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Abstract: This paper introduces a study on stress recognition utilizing mobile EEG and GSR sensors.
The research involved collecting samples from a group of 55 refugees who participated in Virtual
Reality stress-reduction sessions. The timing of the study coincided with an influx of refugees,
prompting the development of software specifically designed to alleviate acute stress among them.
The paper focuses on presenting an EEG/GSR signals pipeline for classifying stress levels, emphasiz-
ing selecting the most informative features. The classification process employed popular machine
learning methods, yielding results of 86.7% for two-stress-level classification and 82.3% and 67.7%
for the three- and five-level classifications, respectively. Most importantly, the positive impact of the
system has been proven by subjective assessment in alignment with objective features analysis. Such
a system has not yet reached the level of autonomy, but it can be a valuable support tool for mental
health professionals.
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1. Introduction

The term stress, used as a descriptor of a human condition, first appeared in the
scientific literature in the 1930s [1]. However, it came into everyday use in the 1970s [2].
Today it is often used to describe various unpleasant feelings, illustrating frustration, anger,
dilemmas, and being overwhelmed or exhausted. Although the term is widely used, “stress”
is a rather vague and challenging concept to define precisely [3].

According to the WHO, stress is defined as any type of change that causes physical,
emotional, or psychological strain [4]. Stress is the human body’s response to a disturbance
that requires attention or action [5]. People experience positive and negative emotions that
affect their interactions with others, perception of reality, and general well-being. How one
responds to a stressful situation defines their life’s comfort and health [6].

Stress causes changes in vegetative-somatic indicators. When in danger, the sym-
pathetic system is activated, adrenaline secretion by the adrenal glands increases, blood
pressure rises, the heart rate accelerates, blood glucose levels rise, and digestion processes
are inhibited [7]. This is because stress affects the nervous system (especially the hypotha-
lamus and pituitary gland) and mobilizes the body to a “fight or flight” response [8].
Short-term stress mobilizes the body for effort and action, while long-term stress may
cause harm. The symptoms of an acute stress reaction usually subside quickly, depending
on a person’s psychological ability to cope and recover. Untreated stress leads to more
severe conditions, strains the nervous system, and causes somatic ailments [9]. That is why
treatment and stress therapy is so important.

So-called stressors, i.e., events that disrupt the body’s equilibrium and strain or exceed
our ability to cope effectively are invariably linked to the definition of stress. Their source
can be physical (e.g., overcrowding, disease, natural disasters) or social (e.g., lack of employ-
ment, family problems, loss of a loved one, or crime) [10]. Stressors can also vary in terms
of their strength. The weakest of them can be described as ordinary, everyday nuisances.
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However, despite their low strength, they can be problematic due to their commonness
(e.g., tardiness, conflicts). The next level is severe stressors, which are associated with
so-called life changes. These are ground-breaking circumstances, such as getting married,
changing jobs, or the birth of a new family member [11]. The last level is catastrophic
stressors, which dramatically affect entire groups of people (such as wars, natural disasters,
and terrorist attacks), striking at the most basic human needs and values, such as life or
safety. The stress accompanying them is usually extreme, sometimes traumatic, and can
leave a long-lasting psychological effect [12]. Undoubtedly, refugees are in such a situation.

According to various estimates, more than 3 million refugees from Ukraine appeared
in Poland in a short period [13]. Women and children found themselves in an environment
that was utterly unfamiliar, often without essential personal belongings, money, or a
guaranteed place to stay. Separated from their loved ones, who remained in the bombed-
out cities, these individuals were naturally highly stressed [14].

Having previous experience in using VR technology for stress reduction [15,16], a
Ukrainian-language VR-therapeutic application involving various relaxation techniques
such as breathing methods, visualization, and bilateral stimulation (BLS) [17] was de-
veloped. Furthermore, relatively minimally invasive biomedical sensors (dry frontal
electroencephalography—EEG [18], Galvanic Skin Response—GSR [19], and induced eye
movement tracers) enhanced the application to continuously monitor users’ activities. As a
result, user interaction with the application was completely natural, relying on gestures
and bio-responses. Before and after the session, participants filled out questionnaires about
their current mental health, stress levels, and general mood. The primary goal of this study
is to validate the effectiveness of the proposed system using data recorded by portable EEG
and GSR devices during VR-based training. This work’s contribution may be summed up
as follows:

1.  An EEG/GSR-head mounted display (HMD) system is used to build a relaxation
training system and assess stress levels;

2. It has been demonstrated that a portable integrated HMD can collect high-quality
EEG/GRS data during relaxation training in virtual reality, allowing for objective and
quantitative monitoring of the stress level;

3. The main contributions of this research include the creation of a novel EEG/GRS cor-
pus for stress recognition, along with comparative experimental results that evaluate
different approaches to managing this issue.

The rest of the paper is organized as follows. Section 2 presents the experiment
specification and explains the selection of features used in the study. Section 3 presents the
results of the experiment. I discuss the findings in Section 4 and provide some final remarks.

2. Materials and Methods

In this section, an EEG/GRS-based system for stress level recognition is presented.
As depicted in Figure 1, to achieve this goal, the system has four sequential components:
signal acquisition, preprocessing, pattern recognition, and device output (stress level).

Signal acquisition Signal preprocessing

Pattern recognition

Features Feature

X . Classification
extraction selection

Vi

Figure 1. Architecture of an EEG/GRS-based system for stress level recognition.
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2.1. VR-Based Stress Reduction Training

For the purpose of this study, a VR application was developed, specifically designed
to simulate the process of stress reduction therapy. Within the virtual environment, a quiet
mountain apartment is depicted, carefully crafted to create a soothing atmosphere. The
initial scene serves as a setup and tutorial, offering customization options for the virtual
camera and the patient’s location.

During the therapy session, each participant is encouraged to relax in a comfortable
chair (see Figure 2). The visual scene presented to the participant is automatically calibrated
based on their head position, ensuring that the central element—a window showcasing a
stunning mountain view — is perfectly aligned vertically and horizontally for the individual
participant. The VR device incorporates built-in sensors to accurately determine the
participant’s position.

Figure 2. VR environment in the form of a cozy mountain apartment. The red sphere (first image) is
moving from left to right during bilateral stimulation—the figure presents the sphere is trajectory.

To ensure the participant’s safety and minimize the potential occurrence of negative
effects during the simulation, such as cybersickness or VR sickness, a 2 min adaptive session
is initially employed. This session helps acclimate the participant to the virtual environment
before proceeding to the actual relaxation simulation. Throughout the experience, a native
Ukrainian narrator guides the user, providing instructions on various relaxation techniques,
including breathing techniques, visualization, and bilateral stimulation.

2.2. Course of the Experiment

To recruit participants, an information campaign was conducted in cooperation with
the City of Lédz. This campaign began with a press conference, widely covered in local
media, such as television, newspapers, and social media, dealing mainly with Ukrainian
affairs.

Before each session, users were informed about the course of the VR experience and the
exclusionary conditions, and provided informed consent. The entire course of the session
was monitored by the supervisory staff. It was assumed that each participant would be
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able to benefit from five therapeutic sessions (one session per week). Unfortunately, due to
personal reasons and relocation, not everyone has completed the session sequence.

Finally, we recruited n = 55 participants, 52 female, 3 male, aged M = 35, SD = 10.93.
Detailed participants characteristics are presented in Table 1. Most participants came to
the sessions repeatedly (up to 5 times/once a week). The study was conducted at £6dz
University of Technology, in a period when the university was closed (there were no
students), in a quiet, air-conditioned room.

Table 1. Participant characteristics.

Partic. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
Sex F F F F F F F F F F F F F F F F F F F M
Age 31 24 29 46 26 33 28 40 41 24 31 22 32 45 52 54 31 31 71 35

Partic. #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35 #36 #37 #38 #39 #40
Sex F F F F F F F F F F F M F F F F M F F M
Age 47 35 35 31 22 44 45 35 58 45 36 19 39 33 39 44 38 31 51 20

Partic. #41 #42 #43 #44 #45 #46 #47 #48 #49 #50 #51 #52 #53 #54 #55
Sex F F F F F F F F F F F F F F F
Age 19 24 31 25 46 32 23 28 31 24 35 39 39 57 36

The participant’s primary objective is to track a moving sphere with their eyes as
it traverses an invisible horizontal line outside the window. Sensors integrated into the
display glasses continuously monitor the participant’s gaze-tracking accuracy throughout
the session. The study comprises eight 90 s sessions of BLS (see Figure 3), wherein the
participant focuses on following the sphere located at the center of their visual field. This
division into BLS sessions and breaks ensured that the study participant had adequate time
to relax and unwind, thus avoiding fatigue and keeping the BLS session as effective as
possible.

i i E BLS

Figure 3. Scenario of the VR application. The relaxation session contains eight consecutive periods of
90 s of BLS, followed by 30 s break (without BLS).

2.3. EEG

A non-invasive EEG system, Looxid Link, was used for the study to maintain comfort
during the session. Looxid Link is a VR headset-compatible hardware configuration that
includes a frontal six-channel EEG system (F3, F4, F7, F8, Fp1, and Fp2) conforming to
International System 10-10 [20] (see Figure 4). Unlike conventional wet-EEG with wires and
voluminous amplifiers, wireless dry-electrode mobile EEG allows for effortless attachment
to the VR headset and it is virtually unnoticeable by the user [21]. Table 2 shows the data
generated at the output of the device.
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Figure 4. Looxid Link EEG electrode placement.

Table 2. Data generated at the output of Looxid Link.

Data Type Description

The moment in time when specific data was recorded during the
session; on average, 90 entries per second;

A marker indicating the activity of the left hemisphere of the brain,
leftActivity calculated from sensors located on the left side of the prefrontal cortex

(an algorithm built in Looxid Link);

A marker indicating the activity of the right hemisphere of the brain,
rightActivity calculated from sensors located on the right side of the prefrontal
cortex (an algorithm built in Looxid Link);

A marker that determines the subject’s overall focus in the range of

TimeStamp

attention 0-1 (an algorithm built in Looxid Link);
relaxation A marker determining the relaxation of the subject in the range of 0-1
(an algorithm built in Looxid Link);
asvmmetr A marker determining the ratio of left to right brain
y y hemisphere activity;
f)raer?élsency Delta, theta, alpha, beta, and gamma for each of the 6 sensors.

Delta, theta, and alpha brain waves are categorized as “slow” brain waves, indicating
a more relaxed or tranquil state of the brain. For instance, delta brain waves are associated
with deep sleep and help facilitate falling asleep. Alpha waves are activated when someone
is engaged in activities like meditation or enjoying a leisurely day. On the other hand, beta,
high beta, and gamma brain waves are classified as “fast”. When these brainwaves domi-
nate, it signifies an active and engaged state of the brain. Beta waves are associated with
significant cognitive activities, while gamma waves are involved in deep concentration [22].

During times of stress, beta brain waves become hyperactive, triggering the amygdala,
which is responsible for emotional processing. This leads to the production of high beta
brain waves, making them fast and active. It activates the nervous and adrenal systems,
preparing the body for a physical response to the stressor. Ideally, once the stressor is no
longer present, the intensity of high beta waves diminishes, allowing the individual to
return to a relaxed state [23].

This research utilized the Grove GSR sensor in conjunction with a Raspberry Pi 3. GSR
sensors measure and record changes in the electrical resistance of the skin. The skin’s resis-
tance is influenced by different levels of hydration due to sweat gland activity controlled by
the sympathetic nervous system. A typical GSR reaction involves a relationship between
skin resistance and sweating—as the sweat glands fill up, the skin becomes more conduc-
tive. GSR is believed to be influenced by the psychological state of the individual, where
increased activity in the cerebral cortex is reflected in sweating and higher GSR readings.
Conversely, a decrease in stimulation leads to higher skin resistance and lower GSR [24].
Typically, the measured value is the skin resistance or its inverse conductance (R = 1/G).
The process involves placing two dry electrodes on two fingers (refer to Figure 4). It is



Electronics 2023, 12, 3468

6 of 13

important to maintain an appropriate room temperature during the experiment to avoid
inducing additional sweating that could affect the accuracy of the collected measurements.
Furthermore, participants were instructed not to move their hands during the session, to
prevent any artifacts in the signal. An example of a GSR waveform recorded for a random
participant during the relaxation session is presented in Figure 5.

R [kQ]

0 200 400 600 800 1000 1200 time [s]

Figure 5. An example of a GSR waveform recorded for a random participant during the relaxation

session.

3. Results

After discarding files unsuitable for further analysis (unsteady connection of EEG elec-
trodes or GRS sensors during testing), a total of 155 samples were obtained (simultaneous
EEG and GSR). However, dividing the recordings into “before” and “after” samples, it was
found that 5 of them had stopped registering roughly in the middle. Therefore, for classifica-
tion, ultimately, 305 samples were used, of which 155 were collected before the VR sessions
and 150 at the end of the VR sessions. To recognize stress levels, two approaches were
used. In the first one, only the psychological condition into two states—before and after the
session—was classified. The second was based on participants’ self-assessment before and
after the session. The following sections will describe the results of both approaches.

3.1. Two-Stress-Level Analysis

Since the majority (98%) of study participants indicated a significant reduction in
stress levels during the proposed VR session, the first step was to verify the possibility of
recognizing the initial (higher stress levels) and final (reduced stress levels) states. Thus,
two fragments of the signal waveforms were juxtaposed: the last 60 s from the Intro session
and the first 60 s from the Finish session (just after the last BLS). From these fragments, a
high-dimensional feature set, which initially consisted of 312 descriptors, was created. All
the features were based on the outputs of both EEG and GSR sensors. More specifically,
statistical characteristics such as mean, median, standard deviation, first and third quartiles,
kurtosis, and skewness were determined from all outputs. Since the final set contained
1.2% missing data, an argumentation with the average/most frequent value was performed.
Then, several different selection methods were juxtaposed to minimize the feature set:
one wrapper method (Sequential Forward Selection, SFS), one filter method (Mutual
Information, MI), and one embedded method (LASSO). The methods were implemented
with preliminary feature correlation analysis, which rejected features with a degree of
correlation higher than 0.8. This operation reduced the initial set size from 312 to 108. The
selected features, listed in the ranking order, are presented in Figure 6. Since none of the
classifiers achieved maximum accuracy performance with a set of more than 20 features,
the table is limited to this number.
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Figure 6. The selected features listed in the ranking order obtained with three different methods (SFS,
MI, and LASSO).

As can be noticed in the case of the SFS and MI methods, 80% of the features overlap.
In contrast, for the LASSO method, the similarity of the sets is much lower, amounting to
35% and 45% with the SFS and MI methods, respectively. It should also be noted that the
first two methods rank quite high for GSR-related features not present in the LASSO set.
The distribution of EEG-based features derived from specific electrodes is shown in Figure 7.
The most frequently chosen features come from the left hemisphere from electrodes Fp1,
F7, and F3 for each selection method.

N ' .
\ ; l
- 1
'

oft 2 54 5 6 7 s o ol

Figure 7. The distribution of EEG-based features derived from specific electrodes: (a) SFS, (b) MI,
(c) LASSO.

Next, five different classifiers (k-NN [25], AdaBoost [26], Random Forest RF [27],
multilayer perceptron MLP [28]: 200 neurons in hidden layers, activation function ReLu,
and CN2 induction algorithm [29]) with previously mentioned feature selection methods
were employed. Each model’s parameters were chosen experimentally to maximize the

results. Tests were performed using 10-fold cross-validation. The results are presented in
Table 3.
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Table 3. Classification results for two stress levels (before and after relaxation session). The best result

is bolded.
k-NN AdaBoost RF MLP CN2
SFS 74.5 77.4 83 86.7 82.8
MI 74.5 80 84.3 86.1 85
LASSO 76.5 67.5 76.1 78.4 76.4

MLP yielded the most favorable outcomes when distinguishing between two states:
before and after relaxation. The impact of feature selection methods on the quality of
classification was minimal for SFS and MI. For LASSO, the classification drops by more
than 8%. When considering SFS and MI, the results were comparable, reaching an accuracy
level of 86%. Figure 8 illustrates the correlation between the number of features and
the classification outcomes achieved through the SFS selection method for two classes.
Furthermore, Figure 9 depicts the confusion matrix for MLP and SFS selection.

100
90
80
70
60
50
40
30
20
10

0

average classification accuracy in [%]

quantity of features[-]

0 20 40 60 80 100 120

——kNN ——RF AdaBoost MPL =———CN2

Figure 8. The relationship between the number of features and the classification results—results for
two classes with features selected by SFS method.

Predicted
before after b3
after 120 30 150 Class rating level
= 0 50 100 150
% before 12 143 155 Cross-class rating level
<< 0 10 20
3 132 173 305

Figure 9. Confusion matrix for MLP and SFS selection for two classes. The correctly classified
instances are highlighted in violet. Confusion matrix generated by Orange Data Mining [30].

3.2. Stress Level Analysis Based on Participants Labels

At this stage, subjective ratings given before and after the survey by the participants
were used to identify the stress level. Since the questionnaire answer range was set from 0
to 10, to allow successful classification the adjacent answers were grouped in classes. This
solution has been tested for two cases, three and five classes, as illustrated in Figure 10.

< Low . MEDIUM ® HiGH
S
o BEEE DHEEN DEB
|
© VERYLOW (& Low ' MEDIUM % HIGH @ VERYHIGH

IS

° Wl =G B =] =l

Figure 10. Division of the stress scale (a) three levels (classes: low, medium, high) (b) five levels
(classes: very low, low, medium, high, very high).
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Thus, in the first case, if a participant identified their overall stress in the range of 0
to 3, it was marked as low, 4 to 7 as medium, and 8 to 10 as high. In the second case, a
division was made into five ranges, and so if a participant defined their overall stress in the
range of 0 to 1, it was marked as very low, 2 to 3 as low, 4 to 6 as medium, 7 to 8 as high,
and 9 to 10 as very high. The distribution of labels obtained from participants before and
after the session is presented in Figure 11.

o 1 2 3 4 5 6 7 8 9 10
40 N
N 35
30 L R %0
. L 20
15 i ' v
10 > 10
s N N | = I = - I n,
L b h Nddd
o 1 2 3 4 5 & 7 8 9 10

m after W before
Figure 11. The distribution of labels obtained from participants before and after the session.

Similar to the previous case, different feature selection methods were used, and the
results of the various classification methods were compared. The results obtained are
shown in Tables 4 and 5 for three and five classes, respectively.

Table 4. Classification results for three stress levels (low, medium, and high).

k-NN AdaBoost RF MLP CN2
SFS 73 76.8 78.4 82.3 82.3
MI 72.4 76.1 76.7 80.4 80.4
LASSO 68.4 73.4 75.9 78.8 79

Table 5. Classification results for five stress levels (very low, medium, high, and very high).

k-NN AdaBoost RF MLP CN2
SFS 58.4 57.8 63 67.7 65.7
MI 58 56.2 61.1 66.9 65.1
LASSO 55.1 54.9 59.9 61.1 63.4

As for two-class recognition, the highest classification quality was in the 16-20 descrip-
tor range. Therefore, Figure 12 refers only to the top 20 features (listed in ranking order).
The results present descriptors selected by the SFS method. The distribution of EEG-based
features derived from specific electrodes is shown in Figure 13.
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Figure 12. The selected features listed in the ranking order obtained for three- and five-stress-level
classifications with SFS.
Figure 13. The distribution of EEG-based features derived from specific electrodes: (a) for three-
classes recognition, and (b) two-classes recognition.
For three classes in Figure 14, the best performance was achieved by the MLP and
CN2 algorithms, reaching an accuracy of 82.3%. Similarly to the previous case, the chosen
feature selection method exhibited minimal influence on the outcomes, resulting in a mere
2% variation. Upon partitioning the data into four distinct classes, the algorithms exhibited
comparable behavior, albeit with a noticeable decline in recognition accuracy. The highest
achievement was recorded by MLP with SFS, yielding 67.7% accuracy, which signifies a
high deterioration in performance compared to the three-class classification. Figure 15
depicts the confusion matrix for MLP and SFS selection for both cases.
(a) == kNN == RF AdaBoost == MPL == CN2 (b) == kNN == RF AdaBoost == MPL == CN2
100 80
average classification accuracy in [%] average classification accuracy in [%]

quantity of features[~] quantity of features[~]

10 15 20 5 10 15 20

Figure 14. The relationship between the number of features and the classification results. Results for
three (a) and four classes (b) with features selected by SFS method.
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Predicted
verylow low medium heigh veryheigh 5
Predicted
heigh 52 14 6 3 1 76
heigh low  medium ¥ ow 8 35 12 6 2 63
heigh | 15 4 12 | 31 medum| 2 10 86 4 1 | 103
- low 2 97 8 107 o heioh | 2 5 12 29 4 52
= S
2 medum| 9 19 139 | 167 5 veyheih| 0 2 1 4 4 1
) 26 120 159 305 b 64 66 117 46 12 305
Class rating level
[} 50 100 150
Cross-class rating level
0 10 20

Figure 15. Confusion matrix for MLP and SFS selection for three and five classes. Confusion matrices
generated by Orange Data Mining [30].

4. Discussion and Conclusions

This paper explores the feasibility of classifying stress levels among refugees using an
EEG/GRS dataset. The signals were extensively analyzed, emphasizing feature selection
to predict stress across three scales. The findings suggest that it is possible to achieve a
67.7% accuracy in recognizing five stress classes. Notably, reducing the number of levels
to three leads to a significant improvement, increasing the classification results by 14.6%.
Furthermore, the study demonstrates the ability to discriminate between the psychical
condition before and after the session with an accuracy of 86.7%.

The accuracy results obtained for both five and three classes fall short of meeting the
requirements for implementing the proposed system as a reliable decision-support tool
in real-world clinical applications. However, it is important to note that this limitation
can be attributed, at least partially, to the limited size of the training dataset, particularly
due to the uneven distribution of subjective labels. Participants” subjective evaluation of
their stress levels can introduce ambiguity in the dataset. Utilizing a 0 to 10 scale may
prove challenging for humans to determine accurately, and this can lead to difficulties
in effectively training the algorithm. In this case, a scale ranging from 1 to 5 would
have been preferable. Additionally, there were issues with the equipment used in the
study, as it sometimes disconnected during the sessions. Consequently, the number of
complete samples available for analysis was significantly reduced compared to the number
of participants involved and the number of sessions conducted. This equipment-related
problem posed an additional challenge in achieving reliable and robust results.

However, the system demonstrates a high level of reliability in distinguishing between
states before and after the session, indicating the positive influence of the system on
participants. This assertion is further supported by the participants’ subjective opinions,
which align with the system outcomes. Additionally, the recordings were captured in an
authentic environment amidst a challenging group of individuals and with background
noise. These factors make this particular database highly valuable for research and analysis
purposes.

The successful integration of machine learning methods for identifying and classifying
stress levels holds great promise in quantifying therapy response. To further enhance the
accurate discrimination of stress levels, incorporating additional information alongside
EEG/GRS features shows potential. This augmentation can improve classification per-
formance, enabling monitoring systems to predict treatment response. As a result, the
entire framework can be deployed as a decision support system for psychologists, offering
valuable insights and aiding in treatment planning.
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