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Abstract: The classification of wireless communication channel scenarios is vital for modern wireless
technologies. Efficient data preprocessing for identification, especially starting from 5G and beyond,
where multiple scenario transitions occur, is crucial. Machine Learning (ML) is employed for scenario
identification. Moreover, accurate ML classification is required to enhance the decision-making
process in each communication layer. The proposed model in this study utilizes an enhanced
preprocessing phase. The proposed model proves that adding the variance inflation factor (VIF)
elimination layer has a significant effect in eliminating the residual noise after regularization. By
evaluating the VIF, the high multi-collinear features are removed after adding a regularization penalty.
Consequently, the total explained variance (TEV) was enhanced by 5% and reached 76%. Thus, the
classification accuracy of the identification processes of different rural and urban scenarios was
increased by 3%, on average, compared with previous work for each algorithm: Random Forest (RF),
K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Gaussian Mixture model (GMM).

Keywords: wireless communication; machine learning; computational time; feature selection; vari-
ance inflation factor; random forest; regularization

1. Introduction

Nowadays, artificial intelligence (AI) plays an important role in modern wireless
communication technology, in addition to industries, like science, medicine, and manufac-
turing [1]. Due to the growing number of smart devices, the rise of the Internet of Things
(IoT), and the need for more worldwide connectivity, connecting isolated and rural places
is essential [2]. Adding AI to modern wireless systems helps in processing large amounts
of data received from devices, like smartphones, laptops, tablets, and sensors, efficiently.
ML is a subset of AI that uses massive volumes of data to train algorithms and enhance
their comprehension of processed information [3]. The trained ML algorithms can make
predictions and decisions based on new data, optimizing the automated networks in 5G
and beyond, to meet Quality of Service (QoS) requirements. The goal of 5G and beyond is to
provide diverse services and seamless global network coverage. The integration of satellite
and terrestrial networks is being explored to offer worldwide broadband connectivity [4],
attracting interest from academia and the business sector.

Wireless communication systems have three layers: the physical-, middle-, and end-
user layers. To improve the QoS, system security, privacy, latency, power allocation and
control, and channel capacity, AI techniques are applied at every layer. In the physical layer,
ML plays a vital role in tasks, like channel encoding, decoding, and estimation. Scenario
classification, an ML application, involves estimating the channel environment for data
transmission. Scenarios can include rural, suburban, urban, indoor hotspots, and satellites.
Urban macro cells (UMa) are deployed in cities, while rural macro cells (RMa) are used in
less populated and scattered rural areas [5]. Users often encounter various scenarios, like
deserts, mountains, stations, and obstacles, especially during high-speed transportation.
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These scenarios strain communication systems, necessitating an accurate definition of
wireless channel scenarios to meet user QoS requirements.

In a wireless communication system, inaccurate identification of the channel mode,
where prior knowledge of the possible propagation models such as traditional statistical
models Okumura and Hata is assumed, can lead to inaccuracies in data interpretation
and system performance. Minimizing complexity and runtime while precisely identifying
the channel model scenario are crucial steps for reliable communication systems. Power
efficiency, beam management, maintenance, bandwidth allocation, network setup, opera-
tion, throughput, QoS prediction, and coverage performance are all addressed by AI-based
solutions.

Deep learning (DL) methods are commonly used but require more computational
time. DL has been used in previous studies to differentiate between line-of-sight (LoS)
and non-line-of-sight (NLoS) scenarios in urban settings utilizing elevation and azimuth
angles [6]. Convolutional networks have achieved accurate classification in fingerprint
feature extraction and classification tasks [7]. The effectiveness of supervised classification
algorithms and unsupervised learning clustering algorithms for scenario identification has
also been demonstrated [8–10].

Recently, in [8], it was shown that the utilization of the least absolute shrinkage and
selection operator (LASSO) could optimize timing and performance for wireless commu-
nication typical terrestrial scenario classification rather than ElasticNet. Therefore, the
previous consecutive works [8,9] demonstrated how regularizing the feature selection
process could improve the classification performance of [10] and reduce the computational
complexity of ML algorithms while preserving strong generalization capabilities. Neverthe-
less, it is still necessary to reduce the computational burden of the preprocessing step and
the algorithm’s classification time in order to swiftly identify scenarios during transitions
between multiple scenarios.

The main contributions of this work are:

1. Lowering the model responsiveness and latency for each regularization technique
instruction used in the prior model’s preprocessing workflow [8,9]. In this work, the
regularization procedures are enhanced by adding another filtration layer based on
VIF. This layer could remove multicollinearity existing in the elevation spread angle
of arrival (esA). This process could increase the performance and time efficiency for
both preprocessing and classification tasks.

2. Utilization time for kernel principal component analysis (k-PCA) is decreased, as it
reduces the dimension of the features from three to two instead of from four to two
like the previous work [8]. Moreover, at the ML layer, the RF algorithm was evaluated
and compared with KNN, SVM, and GMM. It achieved 100% accuracy in testing data.

The remaining sections of this paper are structured in the following manner. In
Section 2, details regarding the dataset, as well as the procedures for preprocessing and
processing, are presented. Section 3 presents the outcomes and discussions of the prepro-
cessing and classification phase. Finally, Section 4 focuses on the main conclusions derived
from the study.

2. Wireless Communication Model Dataset

This section provides a comprehensive discussion of the dataset utilized in this study.
The features describing each wireless communication scenario, including delay spread (Dσ),
Path Loss (PL), K-Factor (KF), elevation spread angle of arrival (σEoA), elevation spread
angle of departure (σEoD), azimuth spread angle of arrival (σAoA), and azimuth spread
angle of departure (σAoD), undergo preprocessing. Moreover, the preprocessing procedure
and evaluation methods are introduced.

2.1. Dataset Specification

The dataset used in this study was obtained from Refs. [8,9], where the 3GPP standard
was used to assess each scenario parameter. These parameters, including Dσ, PL, KF, σEoA,
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σEoD, σAoA, and σAoD, describe both large- and small-scale fading characteristics. The
generalized expectation maximization technique with space-alternating steps was used
to extract the angular information from the Channel Impulse Response (CIR) in a MIMO
model with 31 antenna elements. Between a Mobile Terminal (MT) and a Base Station (BS),
the received signal is used to generate the CIR snapshots, with the processing occurring at
the BS end.

Both the NLoS and LoS cases are considered for both RMa and UMa scenarios, re-
sulting in a total of four classes. The UMa scenario pertains to urban areas, such as towns
or cities, while the RMa scenario is specific to rural areas with smaller populations and
reduced scattering.

PL represents the reduction in power as a function of distance, denoted as PL(d0),
in a specific scenario. It quantifies the relationship between the actual route loss and the
distance d. This relationship is expressed as PdB [11]

PdB = PL(d0) + 10 γ log10

(
d
d0

)
+ Sσ[dB], (1)

where the exponent, denoted as γ, is defined along with the reference distance d0. The term
Sσ[dB] represents the standard normal distribution.

KF is a crucial parameter for SSF, or small-scale fading. In an NLoS scenario, it
measures the strength of a dominating LoS component relative to the multipath components.
The value of KF in dB can be represented at each capture of the CIR snapshot by [12]

KdB = 10 log


(
|h(τm0)|max

)2

∑τm 6=τm0
(| h(t)|)2

, (2)

In the given context, τm refers to the delay of the mth component, where the index τm0

represents the time delay of the first path where the peak amplitude exists. The function h(t)
is the CIR in the time domain. Another significant parameter for SSF is Dσ, which quantifies
the channel dispersion in terms of the time delay of a CIR snapshot. The expression for Dσ

can be represented as [13]

Dσ =

√√√√ΣM
m=1 (τm − τ) | h(τm) |2

ΣM
m=1 | h(τm) |2

, (3)

The capacity of the channel is influenced by Dσ, with scenarios having multiple rich
scatters resulting in a larger Dσ. As a result, the root mean square (RMS) delay spread (DS)
of an NLoS situation is greater. The angular spread (σθ) represents the channel dispersion
in terms of angular information for a CIR snapshot and can be calculated according to [14]

σθ =

√√√√ΣM
m=1θ2

m,µ. | h(τm) |2

ΣM
m=1 | h(τm) |2

, (4)

The angle θ is defined to represent the azimuth and elevation angles of departure
and arrival. In NLoS scenarios, there are more clusters compared to LoS scenarios. Conse-
quently, the value of σθ , which represents the angular spread, is higher in NLoS scenarios
compared to LoS scenarios.

2.2. Preprocessing Phase

The preprocessing phase involves a series of procedures that include normalization,
regularization, filtering for multicollinearity, and reducing dimensionality, as shown in
Figure 1.
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The input features consist of Dσ, PL, KF, σEoA, σEoD, σAoA, σAoD, and L, where L repre-
sents the label of the wireless communication terrestrial scenario. Each row, denoted as Ai,
corresponds to a single data point, which will undergo Z-score normalization. It is impor-
tant to normalize the data to handle outliers, as unnormalized data can adversely affect the
performance of ML models. Each data point is subjected to the Z-score normalization, Aj

i ,
which determines how far a data point is from the mean divided by the standard deviation
and is denoted as [15]

Aj
i =

Aj
i − Aj

σAj
, (5)

where Aj and σAj represent the mean and standard deviation of each feature j.
Next, the normalized data points undergo regularization to eliminate unnecessary

features and improve classification performance. The regularization technique used is
LASSO, which is a type of L1 regularization known as the least absolute error. The LASSO
regression B̂lasso, as [16]

B̂lasso = argmin

{
1
2

N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)
+ λ

p

∑
j=1

∣∣β j
∣∣},

subject to ∑p
j=1

∣∣β j
∣∣ ≤ t (6)

where λ is the regularization penalty range from 0 to 1. β0 is a constant coefficient. β =
(β0, β1, β2, . . . , βN) is the vector coefficient that represents the degree of regularization.

For feature selection enhancement, an added filtration layer based on VIF is followed
by the regularization. VIF is a statistical measure used to assess the multicollinearity (high
correlation) among predictor variables in a regression model. It helps to determine how
much the variance in the estimated regression coefficients is increased due to multicollinear-
ity. VIF is commonly used in ML to identify and eliminate features that may negatively
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impact the performance and interpretability of the model. The steps of performing VIF
calculations are as follows:

1. VIF calculation: For each predictor variable in a regression model, the VIF is calculated
by regressing that variable against all the other predictor variables. The formula for
calculating the VIF of a variable is VIF = 1/(1 − R2), where R2 is the coefficient of
determination of the regression model.

2. Interpreting VIF values: VIF values are always ≥ 1. A VIF of 1 indicates no multi-
collinearity, whereas a VIF greater than 1 suggests some level of multicollinearity.
Generally, a VIF threshold of 5 or 10 is considered significant, indicating high multi-
collinearity.

3. Identifying problematic features: Variables with high VIF values indicate strong
multicollinearity with other predictor variables. These variables contribute redundant
information to the model and can cause issues, such as unstable coefficient estimates,
low interpretability, and inflated standard errors. Thus, they should be identified as
potential candidates for elimination.

4. Eliminating features: Once high VIF features are identified, they can be eliminated
from the model. Removing one or more features with high VIF leads to a reduction in
multicollinearity and improves the model stability and interpretability. The specific
method of feature elimination depends on the context and goals of the ML problem.
It could involve removing one feature at a time or using more advanced techniques,
like stepwise regression or regularization methods.

The multicollinearity can be validated through VIF using the method in [17]

VIF =
1

1− R2
j

, (7)

where R2
j is the multiple R2 for the regression of a feature on the other covariates.

The VIF is a measure of how strongly a predictor variable is related to other predictors
in a regression model. A higher VIF indicates lower information entropy, suggesting
stronger multicollinearity. Even if a feature has a VIF of 5, it can still be considered highly
multicollinear. It is generally advised to avoid VIF values exceeding 10, as this indicates
the definite presence of multicollinearity [17].

The final preprocessing step involves dimension projection, which aims to reduce
the number of predictors in ML models. This helps in decreasing the computational
complexity [18]. The kernel principal component analysis (k-PCA) method is used for this
purpose.

Radial basis function (RBF) is the kernel type that is utilized, and it may be represented
as [18]

K(Aa, Ab) = exp
(
−ρ||Aa − Ab||2

)
, (8)

Let us assume that there are two distinct points (Aa, Ab) and a hyper-parameter
threshold ρ. In this case, one can visualize that the components of the output are determined
by the probability density function (PDF).

The principal components are split into training and validation sets following data
preparation. The goal is to effectively categorize the four scenarios, RMa LoS, RMa NLoS,
UMa LoS, and UMa NLoS. To accomplish this, the classification task is tested using various
algorithms: RF, KNN, SVM, and GMM.

RF is a powerful ML algorithm that combines multiple decision trees to achieve
accurate predictions by averaging their outcomes. It excels in handling complex data
and mitigating overfitting [17]. KNN classifies unknown data points by considering the
majority of nearby points based on their closest distances [19]. SVM aims to create distinct
support vectors and optimize hyperplanes to minimize errors and maximize margins for
each data group [20]. The statistical characteristics of the data are used by the GMM, an
unsupervised learning technique, to create clusters [10].
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3. Results and Discussion

Here, each step described in the pretreatment and processing methods has its results,
which are revealed and provided. The dataset statistics, regularization, VIF filtration,
k-PCA, and ML algorithms are evaluated sequentially.

3.1. Dataset Statistics

The dataset provided by the previous work [8,9] was generated through the QuaDRiGa
platform Spatial Consistency model [9], which places First Bounce Scatterers (FBSs) and
Last Bounce Scatterers (LBSs) randomly. The system model follows the IEEE standards
of 38.901. Table 1 provides statistical information summarizing various scenarios. Each
scenario is represented by a set of data points (Ai) consisting of variables, such as Dσ, PL,
KF, σEoA, σEoD, σAoA, σAoD, and L. The index i corresponds to the row number, while L
represents the target variable.

Table 1. Statistical distribution of original dataset [9].

RMa LoS RMa NLoS Uma LoS Uma NLoS

DS (dB) 66 + 1.3 72.1 + 0.5 68.2 + 4.2 62 + 1.9

KF (dB) 2.6 + 0.2 3 + 0.05 2.7 + 0.5 3 + 0.05

PL (dB) 0.77 + 1.8 0.84 + 3.5 0.75 + 1.9 0.92 + 3.4

asA (deg) 54.5 + 5.6 21 + 3.2 79.7 + 35 87.4 + 6

asD (deg) 13.8 + 3.3 7 2.3 13.6 + 4 11.6 + 0.8

esA (deg) 3 1.8 2.8 + 0.2 8.9 + 2.4 26 + 3.91

esD (deg) 3.5 + 1.5 1.3 + 0.05 2.7 + 1.7 1 + 0.5

3.2. Regularization and VIF Filtration Layer Results

After the data were standardized using the standard scaler of the Z-score method,
the mean and standard deviation of each feature become 0 and 1, respectively. Then, the
feature selection process takes place using LASSO, as shown in Figure 2.
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The DS, asD, and esD are the features to drop since they are considered as noisy
data as their regularization coefficients are 0. Then, the VIF filtration layer takes place by
removing the features having VIF value greater than 5. Table 2 shows the VIF filtration
layer calculations for the remaining features: asA, PL, KF, and esA.
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Table 2. VIF filtration layer results.

Feature KF PL asA esA

VIF Value 1.083771 2.464491 2.483781 5.001260

The esA is considered a highly multi-collinear feature, so the filtration layer dropped
it. The remaining features, then, are KF, PL, and asA. Compared to the previous work [8,9],
this layer, when added to regularization, could drop the features and ensure that there
are no multi-collinear features. In conclusion, the enhanced regularization process could
reduce the data dimensions from seven to three before performing the PCA. This process
outperformed the previous work [8,9], where the dimensionality decreased from seven to
four before applying PCA.

3.3. k-PCA Results

The feature selection process employs regularization and VIF filtration to reduce the
dimensionality of the data. This resulted in a decrease from seven to three dimensions,
with the VIF filtration removing the esA. Additionally, the use of k-PCA further reduced
the data dimensionality. The chosen kernel type for k-PCA is RBF. The total explained
variance (TEV) of the k-PCA results is shown in Figure 3.
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previous work [8,9].

Based on the sum of the TEV of the first and second components (PC1, PC2), the
data dimensionality could be reduced from three to two since the sum of the TEV is 76%.
This shows the importance of adding the VIF filtration layer to keep the information gain
maximized.

The k-PCA output is illustrated in Figure 4. The PDF of the first principal component,
PC1, is displayed in Figure 4a for all possible scenarios. It is evident that PC1 exhibits
class overlap, which could lead to misclassification due to the overlapping groups. Both
RMA NLoS and UMA NLoS exhibit this overlapping of data. The PDF of the second
principal component, PC2, on the other hand, is shown in Figure 4b, and it shows a clear
differentiation of information that may be used to separate the four groups. Consequently,
PC2 adds a new dimension to the data, enabling easy differentiation between UMa NLoS
and RMa LoS.
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3.4. Classification Performance

Now, we discuss the results of ML as the last layer of the classification scheme. The
effectiveness of the supervised learning algorithms RF, KNN, and SVM is assessed. The
clustering time is revealed for the unsupervised learning GMM.

After using the PC1 and PC2 as ML predictors, GMM clustering could achieve 100%
classification accuracy, as shown in Figure 5.
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The best hyperparameters of GMM obtained are the following: number of compo-
nents = 4, covariance type = ‘Full’.

The supervised learning algorithms RF, KNN, and SVM achieved a classification
accuracy of 100%. The number of neighbors in KNN is trivial since the maximum absolute
error (MAE) is always 0. The SVM kernel type used is linear as its computational complexity
is minimum. The best hyperparameters obtained for RF that achieved 100% accuracy are
as follows: number of estimators = 5, criterion = ‘gini’.

The cross-validation method is used to double check the overfitting. The number
of subsets used for training is 10. Each subset achieved a cross-validation score of 100%,
resulting in an average of 100% accuracy in each supervised algorithm.
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3.5. Result Comparison with Previous Work

In this section, we introduce a comparison between our model and the previous
work in terms of the preprocessing and processing phases of ML. As mentioned earlier,
the preprocessing phase could reduce the amount of computational complexity of the
k-PCA process compared to previous work [8,9]. Table 3 represents the different layers of
eliminating features and dimension reduction for the proposed and previous work [8–10].

Table 3. Data preprocessing results comparison.

Model Regularization VIF Filtration Dimension
Reduction TEV

Present work 7 to 4 4 to 3 3 to 2 76%

Work of [8,9] 7 to 4 N/A 4 to 2 72%

Work of [10] N/A N/A 7 to 3 71%

Clearly, the proposed model in this paper outperforms the previous models [8–10]
because the VIF filtration layer could eliminate a noisy feature before performing the di-
mension reduction. Moreover, the TEV of the remaining two components could reach 76%.

In terms of ML algorithms, Table 4 shows a comparison between this work and the
previous work’s accuracy.

Table 4. Classification accuracy comparison for each algorithm.

Algorithms RF KNN SVM k-Means GMM

Work of [8,9] N/A 99% 99% 97% 98%

Present work 100% 100% 100% N/A 100%

The accuracy of each model is increased when compared with the latest work and
reaches 100% for KNN, SVM, and GMM.

4. Conclusions

In conclusion, this study focused on the classification of wireless communication
channel scenarios and the importance of efficient data preprocessing, particularly in the
context of 6G and its multiple scenarios of transmission. By incorporating ML techniques
and introducing the variance inflation factor (VIF) elimination as an additional layer to
enhance the regularization preprocessing phase, the accuracy of scenario identification was
significantly improved. The evaluation of VIF allowed for the removal of highly multi-
collinear features after applying an L1 regularization penalty. This approach, combined
with ML algorithms, such as RF, KNN, SVM, and GMM, achieves impressive accuracy of
100% for identifying different rural and urban scenarios. Moreover, the TEV achieved in this
work is 76%, surpassing the previous state-of-the-art study that achieved a TEV of 71%. This
indicates the effectiveness of the proposed methodology in accurately classifying wireless
communication channel scenarios. It is worth mentioning that during the VIF filtration
process, the angular information of esA was removed from the dataset as it exhibited
residual multicollinearity, even after regularization. This highlights the effectiveness of
the VIF elimination approach in identifying and mitigating multicollinearity issues in
the dataset.

For future work, the employment of AI in more dynamic scenarios is still considered
as a rich research area. Classification time optimization is also another hot area of research.
In the next research step, new models will be attached such as DDQN-based models [21,22]
to tackle the dynamic scenario classification issue while keeping low classification latency.
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