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Abstract: Task scheduling is still an open issue for improving the performance of cloud services.
Focusing on addressing the issue, we first formulate the task-scheduling problem of heterogeneous
cloud computing into a binary non-linear programming. There are two optimization objectives
including the number of accepted tasks and the overall resource utilizations. To solve the problem in
polynomial time complexity, we provide a hybrid heuristic algorithm by combing both benefits of
genetic algorithm (GA) and particle swarm optimization (PSO), named PGSAO. Specifically, PGSAO
integrates the evolution strategy of GA into PSO to overcome the shortcoming of easily trapping into
local optimization of PSO, and applies the self-cognition and social cognition of PSO to ensure the
exploitation power. Extensive simulated experiments are conducted for evaluating the performance of
PGSAO, and the results show that PGSAO has 23.0–33.2% more accepted tasks and 27.9–43.7% higher
resource utilization than eight other meta-heuristic and hybrid heuristic algorithms, on average.

Keywords: task scheduling; particle swarm optimization; genetic algorithm; cloud computing

1. Introduction

Nowadays, cloud computing has been widely applied in all walks of life due to its
numerous advantages, e.g., pay-as-you-go, good scalability, high availability, etc., and its
market is continuing to grow. As predicted by Statista Inc., the public cloud computing
market is expected to reach an estimated USD 495 billion in 2022 [1], and the European
cloud computing market is projected to reach EUR 560 billion by 2030 [2]. But the cloud
still suffers from many issues like low resource efficiency and high energy consumption,
which results in high operating costs and increased CO2 emissions [3,4]. One of the most
promising ways to address these issues is task scheduling, which makes decisions on the
resource where each task is processed for cloud computing [5,6].

Unfortunately, the task scheduling problem has been proven as NP-hard [7] in various
distributed and parallel computing systems, including clouds. That is to say, there is no
polynomial algorithm to exactly solve the problem. Therefore, the existing works mainly
focused on the heuristic and meta-heuristic algorithms to achieve near-optimal scheduling
strategies with acceptable time consumptions.

In general, heuristic algorithms are designed specifically for a problem, by some local
search strategies. Meta-heuristic algorithms are proposed for solving general-purpose
optimization problems, exploiting some global search strategies designed based on natural
and social phenomena. Usually, heuristics take only a little time for problem-solving but
have limited performance, due to only using local searches [8]. Meta-heuristics can achieve
better performance than heuristics, thanks to their global search abilities, but with some
time overheads [9,10].

Electronics 2023, 12, 3450. https://doi.org/10.3390/electronics12163450 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163450
https://doi.org/10.3390/electronics12163450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3598-5359
https://doi.org/10.3390/electronics12163450
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163450?type=check_update&version=1


Electronics 2023, 12, 3450 2 of 17

Each heuristic or meta-heuristic algorithm has its own strengths and weaknesses,
and there is no algorithm that can obtain the best solution alone all the time. Thus,
the integration of two or more algorithms provides opportunities for better solutions by
combining strengths of these algorithms and compensating for each other’s weaknesses.
Therefore, we focus on designing a hybrid heuristic algorithm for task scheduling in clouds,
to optimize user satisfaction and resource efficiency. User satisfaction has a great influence
on the income and reputation of a cloud provider for service delivery [11]. The resource
efficiency determines cost efficiency and energy efficiency at a heavy degree [3,12,13].

To be specific, we design a hybrid heuristic algorithm by integrating genetic algorithm
(GA) into particle swarm optimization (PSO), for task scheduling in clouds. GA and
PSO are representative meta-heuristic algorithms, and both have been widely applied
for various decision-making problems in many fields [14,15]. GA simulates the natural
phenomenon of Darwinian evolution, which implements the population evolution by
crossover, mutation, and selection operators. GA has a powerful exploration ability to
search unexplored solution regions for a possibility of finding a better or the global optimal
solution. But in general, GA has some disadvantages, such as a slow convergence speed.
These disadvantages of GA can be remedied by PSO. The design inspiration of PSO is
the social behaviour of bird flocking or fish schooling. PSO has advantages such as fast
convergence rate, but is easily trapped into local optima.

In addition, many existing works focused on scheduling computer-intensive tasks,
which ignored the data transmission delay [16]. These works are not appropriate for big
data tasks. Thus, in this paper, we integrate the population evolution strategy of GA
into PSO, and design a hybrid heuristic algorithm, PGSAO (PGSAO is the letter sequence
constructed by alternating PSO and GA, which hints their integration), for scheduling
data-intensive tasks in cloud computing. Specifically, PGSAO exploits GA’s evolution
operators to guarantee the population diversity and ensure a powerful exploration ability.
Meantime, PGSAO uses the social behaviour of PSO to enhance its exploitation power. The
contributions of this paper can be summarized as follows.

• We formulate the task scheduling problem with deadline constraints into a combi-
natorial optimization problem for heterogeneous cloud computing. There are two
optimization objectives: the number of tasks that are finished within their respec-
tive deadlines (the major one) and resource utilization (the minor one), which are
quantifying user satisfaction and resource efficiency, respectively.

• We propose a hybrid heuristic algorithm (PGSAO) for the task scheduling problem, by
integrating GA into PSO. In PGSAO, each individual corresponds to a task scheduling
solution, with an integer-encoding strategy. During the population evolution phase,
PGSAO performs crossover and mutation operators on each individual to produce off-
spring, where the individual is crossed with not only another individual (like GA) but
also its personal best and the global best codes (the self-cognition and social cognition
of PSO). After each operator, every individual is replaced by its best offspring.

• We conduct extensive simulated experiments to evaluate the performance of PGSAO.
Experiment results show that PGSAO can achieve 23.0–33.2% more finished tasks
and 27.9–43.7% higher resource utilization, on average, compared with eight other
methods, which verifies the performance superiority of PGSAO.

In the following of this paper, Section 2 analyses recent related works. Section 3
presents the formulation for task scheduling problem. Section 4 illustrates the proposed
hybrid heuristic method, PGSAO. Section 5 evaluates the performance of PGSAO. Section 6
discusses interpretations and implications of our study. Section 7 concludes our work.

2. Related Works

With the development of more than ten years in both industry and academia, cloud
computing has been applied in almost all fields. To improve the efficiency and effectiveness
of cloud computing, numerous works address task scheduling problems based on heuristic
and meta-heuristic algorithms.
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Nabi et al. [17,18] employed PSO to improve makespan, resource utilization, and
throughput for clouds, with an adaptive inertia weight strategy that updates the inertia
weight based on improvement times of personal best values. Pirozmand et al. [19] and
Pradhan et al. [20] exploited GA to optimize the energy consumption and the makespan
for scheduling tasks in clouds. Malti et al. [21] proposed an efficient task-scheduling
algorithm based on a flower pollination algorithm to improve makespan, resource cost,
and execution reliability. Two works proposed by Mangalampalli et al. [22,23] used cat
swarm optimization (CWO) and whale optimization algorithm (WOA) to schedule tasks
on virtual servers for cloud computing, respectively, to improve makespan and energy
consumption. Aghdashi and Mirtaheri [24] presented a task-scheduling method based on
the hill-climbing algorithm to optimize response time in cloud environments. These above
works used only one meta-heuristic algorithm, meaning they were not concerned with
the performance improvement of task scheduling by exploiting the complementarity of
different meta-heuristics.

The work proposed by Belgacem and Beghdad-Bey [25] focused on improving
makespan and resource cost in a public cloud providing resources in the form of vir-
tual machines (VM). Their work used Heterogeneous Earliest Finish Time (HEFT) to order
the execution of tasks, and Ant COlony algorithm (ACO) to find an efficient assignment of
tasks to VMs. Aktan and Bulut [26] presented two hybrid heuristic algorithms, GASA and
DESA, to improve makespan and resource utilization for clouds. GASA and DESA apply
Simulated Annealing (SA) on each individual in the last evolution of GA and Differential
Evolution (DE), respectively. CWOA, proposed by Pradeep et al. [27], combined Cuckoo
Search Algorithm (CSA) and WOA to increase the performance in memory utilization,
makespan and energy efficiency. CWOA used Lévy flight to update the locations of hump-
back whales again at after every position update of WOA. GSAGA [28] combined GA with
Gravitational Search Algorithm (GSA) to improve the resource cost for processing tasks in
a cloud. QSSGWA [29] used quantum operator to improve the population initialization,
and combined Salp Swarm Algorithm (SSA) with Grey Wolf Optimizer (GWO), which
applied position update strategies of SSA and GWO for the first and second half of the pop-
ulation, respectively. To optimize makespan, Cheikh et al. [30] proposed a hybrid heuristic
scheduling algorithm by combining PSO and Extremal Optimization (EO), which used
PSO to provide the initial solution for EO. PSOM [31] performed the mutation operator
of GA on each particle to improve PSO. Nwogbaga et al. [32] applied PSO after GA for
the population evolution. Wang et al. [33] applied the evolution strategy of GA first, and
then that of PSO in each evolution. These methods tried to combine benefits of two or
more algorithms, but they exploited these algorithms sequentially and separately in each
iteration or in the whole evolutionary process, which provides inefficient combinations.

Thus, in this paper, we present an efficient integration strategy for combining the
benefits of both GA and PSO, and propose the PGSAO hybrid heuristic scheduling algo-
rithm for optimizing the task-acceptance rate and the resource utilization in heterogeneous
cloud computing.

3. Problem Formulation

In this paper, we consider the cloud computing scenario as providing services by
several multi-core servers. For each task requested by users, the cloud provider uses one
core of these servers for its processing. To achieve high resource efficiency and ensure high
user satisfaction, the cloud provider should carefully decide which core is assigned for
each task, which is the goal of task-scheduling methods. In the following, we formulate the
optimization problem for task scheduling.

In the considered cloud computing, there are S servers represented as sj, j = 1, ..., S.
Server sj has nj cores each with gj computing capacity for processing tasks. Assuming T
tasks (ti, i = 1, ..., T) are requested to be processed by the cloud, task ti requires ci computing
resources (i.e., its computing size) for its completion. The input data needed by task ti are
ai in amount. We consider that the cloud uses a distributed file system (DFS) for its data
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management, which is widely used in various distributed systems. The DFS provides rj
read bandwidth for server sj. Then, when ti is assigned to a core in si, it needs ci/gj time
for its computing, and requires ai/rj time for transmitting its input data. In this paper, we
ignore the time consumed by output data transmission for a task, as is done by many works,
because the amount of the output data is very small in many scenarios. The deadline of
ti is di, which means ti requires that it must be finished before di if the cloud accepts its
request. In this work, we concern hard deadline constraints. That is to say, when judging
that a task cannot be finished within its deadline, the cloud has no profit for accepting and
processing it, and the cloud will reject its request.

For the problem formulation of task scheduling, we define binary variables, xi,j,k,
i = 1, ..., T, j = 1, ..., S, k = 1, ..., nj, to represent the decision-making of tasks assignments,
as Equation (1). xi,j,k = 1 if ti is assigned to kth core of sj for its processing, and xi,j,k = 0,
otherwise.

xi,j,k =

{
1, if ti is assigned to the kth core in sj

0, otherwise

i = 1, ..., T, j = 1, ..., S, k = 1, ..., nj. (1)

In this work, we do not consider the redundant execution, which improves the perfor-
mance of task executions sometimes but consumes more resources. This can result in low
resource efficiency. That is to say, there is at most one core that a task is assigned to, i.e.,

S

∑
j=1

nj

∑
k=1

xi,j,k ≤ 1, i = 1, ..., T. (2)

And Equation (3) gives the number of tasks assigned to cores for their processing, i.e.,
the number of tasks accepted by the cloud, N.

N =
T

∑
i=1

S

∑
j=1

nj

∑
k=1

xi,j,k. (3)

For each core, it cannot process two or more tasks simultaneously, i.e., the computing
periods of any two tasks assigned to a core are non-overlapping. Thus, Equation (4)
holds, where bi and ei represent the begin time and the end time of processing ti. This is
because, for two tasks (ti1 and ti2) processed by one core, when ti1 is processed before tt2,
bi1 < ei1 ≤ bi2 < ei2. And if ti1 is processed after tt2, bi2 < ei2 ≤ bi1 < ei1. For Equation (4),
the equality holds if ti1 and ti2 are not assigned to one core.

xi1,j,kxi2,j,k(bi1 − ei2)(bi2 − ei1) ≤ 0,

i1 6= i2, i1, i2 = 1, ..., T. (4)

When a task, say ti, is assigned to a core of server sj, it requires ai/rj time for its data
transfer, and ci/gj time for its computing. Thus, the begin time and the end time of task
processing are satisfying Equation (5).

S

∑
j=1

nj

∑
k=1

(xi,j,k(bi +
ai
rj

+
ci
gj
)) ≤ ei, i = 1, ..., T. (5)

And the deadline requirements of tasks can be formulated as Equation (6).

ei ≤ di, i = 1, ..., T. (6)
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For each server, its occupied time for task processing is the latest end time of tasks
assigned to it, which is formulated as follow, where τi is the occupied time of server.

τj = max
i

max
k
{xi,j,kei}, j = 1, ..., S. (7)

Then, the amount of occupied resources on server sj is τjnjgj. But for a server (sj), the
amount of resources actually used for task processing is the total computing size of tasks
assigned to the server, which is

T

∑
i=1

nj

∑
k=1

(xi,j,kci).

Thus, the resource utilization of each server can be calculated by (Equation (8)). And
the overall resource utilization of the cloud can be achieved by Equation (9).

uj =
∑T

i=1 ∑
nj
k=1(xi,j,kci)

τjnjgj
, j = 1, ..., S. (8)

U =
∑S

j=1 ∑T
i=1 ∑

nj
k=1(xi,j,kci)

∑S
j=1(τjnjgj)

. (9)

Based on above formulations, we can model the task scheduling problem in the cloud
as followings.

Maximizing N + U, (10)

subject to Equations (1)–(9). The optimization objective is the number of accepted tasks (N)
plus overall resource utilization (U). Noticing that U ≤ 1, the maximization of accepted
task number is the major objective, and the optimization of resource utilization is the minor
one. The number of request tasks is fixed. Thus, the maximization of accepted task number
is identical to the optimization of accept ratio that is the proportion of accepted task number
to the total requested task number, which is one of the most commonly used measurements
on user satisfaction. Resource utilization is one of the most frequently used indicators of
resource efficiency.

The decision variables of the optimization problem are xi,j,k, i = 1, ..., T, j = 1, ..., S,
k = 1, ..., nj. All of them are either 0 or 1. In addition, Equation (4) and (7) are nonlinear.
Thus, the optimization problem is a kind of binary nonlinear programming problems
(BNLP). There are existing tools, e.g., the optimization toolbox of MathWorks [34], that can
solve the problem. But these tools have time overheads that increase with problem size
exponentially, and thus are not applicable for solving problems with middle-to-large scales.
Therefore, in the next section, we propose a hybrid heuristic algorithm with polynomial
time for solving the problem.

4. Hybrid GA and PSO Scheduling Algorithm

In this section, we illustrate the hybrid heuristic method, PGSAO, for task scheduling
in clouds, combining the benefits of both GA and PSO, which is outlined in Algorithm 1. As
shown in the algorithm, we first design an encoding method to express the task-scheduling
solutions as numerical values/vectors (codes) to construct the solution space. This is the
first thing that must be carried out for all meta-heuristics. Meanwhile, the fitness function is
designed for evaluating the goodness of codes or corresponding task scheduling solutions.
With the encoding method and the fitness function, PGSAO uses following steps to search
the solution space for an efficient task-scheduling strategy. We use the terminologies of
PSO to describe search process of PGSAO. The searching actions correspond to the position
(code) changes of particles.
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Algorithm 1 PGSAO: the hybrid GA and PSO scheduling

Input: The encoding method, the fitness function, the information of tasks and servers, the parame-
ters of GA;

Output: a task scheduling solution;
1: Initializing a population by randomly setting the code of each particle;
2: Calculating the fitness of each particle;
3: Setting the personal best code (pb) as the initialized one for each particle;
4: Setting the global best code (gb) as the code with the best fitness in the population;
5: while The terminal condition is not met do
6: for Each particle do
7: Crossing the particle’s code with another’s, its pb, and its gb, with a certain probability,

respectively, and producing six new codes (each crossover operator produces two new
codes);

8: Evaluating fitnesses of six new produced codes, and getting the best code (β) that has the
best fitness from these six chromosomes;

9: Setting the particle’s core as β;
10: If the fitness of β is better than that of pb, then updating pb as β;
11: If the fitness of β is better than that of gb, then updating gb as β;
12: Mutating the particle’s code with a certain probability, which produces one new code;
13: Setting the particle’s core as the new one;
14: Evaluating the fitness of the new code, and updating pb and gb if the new chromosome has

a better fitness, respectively.
15: end for
16: end while
17: Decoding gb into a task scheduling solution;
18: return the task scheduling solution;

(1) PGSAO randomly initializes several starting points (codes of particles) for following
searches (line 1), and evaluates the fitness of each code (line 2). Meanwhile, PGSAO
records the personal best code as its initialized one for each particle (line 3), and the
global best code as the best one in all codes of particles (line 4).

(2) PGSAO explores and exploits the solution space by updating codes of particles with
the crossover and mutation operators of GA as well as the self-cognition and social
cognition ideas of PSO (lines 5–16). In detail, PGSAO repeats the following steps for
each particle (line 6), until the predefined terminal condition is reached (line 5).

(a) With set crossover probability, PGSAO crosses the particle’s code with the code
of another particle, its personal best code and the global best code, respectively,
by uniform crossover operator. The latter two crossovers are exploiting the
self-cognition and social cognition in the population, respectively.

(b) For each of the six new codes produced by crossover operators in the previous
step, PGSAO evaluates its fitness, and compares its fitness with that of the
personal best code and the global best code, respectively. When the new code
has a better fitness, the personal/global best code is updated as the new code.

(c) PGSAO updates the particle’ code as the best one of the above six new codes.
This step combines the position-updating strategy of PSO and the tournament
selection operator of GA.

(d) PGSAO performs a uniform mutation operator on the particle’s code, with set
mutation probability. This produces a new code.

(e) PGSAO does the same as in steps 2b and 2c for the new code produced by the
mutation operator in the previous step.

(3) PGSAO returns the best solution decoded by the global best code (lines 17 and 18).

Meta-heuristic algorithms like PGSAO can have two types of terminal conditions:
setting a maximum number of iterations or defining a consecutive number of iterations
where the best solution remains unchanged. In this paper, we use the first option.
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In PGSAO, the fitness function is identical to the objective function, Equation (10),
formulated in the above section. Both the number of accepted tasks and resource utilization
can be achieved based on the task-scheduling solution decoded by the corresponding code.

Next, we illustrate the encoding method, the crossover and mutation operators in
detail. And at the end of this section, we analyze the time complexity of PGSAO.

4.1. Encoding Method

In PGSAO, each task-scheduling solution is encoded into a vector, where tasks and
dimensions of the vector have a one-to-one correspondence. The value in a dimension
represents the computing core where corresponding task is assigned. Thus, the value range
of each dimension is from 1 to the number of cores. Then, given a vector with the dimension
of the task number, i.e., a code of particles, we can obtain an assignment of tasks to cores. For
tasks assigned to a core, PGSAO exploits earliest deadline first (EDF) to decide their processing
orders. Then, we can obtain a whole task-scheduling solution from a code of particles.

For example, there are six tasks (t1, ..., t6) and two servers (s1 and s2) each with two
cores, in a cloud system. The cores of the first server are represented as p11 and p12, and
that of the second server are p21 and p22. Then, the code [1, 1, 2, 2, 3, 4] corresponds to the
assignment strategy that t1 and t2 are assigned to p11, t3 and t4 to p12, t5 to p12, and t6 to p22,
as shown in Figure 1. And in p11 and p12, the task with earlier deadline is processed first.

code 1 1 2 2 3 4

↓ decoding ↑ encoding

tasks t1 t2 t3 t4 t5 t6
cores p11 p11 p12 p12 p21 p22

Figure 1. An example illustrating the encoding method.

4.2. Crossover Operator

In this section, we use uniform crossover operator as it helps to ensure the population
diversity for enhancing exploration power of PGSAO [35]. In every iteration of popu-
lation evolution, PGSAO performs the crossover operator on each particle three times,
with another particle randomly selected, its personal best code, and the global best code,
respectively. For the uniform crossover operator, two new codes (offspring) are produced
by two selected codes, by the following process. For each dimension, a value between
0 and 1 is generated randomly, and is judged on whether it is smaller than a predefined
probability (set as the crossover probability in this work). If the value is smaller, two codes
swap their values in the dimension, which represents that two tasks swap their assigned
cores in the task scheduling.

For example, as shown in Figure 2, the uniform crossover operator is performed on
two codes, [3, 9, 1, 3, 6, 3] and [5, 7, 9, 1, 6, 4]. By the above process, it is decided to
swap the values of these two codes in the second, third, and sixth dimensions, based on
generated random values. Then, two new codes are produced, which are [3, 7, 9, 3, 6, 4]
and [5, 9, 1, 1, 6, 3], respectively. This crossover operator searches out two new solutions
by swapping the cores for processing second, third, and sixth tasks, respectively, on their
parents’ solutions.

one code 3 9 1 3 6 3
another code 5 7 9 1 6 4

⇓ crossing

new code 3 7 9 3 6 4
new code 5 9 1 1 6 3

Figure 2. An example illustrating the uniform crossover operator.
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4.3. Mutation Operator

For the same reason as using the uniform crossover operator, PGSAO uses the uniform
mutation operator. Each particle code itself performs the mutation operator, with the
following procedure. PGSAO produces a random value within [0, 1] for each dimension.
And if the produced value is smaller than pre-set probability (set as the mutation probability
in this paper), the value is changed to another value in corresponding dimension, which
means that a task is re-assigned from one core to another core.

Figure 3 gives an example to illustrate the uniform crossover operator used by PGSAO.
Given the code, [3, 9, 1, 3, 6, 3], to be performing the crossover operator, values are mutated
from 1 and 3 to 9 and 6, respectively, in the third and sixth dimensions. And the new code
produced by the crossover operator is [3, 9, 9, 3, 6, 6]. The mutation represents that the
cores where the third and sixth tasks are assigned are changed from the first and ninth ones
to third and sixth ones, respectively.

code 3 9 1 3 6 3

⇓ mutating

new code 3 9 9 3 6 6

Figure 3. An example illustrating the uniform mutation operator.

4.4. Complexity Analysis

The main time overhead of PGSAO is the iterative process of population updating
(lines 5–16 in Algorithm 1). In each iteration, PGSAO performs crossover operator three
times and mutation operator one time. Both crossover and mutation operators have O(T)
time complexity, which can be easily obtained from the illustration in Sections 4.2 and 4.3.
The fitness evaluation has O(T2) time complexity at worst, as we exploit EDF to decide
the processing order of tasks for each core. Thus, the time complexity of each iteration
is O(T + T2) = O(T2). Thus, the time complexity of PGSAO is O(IPT2), where I is the
maximum iterative number, and P is the number of particles. This time complexity is
identical to that of many meta-heuristic algorithms including GA and PSO.

5. Performance Evaluation

In this section, we conduct simulated experiments to evaluate the performance of
PGSAO, where simulation parameters are set referring to recent related works. In the
following, we first illustrate the experiment environment, and then analyze the experi-
ment results.

5.1. Experiment Environment

Referring to [17,36,37], we establish the following cloud computing environment. In
the cloud, there are 50 servers and 1000 tasks. The number of each server is set in a range
from 2 to 32, randomly. The computing capacity of each core is set between 1000 and
4000 Million Instructions Per Second (MIPS). The read bandwidth for each server is in the
range between 100 and 1000 MB/s. Every task has a 1000 to 100,000 Million Instructions
(MI) computing size, and 100 to 10,000 MB input data for processing. The deadline of a
task is set in a range between 1 and 100 s. To evaluate the energy consumption of server sj,
we apply the widely used linear model,

Ej =
∫

τ
(Pidle

j + (P f ull
j − Pidle

j ) · uj(τ))dτ.

where E is consumed energy. u(τ) is resource utilization changed with time τ. Pidle and
P f ull are power consumption when the server is idle and fully loaded, respectively. The
values of Pidle and P f ull for each server is set referring to [38], as shown in Table 1.
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Table 1. The power parameters of servers.

#Core Pidle P f ull

[1, 8) 110 175
[8, 16) 125 210
[16, 24) 210 300
[24, 32] 350 500

We compare our method with following methods.

Hill Climbing (HC) is the method used in some works for task scheduling [24,39], which
exploits a single individual search strategy. The basic idea of HC is to repeat replacing
the search point with its better neighbor, until no neighbor is better than the current
search point.

Genetic Algorithm (GA) is one of the most commonly used meta-heuristic algorithms for
task scheduling, e.g., [19,20]. GA uses crossover, mutation, and selection operator to
evolve its population.

GA with HC (GAHC) is proposed in [37]. It performs an iteration of HC on each individual
before the evolution of GA. Meanwhile, GAHC replaces the selection operator with a
replacement, such as the particle updating idea used in PSO.

GA with replacement (GAR) uses the replacement instead of the selection operator in GA,
which is same as GAHC except that GAR does use the HC operator.

Particle swarm optimization (PSO) is also one of the most popular algorithm for the task-
scheduling problem, e.g., [40]. PSO exploits the movement behaviour of a bird flock,
fish school, or insect swarm, to evolve its population.

PSO with Mutation (PSOM) improves PSO by the mutation operator [31]. It performs the
mutation operator on each particle after each evolution of PSO.

GA+PSO first exploits GA at the first half phase of population evolution, and then evolves
the population from GA by PSO at the second [32].

GAPSO first uses GA to evolve its population, and then applies PSO on the evolution, in
each iteration [33].

The metrics used for our performance comparison include following three aspects.

User Satisfaction has great influence on the income and reputation of clouds [41]. The fol-
lowing three metrics are used for its quantification. The number (N), computing size
(∑T

i=1 ∑S
j=1 ∑

nj
k=1(xi,j,k · ci)), and cumulated input data amount (∑T

i=1 ∑S
j=1 ∑

nj
k=1(xi,j,k · ai))

of accepted tasks.

Resource Efficiency determines the operator cost of clouds, to a large extent. It is quantified
by following three metrics, the overall resource utilization (U), energy efficiency
in computing, and energy efficiency in data processing, which are, respectively,
calculated by

∑T
i=1 ∑S

j=1 ∑
nj
k=1(xi,j,k · ci)

∑S
j=1 Ej

and
∑T

i=1 ∑S
j=1 ∑

nj
k=1(xi,j,k · ai)

∑S
j=1 Ej

.

The latter two are the finished computing size and the processed data amount, respec-
tively, by consuming one energy unit.
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Processing Efficiency is the task processing rate on the cloud. Two metrics are applied
for its evaluation, the finished computing size and the processed data amount per
time unit, which can be calculated, respectively, by

∑T
i=1 ∑S

j=1 ∑
nj
k=1(xi,j,k · ci)

maxS
j=1 τj

and
∑T

i=1 ∑S
j=1 ∑

nj
k=1(xi,j,k · ai)

maxS
j=1 τj

.

The experiment process involves first generating a cloud computing environment
with the aforementioned parameters of servers and tasks. Then, the metrics of PGSAO
and compared methods are measured on the generated cloud computing environment. To
highlight the performance superior of PGSAO, we normalize each metric value of each
method by dividing it into that of PGSAO, and report the normalized (relative) performance
in the following. We repeat the above process more than 100 times, and present the boxplot
graph for each metric, in the following.

5.2. Experiment Results
5.2.1. User Satisfaction

Figure 4 shows the relative performance achieved by various task-scheduling meth-
ods, in three metrics of user satisfaction. From these figures, we can see that PGSAO
has 23.0–33.2% more accepted tasks, a 28.4–43.4% larger finished computing size, and a
22.8–33.9% greater amount of processed input data than other methods, on average. In
addition, PGSAO always has better performance in these satisfaction metrics, compared
with other methods. These phenomena verify the performance superiority of our hybrid
heuristic method in optimizing user satisfaction.

The reasons for why PGSAO has good performance mainly include following three
aspects: the efficient integration strategy, the use of self- and social-cognition of PSO by the
crossover operator of GA, and the replacement instead of the selection operator for particle
updating. These are verified by our experiment results as illustrated in the following
paragraphs, respectively.

As shown in Figure 4, PGSAO can accept 31.0% and 32.8% more tasks than GA and
PSO, respectively, on average. And similar experiment results can be found in the other
two satisfaction metrics. In addition, PGSAO has about a 30% larger number of accepted
tasks on average, compared with PSOM, GA+PSO, and GAPSO, even though all of them
are combining GA and PSO. This is mainly because PSOM, GA+PSO, and GAPSO are
using the GA and PSO separately in the whole evolution process or each iteration, instead
of organically integrating one algorithm into another, as is done by our method. These
above results verify the high efficiency of our integration strategy.

Figure 5 gives the performance of PGSAO without using self-cognition or social cogni-
tion, in optimizing the accepted tasks. PGSAO without self-/social-cognition is removing
a crossover operator performed on the global/personal best code, from PGSAO. From
Figure 5, we can see that PGSAO without self-/social-cognition has better performance
than PSO and GA in user satisfaction. In addition, PGSAO has a greater number of accepted
tasks than PGSAO without self-/social-cognition. This verifies the efficiency of integrating
both self- and social-cognition into GA by our method. PGSAO without self-cognition
has better user satisfaction than PGSAO without social-cognition. This is mainly because
the global best code has better genes than the personal best code generally, and thus
the crossover operator performed with the global best code can produce better offspring.
Therefore, one of our future works is to design adaptive evolution strategies for increas-
ing the likelihood of making better genes be transmitted to offspring for evolutionary
algorithm-based methods.
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(a) Finished task number

 

(b) Finished computing size

 

(c) Processed data amount

Figure 4. The relative user satisfactions achieved by various task-scheduling methods.
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Figure 5. The improvement of PGSAO by the integration of GA and PSO in optimizing accepted tasks.

Figure 4 also shows that GAR and GAHC have comparable performance, and both
of them have about 6.5% more accepted tasks than GA on average. Thus, the better
performance of GAHC mainly comes from the replacement instead of integrating HC in
GA. This may be because HC can improve the qualities of individuals, but it can decrease
the population diversity for GA by moving each individual into a local optimum. Thus,
PGSAO uses the replacement of PSO instead of the selection operator of GA.

From Figure 4, we also can see that PSOM, GA+PSO, and GAPSO have comparable
performance with GA and PSO, but GAHC has better performance than GA and HC. This
illustrates that the integration of two or more algorithms can improve the performance
for each algorithm, but the integration strategy should be carefully designed to avoid an
ineffectual integration.

5.2.2. Resource Efficiency

Figures 6 and 7 give the relative resource utilization and the relative energy efficiency
when applying various methods, respectively. As shown in these figures, PGSAO achieves
27.9–43.7% greater resource utilization, 21.4–34.7% more computing size finished by a unit
of energy, and 15.7–25.9% more data amount processed by per energy unit, compared
to other methods, on average. Additionally, PGSAO has better resource utilization and
energy efficiency than other methods all the time, except for very few outliers. These
phenomena prove that our method has a very good performance in resource efficiency. The
reason for these results is that PGSAO completes more tasks with comparable resources,
compared with other scheduling methods. PGSAO has only −0.639–0.594% more occupied
resources, but finishes a 28.4–43.4% greater computing size and processes a 22.8–33.9%
greater data amount, on average, compared with other methods. This reflects the high
resource efficiency of our method.

5.2.3. Processing Efficiency

The relative processing rates achieved by all task-scheduling methods are shown in
Figure 8, which provides a similar result to the relative resource efficiency. PGSAO achieves
a 28.6–45.7% higher computing rate and 23.2–36.2% faster data processing rate than others,
on average, and always has fastest processing rate except for a few outliers. As is shown
in our experiments, PGSAO has a 0.126–2.77% earlier makespan for completing accepted
tasks on average, but finishes a greater computing size and data amount, compared with
other methods. Thus, our proposed algorithm can provide better processing efficiency than
other algorithms.
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Figure 6. The relative resource utilizations achieved by various task-scheduling methods.

 

(a) Finished computing size per unit of energy

 

(b) Processed data amount per unit of energy

Figure 7. The relative energy efficiencies achieved by various task-scheduling methods.
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(a) Finished computing size per time unit

 

(b) Processed data amount per time unit
Figure 8. The relative processing efficiencies achieved by various task-scheduling methods.

6. Discussion

In this work, we exploit an efficient combination approach to integrate two represen-
tative meta-heuristic algorithms, GA and PSO. Both the strengths and weaknesses of GA
and PSO complement each other, where GA has a powerful global search ability benefiting
from the crossover and mutation operators but slow convergence; On the contrary, PSO
has fast convergence speed but can easily become trapped into local optima, due to its
self and social cognitions of swarm. Therefore, by combining GA’s operators and PSO’s
cognitions, PGSAO achieves a much better performance than GA and PSO as well as other
hybrid heuristic scheduling algorithm. Thus, when trying to combine different algorithms,
one should first analyze their benefits and corresponding elements, and then design an
approach to combine these elements.

7. Conclusions

In this paper, we study the task-scheduling problem for clouds to optimize the user sat-
isfaction and the resource efficiency. We first formulate the problem as a BNLP model, and
then propose a polynomial time algorithm, PGSAO, to address the problem, by combining
the advantages of both GA and PSO. Specifically, PGSAO uses the framework of PSO and
the evolution strategy of GA. Meanwhile, PGSAO integrates the self- and social-cognition
of PSO into GA, which are implemented by the crossover operators of each particle with its
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personal and the global best codes, respectively. Simulated experiments verify the excellent
performance of PGSAO in user satisfaction, resource efficiency and processing efficiency.

In this paper, we focused on independent tasks, such as bag-of-tasks, which is one of
the most common application in various distributed systems. In the future, we will extend
our method to support the scheduling of workflow applications with task dependencies.
Additionally, we will explore a more efficient integration strategy to take full advantage of
the complementarity of diversified heuristic and meta-heuristic algorithms. As with other
meta-heuristic-based algorithms, PGSAO trades time overhead for scheduling performance.
Therefore, meta-heuristic-based algorithms are suitable for batch tasks but not for real-time
tasks. Thus, in the future, we will consider designing an adaptive approach to ensemble
different kinds of algorithms for scheduling both real-time tasks and batch tasks.
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GAR GA with replacement
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