for different algorithms in the
pre-computation and execution phases. It can be seen that the pre-computed, coordinate-
reduced JSF-5 algorithm had a minor computational overhead and a low joint Hamming
weight. However, the computational complexity of the coefficients generated with the
JSF-5 algorithm and how we can reduce the difficulty of JSF-5 coefficient computation
are the challenges we had to solve. Next, we solved this problem by first optimizing the
implementation of the pre-computed data storage code.

Table 7. The total sums of different basic operations in theory for pre-computation and execution
phases (excluding the sparse form generation cost).

Algorithm Sum of Basic Operation Case One Case Two Case Three

NAF 2396M + 1536S + 3754A + I 4455.6M 4821M 5561.8M
3-NAF 2332M + 1482S + 3477A + I 4476.6M 4843.7M 5587.9M
4-NAF 2096M + 1406S + 3309A + I 3962.6M 4283.5 4935.3M
5-NAF 1964M + 1352S + 3211A + 1I 3767.8M 4078.9M 4711.1M

JSF 2321M + 1171S + 3143A + 2I 4046.4M 4340.7M 4949.3M
Proposed JSF-5 2018M + 1149S + 3028A + 2I 3702.8M 3985.6M 4571.2M

3.2. Pre-Computed Storage Table Encoding

Storing the pre-computed data with the appropriate encoding can reduce the evalua-
tion overhead in the fetch operation. Table 8 shows the encoding of the data when we set
P = 1 and Q = 5.

Electronics 2023, 12, 3530 11 of 30

Table 8. Encoding when P = 1 and Q = 5.

Operation Encoding Operation Encoding

P 1 Q 5
Q− P 4 P + Q 6

3P 3 3Q 15
3Q + P 16 3Q− P 14
Q + 3P 8 Q− 3P 2

3Q− 3P 12 3P + 3Q 18

The calculation shows that the encoding is not continuous. Furthermore, to reduce the
data range, the encoding is corrected, and the new encoding after correction is shown in
Table 9.

Table 9. Encoding for storing pre-computed coordinates.

Operation Encoding Operation Encoding

P 1 Q 5
Q− P 4 P + Q 6

3P 2 3Q 10
3Q + P 11 3Q− P 9
Q + 3P 7 Q− 3P 3

3Q− 3P 8 3P + 3Q 12

Due to how the coordinate system works, Q + P has the same Z coordinate as Q− P,
and Q + 3P has the same Z coordinate as Q− 3P. There are four different Z-coordinates in
the data to be calculated.

We first define Algorithm 1, named function XYZ(OA, OS, tZ, i, o), where i, o is the
input point, the point coordinates are in the form (x, y), OA stores the output of i + o, OS
stores the output of i− o, and tZ is the Z-coordinate of the two outputs. We then define the
Algorithm 2, named function XYZ1(OA, OS, tZ, i, o), which differs from function XYZ in
that the Z coordinate of the point involved in the operation is 1. Using a 64-bit integer array
to store the data, the input coordinate length of function XYZ1 is 512 bits, occupying 8 array
spaces; the input coordinate length of function XYZ is 768 bits, occupying 12 array spaces.
Algorithm 3 shows the process of pre-computing coordinates and storing them in encoding.
Algorithm A5 shows the method of reducing coordinates during pre-computation.

Algorithm 1 Function XYZ(OA, OS, tZ, i, o)

Require: Point i = (X1, Y1, Z1), o = (X2, Y2, Z2)
Ensure: tZ, OA = (Xa, Ya, Za), OS = (Xs, Ys, Zs)

1: ZZ ← Z2
1 ; ZZZ ← Z1 · ZZ; X2 ← X2 · ZZ;

2: Y2 ← Y2 · ZZZ; T ← X2 − X1; A← T2;
3: B← X1 · A; C ← X2 · A; T2 ← Y2 −Y1;
4: F0 ← Y2 + Y1; F ← F2

0 ; D ← T2
2 ;

5: A← C− B; T3 ← C + B; E← Y1 · A;
6: Xa ← D− T3; Xs ← F− T3; T3 ← B− Xa;
7: Ya ← T3 − E; T3 ← Xs − B; tZ ← Z1 · T;
8: T3 ← F0 · T3; Ys ← T3 − E; X1 ← B;
9: Y1 ← E; Z1 ← tZ;

10: return tZ, Xa, Ya, Xs, Ys

Electronics 2023, 12, 3530 12 of 30

Algorithm 2 Function XYZ1(OA, OS, tZ, i, o)

Require: Point i = (X1, Y1), o = (X2, Y2)
Ensure: tZ, OA = (Xa, Ya), OS = (Xs, Ys)

1: tZ ← X2 − X1; A← tZ2; B← X1 · A
2: C ← X2 · A; T2 ← Y2 −Y1; F0 ← Y2 + Y1;
3: F ← F2

0 ; D ← T2
2 ; A← C− B;

4: T3 ← C + B; E← Y1 · A; Xa ← D− T3;
5: Xs ← F− T3; T3 ← B− Xa; T3 ← T2 · T3;
6: Ya ← T3 − E; T3 ← Xs − B; T3 ← F0 · T3;
7: Ys ← T3 − E;
8: return tZ, Xa, Ya, Xs, Ys

Algorithm 3 Pre-computation

Require: Q-point coordinates
Ensure: Pre-computed array Pix[12× 8]

1: Pix[1× 8]← P; Pix[5× 8]← Q;
2: Pix[2× 8]← P; 3Q← Tripling[Q];
3: Pix[10× 8]← 3Q
4: XYZ1(Pix[6× 8], Pix[4× 8], Z1, Q, P)
5: XYZ1(Pix[7× 8], Pix[3× 8], Z2, Q, 3P)
6: XYZ(Pix[11× 8], Pix[9× 8], Z3, 3Q, P)
7: XYZ(Pix[12× 8], Pix[8× 8], Z4, 3Q, 3P)

4. Improving the Operational Efficiency of the Method Execution Phase

In the previous section, we encoded and implemented a single-array representation
of the JSF by pre-computing the data; next, we need to optimize the data fetch in the
execution phase.

4.1. JSF-5 Encoding Method and Table Look-Up Method

By encoding, we can combine the two arrays generated by the JSF-5 algorithm into
one while making the stored data and the pre-computed storage table correspond, thus
eliminating the evaluation parts of these operations and reducing the overall overhead of
the execution phase. First, we developed a new JSF-5 single-array method that combines
the two arrays it generates into one. We show the details of this method in Algorithm A2.

The JSF-5 single-array algorithm changes the values of xj and yj based on the parity
of the scalars involved in each round and computes the result for the current bit based on
these two values. This process requires a large number of evaluation operations. Therefore,
we improved the algorithm by looking up the table operation to directly take out the
corresponding values, thus eliminating the judgment and related operations. By analyzing
the algorithm, we can eliminate the mod 8 operation in the algorithm and directly build the
corresponding statistics table using the result for mod 8 as an intermediate variable. As the
output value of each round of operations is determined by the last three digits of the scalar,
we first analyze the output in different cases based on the algorithmic operation logic while
preserving the last three digits of the scalar:

• If the scalars involved in the operation are all even, then the current bit of the JSF-5
result is 0; the output results are shown in Table 10;

Electronics 2023, 12, 3530 13 of 30

Table 10. Both scalars are even, and xj = x mod 8 and yj = y mod 8.

xj yj Output xj yj Output

6 6 0 6 2 0
6 4 0 6 0 0
4 4 0 4 6 0
4 2 0 4 0 0
2 6 0 2 4 0
2 2 0 2 0 0
0 6 0 0 0 0
0 2 0 0 4 0

• If the scalars are all odd, according to the algorithm, the expected output result will
correspond to the storage code; the output results are shown in Table 11;

Table 11. Both scalars are odd.

xj yj Output xj yj Output

7 7 −6 7 5 −11
7 3 9 7 1 4
5 7 −11 5 5 −12
5 3 8 5 1 −9
3 3 12 3 1 7
3 5 −8 3 7 −3
1 7 −4 1 1 6
1 3 11 1 5 −9

• If one the scalars involved in the operation is odd and one even, the result is counted;
the output results are shown Table 12.

According to the output analysis, encoding can eliminate large-number operations.
We use the following formula to prevent duplicate encoding from calculating the encoding
storage location as Loc.

Loc = x mod 8× 8 + y mod 8

We combine the intermediate variables xj and yj with the encoding results as a dataset.
To facilitate the search and subsequent optimization, we add a 0 variable to each set of data,
and each set of data consists of {xj, yj, corresponding encoding, 0} a total of four elements.
The calculation formula is:

Loc = (x mod 8× 8 + y mod 8)× 4
xj = Tbl[Loc]

yj = Tbl[Loc + 1]
Encoding = Tbl[Loc + 2]

Table 12. One of the scalars is odd and one is even.

xj yj Output xj yj Output

7 6 1 7 4 −1
7 2 1 7 0 −1
5 6 −1 5 4 1
5 2 −1 5 0 1
3 6 1 3 4 −1
3 2 1 3 0 −1

Electronics 2023, 12, 3530 14 of 30

Table 12. Cont.

xj yj Output xj yj Output

1 6 −1 1 4 1
1 2 −1 1 0 1
6 7 5 6 5 −5
6 3 5 6 1 −5
4 7 −5 4 5 5
4 3 −5 4 1 5
2 7 5 2 5 −5
2 3 5 2 1 −5
0 7 −5 0 5 5
0 3 −5 0 1 5

We present the final encoding table results obtained using this method in Table 13,
and Algorithm 4 shows our concrete implementation of this method.

Algorithm 4 New encoding JSF-5 method

Require: Non-negative integer pairs x, y
Ensure: New encoding array u[l] of x, y

1: j← 0 ;
2: while x 6= 0 or y 6= 0 do
3: xj ← x mod 8; yj ← y mod 8;
4: Location = xj × 32 + yj × 4;
5: xj = TBL[Loc];
6: yj = TBL[Loc + 1];
7: u[j] = TBL[Loc + 2];
8: x ← (x− xj)/2, y← (y− yj)/2;
9: j← j + 1;

10: end while

Table 13. JSF-5 encoding table results with a total of 256 elements containing 64 groups of data.

Array Position JSF-5 TBL Table

0–31 0, 0, 0, 0 0, 1, 5, 0 0, 0, 0, 0 0, −1, −5, 0 0, 0, 0, 0 0, 1, 5, 0 0, 0, 0, 0 0, −1, −5, 0
32–63 1, 0, 1, 0 1, 1, 6, 0 −1, 0, −1, 0 1, 3, 11, 0 1, 0, 1, 0 1, −3, −9, 0 −1, 0, −1, 0 1, −1, −4, 0
64–95 0, 0, 0, 0 0, −1, −5, 0 0, 0, 0, 0 0, 1, 5, 0 0, 0, 0, 0 0, −1, −5, 0 0, 0, 0, 0 0, 1, 5, 0

96–127 −1, 0, −1, 0 3, 1, 7, 0 1, 0, 1, 0 3, 3, 12, 0 −1, 0, −1, 0 3, −3, −8, 0 1, 0, 1, 0 3, −1, −3, 0
128–159 0, 0, 0, 0 0, 1, 5, 0 0, 0, 0, 0 0, −1, −5, 0 0, 0, 0, 0 0, 1, 5, 0 0, 0, 0, 0 0, −1, −5, 0
160–191 1, 0, 1, 0 −3, 1, 3, 0 −1, 0, −1, 0 −3, 3, 8, 0 1, 0, 1, 0 −3, −3, −12, 0 −1, 0, −1, 0 −3, −1, −7, 0
192–223 0, 0, 0, 0 0, −1, −5, 0 0, 0, 0, 0 0, 1, 5, 0 0, 0, 0, 0 0, −1, −5, 0 0, 0, 0, 0 0, 1, 5, 0
224–255 −1, 0, −1, 0 −1, 1, 4, 0 1, 0, 1, 0 −1, 3, 9, 0 −1, 0, −1, 0 −1, −3, −11, 0 1, 0, 1, 0 −1, −1, −6, 0

4.2. Segmentation Method for New Encoding JSF-5

In the concrete implementation, the actual parameters involved in the operation are
256-bit integers, and the computation of x − xj and x/2 is performed with the 256-bit
integers as a whole. We reduce the number of operations per segment by segmenting the
256-bit integers so that, when the higher segment is finished, there is no need to participate
in subsequent computations, as shown in Figure 7.

After segmentation, each segment of the while function processes 64 bits less than
the previous segment. Compared with the previous 256-bit data computation, the data
processing overhead after segmentation is lower. We propose a data segmentation method
based on the new encoding JSF-5, and Algorithm A6 shows the implementation details for
this method.

Electronics 2023, 12, 3530 15 of 30

A756E53127F3F43B851C47CFEEFD9E43A2D133CA258EF4EA73FBF4683ACDA13A

A756E53127F3F43B851C47CFEEFD9E43A2D133CA258EF4EA

2 Second Loop

A756E53127F3F43B851C47CFEEFD9E43A2D133CA258EF4EA73FBF4683ACDA13A

1 First Loop

A756E53127F3F43B851C47CFEEFD9E43

3 Third Loop

A756E53127F3F43B

4 Last Loop

Segmentation method

Figure 7. Data segmentation.

4.3. Assembly Implementation of the New Encoding JSF-5 Segmentation Method

In the previous sections, our proposed method was implemented in C. To cope with
more complex runtime environments, we implemented our proposed method
in assembly.

Our proposed method was implemented in assembly to optimize the flow of the
algorithm further. After the segmentation process, for the original C code’s second, third,
and fourth loops, the stack is no longer needed to store temporary data because the data
length is short and the number of available registers is increased. We use the sarx instruction
in the BMI2 instruction set to extend the sign bits to get −1 and 0 for our accumulation
calculation, and we use the combination of adox, adcx, shlx, shrx, and lea instructions to
implement two addition chains and 256-bit division operations simultaneously, eliminating
the conditional evaluation in the original C code and improving performance, as shown in
Algorithm A7.

The proposed method in C cannot directly call the relevant instructions in the BMI2
instruction set; so, to take advantage of the characteristics of the BMI2 instruction set, the
proposed method uses the assembly language when generating sparse forms.

Based on the theoretical analysis, the basic algorithmic workflow of this paper is
shown in Figure 8.

We combine the functions XYZ and XYZ1 to generate the pre-computation data. We
invert the pre-computation multiple points with safegcd. At the same time, we use our
proposed method to generate the sparse form of the input coefficients. Lastly, we calculate
the result using the standard method.

Electronics 2023, 12, 3530 16 of 30

Input k,P,l,Q

Multiple points coordinates
Inversion (safegcd)

Output
kP+lQ

Pre-computation
encoding table

New TBL table

Function: Coordinate
Inversion

JSF-5 Algorithm
Function: The assmbly

form of proposed
method

Pre-computation (Co-Z)
Function: XYZ

Function: XYZ1

Generate joint sparse form

Pre-computation of the points

 P Q 3P P+Q P-Q P+3Q P-3Q
3P+Q 3P-Q 3Q 3P+3Q 3P-3Q

Joint sparse form of k , l

Index array = {1,0,...,0,-3}

Calculate multiple point multiplication
Function:

Simultaneous multiple
point multiplication

Figure 8. Workflow of the proposed method.

5. Experiment

Our experiments used various CPU architectures to verify the generality of the al-
gorithm; namely, Comet Lake, Coffee Lake, Raptor Lake, and Zen 4. We conducted
experimental tests in the experimental environments of these architectures. The random
numbers used in the experiments were generated by the CPU’s internal random number
generator.

5.1. Experimental Preparation
5.1.1. Experimental Environment

We list the CPU architectures and the corresponding experimental environments below.
All experiments were conducted using the same software environment, test program, and
compiler. Our compilation options were “-march=native -O2 -m64 -mrdrnd”.

• Comet Lake: Intel Core i7-10700@2.9 GHz with a single channel of DDR4 16 GB
2933 MHz memory (Intel Corporation, Santa Clara, CA, USA);

• Coffee Lake: Intel Core i9-9900K@3.6 GHz with four channels of DDR4 32 GB
3200 MHz memory;

• Raptor Lake: Intel Core i7-13700K@3.4 GHz with dual-channel DDR5 32 GB 4800 MHz
memory;

• Zen 4: AMD Ryzen 7 7700X@4.5GHz with dual-channel DDR5 32 GB 4800 MHz
memory (AMD, Santa Clara, CA, USA).

5.1.2. Relevant Data Test

Operation A is a collective term referring to more specific operations. In the specific
algorithm, the addition, subtraction, and doubling of pairs of large integers are all part
of operation A. Therefore, we counted the numbers of various types of these operations
in the execution phase of the algorithm to determine the precise number of clock cycles
consumed for operation A, as shown in Table 14.

Electronics 2023, 12, 3530 17 of 30

Table 14. The numbers of different operations comprising operation A: ADD means calculating
the sum of two numbers, SUB means calculating the difference between two numbers, 2X means
calculating two times X, 3X means calculating three times X, 4X means calculating four times X, and
8X means calculating eight times X.

Operation ADD SUB 2X 3X 4X 8X

Numbers 418.5 1706.5 407 151 151 151

We generated 10 million random datasets to test the basic large-number operations. We
counted the median number of clock cycles required by the basic large-number operations
during the execution phase of the proposed method to facilitate a more accurate analysis of
the execution overhead of the algorithm, as shown in Table 15.

Table 15. Clock cycles required for different operations in operation A with different CPU architec-
tures.

Architecture Curve ADD SUB 2X 3X 4X 8X

Comet Lake nistp256r1 24.50 31.32 20.08 20.89 19.93 19.69
SM2 25.03 31.52 20.64 21.70 20.42 20.25

Coffee Lake nistp256r1 18.91 27.57 15.50 16.80 15.35 15.44
SM2 21.44 28.46 16.40 16.66 15.96 16.12

Raptor Lake nistp256r1 6.15 6.41 12.86 15.24 12.20 12.42
SM2 7.67 6.10 12.46 15.16 12.13 12.63

Zen 4 nistp256r1 11.05 11.15 12.25 13.40 11.55 10.80
SM2 curve 10.7 10.29 11.25 13.30 11.10 11.00

Next, we generalized the time overheads of simple operations to a simple unified
operation, operation A, based on the proportion of each type of simple operation in the
actual case combined with the clock cycle overhead in the actual case. In Table 16, we list
the overheads of the basic large-number operations with different architectures.

Table 16. Clock cycles required for operation A with different architectures.

Architecture Curve Clock Cycles Consumed

Comet Lake nistp256r1 27.14
SM2 27.50

Coffee Lake nistp256r1 22.93
SM2 23.98

Raptor Lake nistp256r1 8.30
SM2 8.28

Zen 4 nistp256r1 11.40
SM2 10.71

Fifty million datasets were randomly generated for testing. Moreover, the median
generation times for different sparse forms were compared, as shown in Table 17.

The advantages of the proposed method can be seen from the data in the table. Our
proposed method in C was, on average, 50% faster than the original JSF-5 algorithm with
different architectures. 5-NAF is one of the mainstream sparse forms, and it was also
implemented in assembly in this study. The proposed method in assembly was ahead of
most algorithms.

Electronics 2023, 12, 3530 18 of 30

Table 17. Clock cycles required by sparse-form generating functions with different architectures.

Algorithm Comet Lake Coffee Lake Raptor Lake Zen 4

NAF 7403.95 7137.10 7822.61 6352.62
3-NAF 6044.00 5821.92 6419.55 5164.59
4-NAF 5213.45 5024.53 5530.54 4452.62
5-NAF 4682.22 4507.97 4945.97 3960.53

JSF 14,281.36 13,675.65 13,213.60 12,394.62
JSF-5 12,743.82 12,254.46 12,657.90 11,822.74

Proposed method 6650.02 6453.95 6200.18 5598.06
Proposed method in assembly 3585.34 3447.29 5866.41 3748.62

5.1.3. Experimental Theoretical Results

Using the previous experimental preparation, we also performed statistical tests on
other regular large-number operations, and the final results are shown in Table 18.

Table 18. The clock cycle cost for large-number operations with different architectures.

Architecture Curve A M S I

Comet Lake nistp256r1 27.14 75.46 60.45 4287.60
SM2 27.50 69.96 56.48 4211.25

Coffee Lake nistp256r1 22.93 66.86 52.96 4133.13
SM2 23.98 63.23 50.40 4067.77

Raptor Lake nistp256r1 8.30 59.54 58.05 4880.29
SM2 8.28 59.79 49.26 4873.46

Zen 4 nistp256r1 11.40 58.64 57.10 3557.01
SM2 10.71 56.70 44.10 3556.65

Based on the data in Tables 7, 17 and 18, the theoretical values for the clock cycles
required for each algorithm were calculated based on different large-number conversion
ratios, and the results are displayed in Table A6.

According to Table A6, the proposed method required about 3% fewer clock cycles on
average than the 5-NAF algorithm in the same assembly form. The proposed method took
up less pre-computed space.

With different CPU architectures, the clock cycles required for large-number operations
varied significantly from one architecture to another due to the architectures’ underlying
scheduling logic, the operation frequency, turbo boost technology, and the significant differ-
ences in the random datasets generated using true random number generators. Therefore,
in terms of actual operation, our theoretical results may also have errors compared to the
actual results, which is inevitable. We tested whether our method significantly improves
over the current mainstream 5-NAF algorithms with different architectures to verify the
feasibility of our method.

5.2. Experimental Results

Thirty million datasets of random numbers were generated under different archi-
tectures. Statistics on the running effects of various algorithms were obtained to build
histograms for comparison, and the results are shown in Figures 9–12.

Electronics 2023, 12, 3530 19 of 30

SM2 ECC

Algorithm

NAF NAF3 NAF4 NAF5 JSF Proposed method

C
lo

ck
 C

yc
le

s

0

66,670

133,340

200,010

266,680

333,350

400,000 391,429.16

341,428.93 342,796.58
329,835.26

301,840.26
312,762.70

282,423.06
293,335.22

308,940.89
321,777.65

273,670.30
285,155.32

Figure 9. Comparison between nistp256r1 and SM2 for Comet Lake.

SM2 ECC

Algorithm

NAF NAF3 NAF4 NAF5 JSF Proposed method

C
lo

ck
 C

yc
le

s

0

63,330

126,660

189,990

253,320

316,650

379,980380,000 377,617.67

332,021.12 330,634.87
319,573.53

292,549.50
301,834.20

273,952.01
283,093.88

299,619.97
310,319.87

266,321.50
274,842.75

Figure 10. Comparison between nistp256r1 and SM2 for Coffee Lake.

SM2 ECC

Algorithm

NAF NAF3 NAF4 NAF5 JSF Proposed method

C
lo

ck
 C

yc
le

s

0

66,670

133,340

200,010

266,680

333,350

400,000 397,389.52

347,159.51 349,011.69
335,630.66

307,561.24
319,996.47

288,819.94
300,675.05

309,252.18
317,124.88

278,600.02
286,783.11

Figure 11. Comparison between nistp256r1 and SM2 for Raptor Lake.

Electronics 2023, 12, 3530 20 of 30

SM2 ECC

Algorithm

NAF NAF3 NAF4 NAF5 JSF Proposed method

C
lo

ck
 C

yc
le

s

0

63,330

126,660

189,990

253,320

316,650

379,980380,000 378,382.39

325,707.01 331,868.50
313,755.81

287,181.07
303,498.60

269,634.34
284,588.34

294,468.08
312,947.37

261,691.35
278,451.78

Figure 12. Comparison between nistp256r1 and SM2 for Zen 4.

6. Results
6.1. Analysis and Discussion

We can see that the proposed method required the lowest numbers of clock cycles
with the nistp256r1 and SM2 curves in all our experimental environments.

With the Comet Lake architecture, the actual clock cycles required for the proposed
method with the nistp256r1 curve differed from the theoretical number by about 0.76%,
which was close to the theoretical result for case one; the actual clock cycles required for
the proposed method with the SM2 curve were about 3.1% less than the theoretical value,
which was closer to the theoretical result for case two.

With the Coffee Lake architecture, the actual clock cycles required for the proposed
method with the nistp256r1 curve differed from the theoretical number by about 1.82%,
which was close to the theoretical result for case two; the actual clock cycles required for the
proposed method with the SM2 curve differed from the theoretical value by about 4.25%,
which was closer to the theoretical result for case two.

With the Raptor Lake architecture, the actual clock cycles required for the proposed
method with the nistp256r1 curve differed from the theoretical number by about 3.15%,
which was close to the theoretical result for case three; the actual clock cycles required for
the proposed method with the SM2 curve were about 0.21% less than the theoretical value,
which was closer to the theoretical result for case three.

With the Zen 4 architecture, the actual clock cycles required for the proposed method
with the nistp256r1 curve differed from the theoretical number by about 2.45%, which was
close to the theoretical result for case three; the actual clock cycles required for the proposed
method with the SM2 curve were about 0.47% less than the theoretical value, which was
closer to the theoretical result for case three.

Indeed, due to varying proportions of different types of operations across various
architectures, there may be slight discrepancies between the results and the theoretical
expectations. These variations can contribute to minor errors in the results. The experi-
mental results with different architectures verified our theoretical analysis. In Table 19, we
summarize the improvement rates for the proposed method compared to other algorithms.

According to Table 19, the average improvement with the proposed method compared
to 5-NAF was around 3%. With the Zen 4 architecture, the clock cycles required for
the proposed method differed significantly from the results for this method with the
experimental environments of the other Intel CPUs because AMD CPUs use an entirely
different processor architecture, and factors such as CPU instruction branch prediction

Electronics 2023, 12, 3530 21 of 30

affect the actual operation. However, with the Zen 4 architecture, the proposed method also
showed a stable improvement, which validated the correctness of the proposed method.

Table 19. Comparison of the lift rate for the proposed method with other algorithms.

Architecture Curve NAF 3-NAF 4-NAF 5-NAF JSF

Comet Lake nistp256r1 27.15% 16.82% 8.83% 2.79% 11.38%
SM2 19.85% 17.03% 9.33% 3.10% 11.42%

Coffee Lake nistp256r1 27.22% 16.87% 8.94% 2.91% 11.43%
SM2 19.79% 16.66% 8.97% 2.79% 11.11%

Raptor Lake nistp256r1 27.83% 17.83% 10.38% 4.62% 9.57%
SM2 19.75% 16.99% 9.42% 3.54% 9.91%

Zen 4 nistp256r1 26.41% 16.10% 8.25% 2.16% 11.02%
SM2 19.65% 16.59% 8.88% 2.95% 11.13%

6.2. Conclusions

In this paper, we proposed an improved fast JSF-based method. We utilized Co-Z
combined with safegcd to achieve low computational complexity for curve coordinate
pre-computation. By encoding the data, we reduced the unnecessary operational overhead.
We tested the clock cycles required for various algorithms to generate sparse forms and the
overall performance of the algorithms across various architectures.

Based on our experiments, it was observed that our proposed JSF-5 method could
improve the efficiency of sparse form generation by approximately 70% compared to the
original JSF-5. In the case of the nistp256 curve, our method achieved an overall efficiency
improvement of approximately 27% compared to NAF across the different CPU architec-
tures. It also demonstrated efficiency improvements of approximately 16.9% compared
to 3-NAF, 9% compared to 4-NAF, 3.12% compared to 5-NAF, and 10.85% compared to
JSF. In the case of the SM2 curve, our method achieved an overall efficiency improvement
of approximately 19.76% compared to NAF across the different CPU architectures. It also
demonstrated efficiency improvements of approximately 16.8% compared to 3-NAF, 9.15%
compared to 4-NAF, 3% compared to 5-NAF, and 10.89% compared to JSF.

The theory of the proposed method was verified by our experiments, which demon-
strated a reduction in resource costs and enhancement of computational efficiency. This
method has potential applications in the field of information security, privacy protection,
and cryptocurrencies.

Author Contributions: Conceptualization, Y.F.; methodology, Y.F.; software, X.C. and Y.F.; writ-
ing—review and editing, Y.F.; validation, X.C.; supervision, Y.F.; writing—original draft preparation,
X.C.; data curation, X.C.; formal analysis, X.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Basic Research Program of Qilu University of Technology
(Shandong Academy of Sciences) (2021JC02017), Quan Cheng Laboratory (QCLZD202306), the Pilot
Project for Integrated Innovation of Science, Education and Industry of Qilu University of Technology
(Shandong Academy of Sciences) (2022JBZ01-01), and the Fundamental Research Fund of Shandong
Academy of Sciences (NO. 2018-12 & NO. 2018-13).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 3530 22 of 30

Appendix A

Table A1. Standard parameters of nistp256r1.

p = FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
a = FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC

b = 5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B
n = FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551
Gx = 6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296
Gy = 4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5

Table A2. Standard parameters of SM2.

p = FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF
a = FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC

b = 28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93
n = FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123

Gx = 32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7
Gy = BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0

Table A3. The sum of the basic operations required to perform the tripling operation when the Z
coordinate is 1. We used different S/M values to accommodate the processing speed differences
of today’s CPU architectures. Case one: S/M = 0.8, A/M = 0.2, I/M = 80; case two: S/M = 0.8,
A/M = 0.3, I/M = 70; case three: S/M = 0.8, A/M = 0.5, I/M = 60.

Operation Cost Case One Case Two Case Three

Tripling 8M + 4S+ 12A 13.6M 14.8M 17.2M

Table A4. The sum of the basic operations required to perform 2P + Q when the Z-coordinate of Q
is 1.

Operation Sum of the Basic Operations Case One Case Two Case Three

2P + Q(QZ = 1) 13M + 5S + 14A 19.8M 21.2M 24M

Table A5. Joint Hamming weight statistics.

Representation Form NAF 3-NAF 4-NAF 5-NAF JSF JSF-5

Single-scalar 86 65 52 43Hamming weight

Joint 143 113 93 79 143 103Hamming weight

Table A6. Theoretical clock cycles required for the final results in different architectures.

Architecture Algorithm nistp256r1 Curve SM2 Curve
Case One Case Two Case Three Case One Case Two Case Three

Comet Lake

NAF 343,623.53 371,196.61 427,097.38 319,117.73 344,681.11 396,507.48
3-NAF 343,848.24 371,549.6 427,706.93 319,226.94 344,909.25 396,973.48
4-NAF 304,231.25 328,446.36 377,631.19 282,436.95 304,887.11 350,487.04
5-NAF 289,000.41 312,476.01 360,181.83 268,277.51 290,042.06 334,270.78

JSF 319,622.7 341,830.58 387,755.54 297,367.5 317,956.73 360,534.39
Proposed method 282,998.63 304,338.72 348,528.09 262,633.23 282,417.92 323,386.49

Electronics 2023, 12, 3530 23 of 30

Table A6. Cont.

Architecture Algorithm nistp256r1 Curve SM2 Curve
Case One Case Two Case Three Case One Case Two Case Three

Coffee Lake

NAF 305,038.52 329,469.16 378,999.05 288,864.69 311,968.93 358,809.71
3-NAF 305,127.4 329,671.7 379,428.91 288,877.34 312,089.07 359,144.84
4-NAF 269,963.97 291,419.34 334,998.69 255,579.73 275,870.23 317,083.55
5-NAF 256,423.08 277,223.22 319,492.12 242,745.96 262,416.82 302,390.82

JSF 284,217.95 303,894.85 344,585.85 269,529.52 288,138.11 326,619.89
Proposed method 251,016.5 269,924.51 309,077.72 237,575.33 255,456.78 292,484.27

Raptor Lake

NAF 273,109.03 294,864.95 338,972.18 274,222.93 296,070.2 340,362.63
3-NAF 272,956.31 294,813.45 339,123.12 274,075.46 296,024.37 340,520.09
4-NAF 241,463.74 260,570.13 299,378.30 242,454.39 261,641.01 300,612.13
5-NAF 229,280.78 247,803.68 285,444.86 230,222.73 248,823.4 286,622.64

JSF 254,136.26 271,658.88 307,894.92 255,147.86 272,744.05 309,132.25
Proposed method 226,331.12 243,169.03 278,035.66 227,256.82 244,165.43 279,178.46

Zen 4

NAF 267,629 289,056.06 332,496.57 258,985.14 279,703.32 321,706.68
3-NAF 267,672.41 289,199.16 332,839.05 258,987.81 279,802.38 321,998.52
4-NAF 236,819.48 255,637.06 293,858.61 229,132.04 247,327.07 284,284.13
5-NAF 224,904.32 243,147.23 280,219.43 217,594.79 235,234.16 271,079.9

JSF 249,675.52 266,933.27 302,621.57 241,825.5 258,512.31 293,019.93
Proposed method 220,880.81 237,464.2 271,803.79 213,697.38 229,732.14 262,935.66

Algorithm A1 Binary multiple-point multiplication

Require: k = (km−1, ..., k1, k0), l = (ln−1, ..., l1, l0), P, Q ∈ E(FP)
Ensure: Sum of kP + lQ

1: R← O
2: if m < n then
3: m← n
4: end if
5: for i from m− 1 to 0 do
6: R← 2R
7: if ki = 1 then
8: R← R + P
9: end if

10: if li = 1 then
11: R← R + Q
12: end if
13: end for
14: return R

Electronics 2023, 12, 3530 24 of 30

Algorithm A2 JSF-5 single-array method

Require: Non-negative integer pairs x, y
Ensure: JSF-5 single-array representation of u[l]

1: j← 0
2: while x 6= 0 or y 6= 0 do
3: xj ← x mod 2, yj ← y mod 2
4: if xjyj 6= 0 then
5: xj ← x mod 8, yj ← y mod 8
6: end if
7: if xjyj = 0 and xj + yj 6= 0 then
8: if (x− xj)/2 6≡ (y− yj)/2(mod2) then
9: xj ← −xj, yj ← −yj

10: end if
11: end if
12: if abs[xj] = 3 then
13: u[j] = xj/2× 3;
14: else
15: u[j] = xj;
16: end if
17: if abs[yj] = 3 then
18: u[j] = u[j] + yj/2× 10;
19: else
20: u[j] = u[j] + yj;
21: end if
22: x ← (x− xj)/2, y← (y− yj)/2
23: j← j + 1
24: end while

Algorithm A3 Computing the w-NAF of a positive integer

Require: Width w, positive integer k
Ensure: w-NAF

1: i← 0
2: while k ≥ 1 do
3: if k is odd then
4: ki ← k mod 2w

5: k← k− ki
6: else
7: ki ← 0
8: end if
9: k← k/2

10: i← i + 1
11: end while
12: return (ki−1, ki−2, ..., k1, k0)

Electronics 2023, 12, 3530 25 of 30

Algorithm A4 JSF-5

Require: Non-negative integer pairs x, y

Ensure: The joint sparse form of x, y is represented as
(

xl ... x1 x0
yl ... y1 y0

)
1: j← 0
2: while x 6= 0 or y 6= 0 do
3: xj ← x mod 2, yj ← y mod 2
4: if xjyj 6= 0 then
5: xj ← x mod 8, yj ← y mod 8
6: end if
7: if xjyj = 0 and xj + yj 6= 0 then
8: if (x− xj)/2 6≡ (y− yj)/2(mod2) then
9: xj ← −xj, yj ← −yj

10: end if
11: end if
12: x ← (x− xj)/2, y← (y− yj)/2
13: j← j + 1
14: end while

Algorithm A5 Coordinate Inversion

Require: Q-point coordinates
Ensure: Pre-computed array Pix[12× 8]

1: {Calculate coordinates and store them by encoding;}
2: InvZ ← 1/(Z1 · Z2 · Z3 · Z4) T1← Z2 · Z3 · Z4;
3: T2← Z1 · Z3 · Z4; T3← Z1 · Z2 · Z4;
4: T4← Z1 · Z2 · Z3;
5: {Inversion of coordinates by stored position, processing one coordinate per operation

(four array spaces)}
6: {Restore the coordinates of Q + P, Q− P}
7: Z1← T1 · InvZ; T1← Z1 · Z1; Z1← Z1 · T1
8: Pix[6× 8]← Pix[6× 8] · T1
9: Pix[6× 8 + 4]← Pix[6× 8 + 4] · Z1

10: Pix[4× 8]← Pix[4× 8] · T1
11: Pix[4× 8 + 4]← Pix[4× 8 + 4] · Z1
12: {Restore the coordinates of Q + 3P, Q− 3P}
13: Z2← T2 · InvZ; T2← Z2 · Z2; Z2← Z2 · T2;
14: Pix[7× 8]← Pix[7× 8] · T2
15: Pix[7× 8 + 4]← Pix[7× 8 + 4] · Z2
16: Pix[3× 8]← Pix[3× 8] · T2
17: Pix[3× 8 + 4]← Pix[3× 8 + 4] · Z2
18: {Restore the coordinates of 3Q + P, 3Q− P}
19: Z3← T3 · InvZ; T3← Z3 · Z3; Z3← Z3 · T3
20: Pix[11× 8]← Pix[11× 8] · T3
21: Pix[11× 8 + 4]← Pix[11× 8 + 4] · Z3
22: Pix[9× 8]← Pix[9× 8] · T3
23: Pix[9× 8 + 4]← Pix[9× 8 + 4] · Z3
24: {Restore the coordinates of 3Q + 3P, 3Q− 3P}
25: Z4← T4 · InvZ; T4← Z4 · Z4; Z4← Z4 · T4
26: Pix[12× 8]← Pix[12× 8] · T4
27: Pix[12× 8 + 4]← Pix[12× 8 + 4] · Z4
28: Pix[8× 8]← Pix[8× 8] · T4
29: Pix[8× 8 + 4]← Pix[8× 8 + 4] · Z4

Electronics 2023, 12, 3530 26 of 30

Algorithm A6 New encoding JSF-5 segmentation method

Require: Non-negative integer pairs x[4], y[4]
Ensure: New encoding array u[l] of x, y

1: j← 0 ;
2: while x[3] 6= 0 or y[3] 6= 0 do
3: xj ← x[0]mod 8; yj ← y[0]mod 8;
4: Loc = xj × 32 + yj × 4;
5: xj = TBL[Loc];
6: yj = TBL[Loc + 1];
7: u[j] = TBL[Loc + 2];
8: x ← (x− xj)/2, y← (y− yj)/2;
9: j← j + 1;

10: end while
11: while x[2] 6= 0 or y[2] 6= 0 do
12: xj ← x[0]mod 8; yj ← y[0]mod 8;
13: Loc = xj × 32 + yj × 4;
14: xj = TBL[Loc];
15: yj = TBL[Loc + 1];
16: u[j] = TBL[Loc + 2];
17: x ← (x− xj)/2, y← (y− yj)/2
18: j← j + 1;
19: end while
20: while x[1] 6= 0 or y[1] 6= 0 do
21: xj ← x[0]mod 8; yj ← y[0]mod 8;
22: Loc = xj × 32 + yj × 4;
23: xj = TBL[Loc];
24: yj = TBL[Loc + 1];
25: u[j] = TBL[Loc + 2];
26: x ← (x− xj)/2, y← (y− yj)/2;
27: j← j + 1;
28: end while
29: while x[0] 6= 0 or y[0] 6= 0 do
30: xj ← x[0]mod 8; yj ← y[0]mod 8;
31: Loc = xj × 32 + yj × 4;
32: xj = TBL[Loc];
33: yj = TBL[Loc + 1];
34: u[j] = TBL[Loc + 2];
35: x ← (x− xj)/2, y← (y− yj)/2;
36: j← j + 1;
37: end while

Algorithm A7 Assembly implementation of the proposed method

first loop, k0 >192 bits or k1 >192 bits
k00: k0[0]; k01: k0[1]; k02: k0[2]; k03: k0[3];
k10: k1[0]; k11: k1[1]; k12: k1[2]; k13: k1[3];
tbl: lookup table address
DOUT: output JSF table address and temporary variable
index: output JSF index and temporary variable
d0, d1, v0, v1: temporary variable
AT&T format
#lookup table
leaq SM2_d0d1TBLx64(%rip), tbl

Electronics 2023, 12, 3530 27 of 30

Algorithm A7 Cont.

movq $-8, v0
.LK3:
b0 = (k00&7) * 8 + (k01&7)
andn k00, v0, d0
andn k10, v0, v0
leaq (v0, d0, 8), v0
lookup d0, d1, and jsf index from tbl
MOVSX (tbl, v0, 4), d0
MOVSX offset0(tbl, v0, 4), d1
MOVSX offset1(tbl, v0, 4), v0
recover output table address and index from stack
movq 0(%rsp), DOUT
movq 8(%rsp), index
movl v0d, (DOUT, index, 4)
incq index
movq DOUT, 0(%rsp)
movq index, 8(%rsp)
extract sign of d0 and d1 to v0 and v1
movq $63, index
sarx index, d0, v0
sarx index, d1, v1
xorq DOUT, DOUT
movq $1, DOUT
four ops at the same time
k0 + d0 ; k1 + d1 ; k0� 1; k1� 1;
adcx d0, k00
adox d1, k10
shrx DOUT, k00, d0
shrx DOUT, k10, d1;
adcx v0, k01
adox v1, k11
shlx index, k01, k00
shlx index, k11, k10
#new k0[0], k1[0]
leaq (d0, k00), k00
leaq (d1, k10), k10
shrx DOUT, k01, k01
shrx DOUT, k11, k11
adcx v0, k02
adox v1, k12
shlx index, k02, d0
shlx index, k12, d1;
#new k0[1], k1[1]
leaq (d0, k01), k01
leaq (d1, k11), k11
shrx DOUT, k02, k02
shrx DOUT, k12, k12
adcx v0, k03
adox v1, k13
shlx index, k03, d0
shlx index, k13, d1
#new k0[2], k1[2]
leaq (d0, k02), k02

Electronics 2023, 12, 3530 28 of 30

Algorithm A7 Cont.

leaq (d1, k12), k12
movq $-8, v0;
#new k0[3], k1[3]
shrq k03
shrq k13
jnz .LK3;
testq k03, k03
jnz .LK3

References
1. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 1985,

31, 469–472. [CrossRef]
2. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
3. Yao, X.; Chen, Z.; Tian, Y. A lightweight attribute-based encryption scheme for the Internet of Things. Future Gener. Comput. Syst.

2015, 49, 104–112. [CrossRef]
4. Tidrea, A.; Korodi, A.; Silea, I. Elliptic Curve Cryptography Considerations for Securing Automation and SCADA Systems.

Sensors 2023, 23, 2686. [CrossRef]
5. Yang, Y.S.; Lee, S.H.; Wang, J.M.; Yang, C.S.; Huang, Y.M.; Hou, T.W. Lightweight Authentication Mechanism for Industrial IoT

Environment Combining Elliptic Curve Cryptography and Trusted Token. Sensors 2023, 23, 4970. [CrossRef]
6. Khan, N.A.; Awang, A. Elliptic Curve Cryptography for the Security of Insecure Internet of Things. In Proceedings of the 2022

International Conference on Future Trends in Smart Communities (ICFTSC), Kuching, Malaysia, 1–2 December 2022; pp. 59–64.
7. Zhong, L.; Wu, Q.; Xie, J.; Li, J.; Qin, B. A secure versatile light payment system based on blockchain. Future Gener. Comput. Syst.

2019, 93, 327–337. [CrossRef]
8. Gutub, A. Efficient utilization of scalable multipliers in parallel to compute GF (p) elliptic curve cryptographic operations. Kuwait

J. Sci. Eng. 2007, 34, 165–182.
9. Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.

[CrossRef]
10. Islam, M.M.; Hossain, M.S.; Hasan, M.K.; Shahjalal, M.; Jang, Y.M. FPGA implementation of high-speed area-efficient processor

for elliptic curve point multiplication over prime field. IEEE Access 2019, 7, 178811–178826. [CrossRef]
11. Khleborodov, D. Fast elliptic curve point multiplication based on binary and binary non-adjacent scalar form methods. Adv.

Comput. Math. 2018, 44, 1275–1293. [CrossRef]
12. Solinas, J.A. Low-Weight Binary Representation for Pairs of Integers; Combinatorics and Optimization Research Report CORR 2001-41;

Centre for Applied Cryptographic Research, University of Waterloo: Waterloo, ON, Canada , 2001.
13. Wang, W.; Fan, S. Attacking OpenSSL ECDSA with a small amount of side-channel information. Sci. China Inf. Sci. 2018,

61, 032105. [CrossRef]
14. Koyama, K.; Tsuruoka, Y. Speeding up elliptic cryptosystems by using a signed binary window method. In Proceedings of

the Advances in Cryptology—CRYPTO’92: 12th Annual International Cryptology Conference, Santa Barbara, CA, USA, 16–20
August 1992; Springer: Berlin/Heidelberg, Germany, 1993; pp. 345–357.

15. Brickell, E.F.; Gordon, D.M.; McCurley, K.S.; Wilson, D.B. Fast exponentiation with precomputation. In Proceedings of the
Advances in Cryptology—EUROCRYPT’92: Workshop on the Theory and Application of Cryptographic Techniques, Balatonfüred,
Hungary, 24–28 May 1992; Springer: Berlin/Heidelberg, Germany, 2001; pp. 200–207.

16. Li, X.; Hu, L. A Fast Algorithm on Pairs of Scalar Multiplication for Elliptic Curve Cryptosystems. In Proceedings of the
CHINACRYPT’2004, Shanghai, China, 1 March 2004; pp. 93–99.

17. Wang, N. The Algorithm of New Five Elements Joint Sparse Form and Its Applications. Acta Electron. Sin. 2011, 39, 114.
18. Luo, G.; Fu, S.; Gong, G. Speeding up multi-scalar multiplication over fixed points towards efficient zksnarks. IACR Trans.

Cryptogr. Hardw. Embed. Syst. 2023, 2023, 358–380. [CrossRef]
19. Wu, G.; He, Q.; Jiang, J.; Zhang, Z.; Zhao, Y.; Zou, Y.; Zhang, J.; Wei, C.; Yan, Y.; Zhang, H. Topgun: An ECC Accelerator for

Private Set Intersection. ACM Trans. Reconfig. Technol. Syst. 2023. [CrossRef]
20. Sajid, A.; Sonbul, O.S.; Rashid, M.; Zia, M.Y.I. A Hybrid Approach for Efficient and Secure Point Multiplication on Binary

Edwards Curves. Appl. Sci. 2023, 13, 5799. [CrossRef]
21. Bernstein, D.J.; Yang, B.Y. Fast constant-time gcd computation and modular inversion. IACR Trans. Cryptogr. Hardw. Embed. Syst.

2019, 2019, 340–398. [CrossRef]
22. Bernstein, D.J.; Yang, B.Y. Fast Constant-Time GCD and Modular Inversion. 2019. Available online: https://gcd.cr.yp.to/

software.html (accessed on 6 April 2023).

http://doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1016/j.future.2014.10.010
http://dx.doi.org/10.3390/s23052686
http://dx.doi.org/10.3390/s23104970
http://dx.doi.org/10.1016/j.future.2018.10.012
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1109/ACCESS.2019.2958491
http://dx.doi.org/10.1007/s10444-017-9581-5
http://dx.doi.org/10.1007/s11432-016-9030-0
http://dx.doi.org/10.46586/tches.v2023.i2.358-380
http://dx.doi.org/10.1145/3603114
http://dx.doi.org/10.3390/app13095799
http://dx.doi.org/10.46586/tches.v2019.i3.340-398
https://gcd.cr.yp.to/software.html
https://gcd.cr.yp.to/software.html

Electronics 2023, 12, 3530 29 of 30

23. Alkim, E.; Cheng, D.Y.L.; Chung, C.M.M.; Evkan, H.; Huang, L.W.L.; Hwang, V.; Li, C.L.T.; Niederhagen, R.; Shih, C.J.; Wälde,
J.; et al. Polynomial Multiplication in NTRU Prime: Comparison of Optimization Strategies on Cortex-M4. Cryptology ePrint
Archive, Paper 2020/1216. 2020. Available online: https://eprint.iacr.org/2020/1216 (accessed on 13 May 2023).

24. Bajard, J.C.; Fukushima, K.; Plantard, T.; Sipasseuth, A. Fast verification and public key storage optimization for unstructured
lattice-based signatures. J. Cryptogr. Eng. 2023, 13, 373–388. [CrossRef]

25. Meloni, N. New point addition formulae for ECC applications. In Proceedings of the Arithmetic of Finite Fields: First International
Workshop, WAIFI 2007, Madrid, Spain, 21–22 June 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 189–201.

26. Dahmen, E. Efficient Algorithms for Multi-Scalar Multiplications. Diploma Thesis, Technical University of Darmstadt, Darmstadt,
Germany, 2005.

27. Goundar, R.R.; Joye, M.; Miyaji, A.; Rivain, M.; Venelli, A. Scalar multiplication on Weierstraß elliptic curves from Co-Z arithmetic.
J. Cryptogr. Eng. 2011, 1, 161–176. [CrossRef]

28. Washington, L.C. Elliptic Curves: Number Theory and Cryptography; CRC Press: Boca Raton, FL, USA, 2008.
29. Hutter, M.; Joye, M.; Sierra, Y. Memory-constrained implementations of elliptic curve cryptography in co-Z coordinate represen-

tation. In Progress in Cryptology—AFRICACRYPT 2011, Proceedings of the 4th International Conference on Cryptology in Africa, Dakar,
Senegal, 5–7 July 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 170–187.

30. Yu, W.; Wang, K.; Li, B.; Tian, S. Montgomery algorithm over a prime field. Chin. J. Electron. 2019, 28, 39–44. [CrossRef]
31. Lee, Y.K.; Sakiyama, K.; Batina, L.; Verbauwhede, I. Elliptic-curve-based security processor for RFID. IEEE Trans. Comput. 2008,

57, 1514–1527. [CrossRef]
32. Burmester, M.; De Medeiros, B.; Motta, R. Robust, anonymous RFID authentication with constant key-lookup. In Proceedings

of the 2008 ACM Symposium on Information, Computer and Communications Security, Tokyo, Japan, 18–20 March 2008;
pp. 283–291.

33. Lee, Y.K.; Verbauwhede, I. A compact architecture for montgomery elliptic curve scalar multiplication processor. In Proceedings
of the Information Security Applications: 8th International Workshop, WISA 2007, Jeju Island, Republic of Korea, 27–29 August
2007; Revised Selected Papers 8; Springer: Berlin/Heidelberg, Germany, 2007; pp. 115–127.

34. Liu, S.; Zhang, Y.; Chen, S. Fast Scalar Multiplication Algorithm Based on Co Z Operation and Conjugate Point Addition.
Int. J. Netw. Secur. 2021, 23, 914–923.

35. Goundar, R.R.; Joye, M.; Miyaji, A. Co-Z addition formulæ and binary ladders on elliptic curves. In Proceedings of the
Cryptographic Hardware and Embedded Systems, CHES 2010: 12th International Workshop, Santa Barbara, CA, USA, 17–20
August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–79.

36. Longa, P.; Gebotys, C. Novel precomputation schemes for elliptic curve cryptosystems. In Proceedings of the Applied
Cryptography and Network Security: 7th International Conference, ACNS 2009, Paris-Rocquencourt, France, 2–5 June 2009;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 71–88.

37. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Proceedings of the Advances in Cryptology—CRYPTO’99: 19th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 388–397.

38. Yen, S.M.; Joye, M. Checking before output may not be enough against fault-based cryptanalysis. IEEE Trans. Comput. 2000,
49, 967–970.

39. Sung-Ming, Y.; Kim, S.; Lim, S.; Moon, S. A countermeasure against one physical cryptanalysis may benefit another attack. In
Proceedings of the Information Security and Cryptology—ICISC 2001: 4th International Conference Seoul, Republic of Korea, 6–7
December 2001; Springer: Berlin/Heidelberg, Germany, 2002; pp. 414–427.

40. Shah, Y.A.; Javeed, K.; Azmat, S.; Wang, X. A high-speed RSD-based flexible ECC processor for arbitrary curves over general
prime field. Int. J. Circuit Theory Appl. 2018, 46, 1858–1878. [CrossRef]

41. Shah, Y.A.; Javeed, K.; Azmat, S.; Wang, X. Redundant-Signed-Digit-Based High Speed Elliptic Curve Cryptographic Processor. J.
Circuits Syst. Comput. 2019, 28, 1950081. [CrossRef]

42. Karakoyunlu, D.; Gurkaynak, F.K.; Sunar, B.; Leblebici, Y. Efficient and side-channel-aware implementations of elliptic curve
cryptosystems over prime fields. IET Inf. Secur. 2010, 4, 30–43. [CrossRef]

43. Kim, K.H.; Choe, J.; Kim, S.Y.; Kim, N.; Hong, S. Speeding up regular elliptic curve scalar multiplication without precomputation.
Adv. Math. Commun. 2020, 14, 703–726. [CrossRef]

44. Liu, Z.; Seo, H.; Castiglione, A.; Choo, K.K.R.; Kim, H. Memory-efficient implementation of elliptic curve cryptography for the
Internet-of-Things. IEEE Trans. Dependable Secur. Comput. 2018, 16, 521–529. [CrossRef]

45. Unterluggauer, T.; Wenger, E. Efficient pairings and ECC for embedded systems. In Proceedings of the Cryptographic Hardware
and Embedded Systems—CHES 2014: 16th International Workshop, Busan, Republic of Korea, 23–26 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 298–315.

46. Alrimeih, H.; Rakhmatov, D. Fast and flexible hardware support for ECC over multiple standard prime fields. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2014, 22, 2661–2674. [CrossRef]

47. FIPS 186-5. Available online: https://csrc.nist.gov/publications/detail/fips/186/4/final (accessed on 16 April 2023).
48. Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves. Available online: http://www.sca.gov.cn/sca/xwdt/2010-1

2/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf (accessed on 5 April 2023).

https://eprint.iacr.org/2020/1216
http://dx.doi.org/10.1007/s13389-023-00309-1
http://dx.doi.org/10.1007/s13389-011-0012-0
http://dx.doi.org/10.1049/cje.2018.11.006
http://dx.doi.org/10.1109/TC.2008.148
http://dx.doi.org/10.1002/cta.2504
http://dx.doi.org/10.1142/S0218126619500816
http://dx.doi.org/10.1049/iet-ifs.2009.0038
http://dx.doi.org/10.3934/amc.2020090
http://dx.doi.org/10.1109/TDSC.2018.2825449
http://dx.doi.org/10.1109/TVLSI.2013.2294649
https://csrc.nist.gov/publications/detail/fips/186/4/final
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf
http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf

Electronics 2023, 12, 3530 30 of 30

49. Gueron, S.; Krasnov, V. Fast prime field elliptic-curve cryptography with 256-bit primes. J. Cryptogr. Eng. 2015, 5, 141–151.
[CrossRef]

50. Rivain, M. Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves. Cryptology ePrint Archive. 2011. Available
online: https://eprint.iacr.org/2011/338 (accessed on 14 May 2023).

51. Awaludin, A.M.; Larasati, H.T.; Kim, H. High-speed and unified ECC processor for generic Weierstrass curves over GF (p) on
FPGA. Sensors 2021, 21, 1451. [CrossRef]

52. Eid, W.; Al-Somani, T.F.; Silaghi, M.C. Efficient Elliptic Curve Operators for Jacobian Coordinates. Electronics 2022, 11, 3123.
[CrossRef]

53. Rashid, M.; Imran, M.; Sajid, A. An efficient elliptic-curve point multiplication architecture for high-speed cryptographic
applications. Electronics 2020, 9, 2126. [CrossRef]

54. Li, W.; Yu, W.; Wang, K. Improved tripling on elliptic curves. In Proceedings of the Information Security and Cryptol-
ogy: 11th International Conference, Inscrypt 2015, Beijing, China, 1–3 November 2015; Revised Selected Papers 11; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 193–205.

55. Doche, C.; Icart, T.; Kohel, D.R. Efficient scalar multiplication by isogeny decompositions. In Proceedings of the Public Key
Cryptography, New York, NY, USA, 24–26 April 2006; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3958, pp. 191–206.

56. Dimitrov, V.; Imbert, L.; Mishra, P.K. Efficient and secure elliptic curve point multiplication using double-base chains. In
Proceedings of the Advances in Cryptology—ASIACRYPT 2005: 11th International Conference on the Theory and Application
of Cryptology and Information Security, Chennai, India, 4–8 December 2005; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 59–78.

57. Longa, P.; Miri, A. Fast and flexible elliptic curve point arithmetic over prime fields. IEEE Trans. Comput. 2008, 57, 289–302.
[CrossRef]

58. Ciet, M.; Joye, M.; Lauter, K.; Montgomery, P.L. Trading inversions for multiplications in elliptic curve cryptography. Des. Codes
Cryptogr. 2006, 39, 189–206. [CrossRef]

59. Longa, P.; Miri, A. New Composite Operations and Precomputation Scheme for Elliptic Curve Cryptosystems over Prime Fields
(Full Version). Cryptology ePrint Archive. 2008. Available online: https://eprint.iacr.org/2008/051 (accessed on 15 April 2023).

60. Longa, P.; Miri, A. New Multibase Non-Adjacent Form Scalar Multiplication and Its Application to Elliptic Curve Cryptosystems
(Extended Version). Cryptology ePrint Archive. 2008. Available online: https://eprint.iacr.org/2008/052 (accessed on 15 April
2023).

61. Joye, M. Highly regular right-to-left algorithms for scalar multiplication. In Proceedings of the Cryptographic Hardware and
Embedded Systems-CHES 2007: 9th International Workshop, Vienna, Austria, 10–13 September 2007; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 135–147.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13389-014-0090-x
https://eprint.iacr.org/2011/338
http://dx.doi.org/10.3390/s21041451
http://dx.doi.org/10.3390/electronics11193123
http://dx.doi.org/10.3390/electronics9122126
http://dx.doi.org/10.1109/TC.2007.70815
http://dx.doi.org/10.1007/s10623-005-3299-y
https://eprint.iacr.org/2008/051
https://eprint.iacr.org/2008/052

	Introduction
	Related Work
	Objectives and Contribution

	Preliminaries
	Basic Operation
	256-Bit Curve
	Other Operations
	Sparse Form
	NAF
	JSF

	Using Coordinate Inversion for Pre-Computed Data
	Pre-Computed Complexity Analysis
	Pre-Computed Storage Table Encoding

	Improving the Operational Efficiency of the Method Execution Phase
	JSF-5 Encoding Method and Table Look-Up Method
	Segmentation Method for New Encoding JSF-5
	Assembly Implementation of the New Encoding JSF-5 Segmentation Method

	Experiment
	Experimental Preparation
	Experimental Environment
	Relevant Data Test
	Experimental Theoretical Results

	Experimental Results

	Results
	Analysis and Discussion
	Conclusions

	Appendix A
	References

