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Abstract: In the continuous progress of mobile internet technology, medical image processing tech-
nology is also always being upgraded and improved. In this field, digital watermarking technology
is significant and provides a strong guarantee for medical image information security. This paper
offers a robustness zero watermarking strategy for medical pictures based on an Improved NasNet-
Mobile convolutional neural network and the discrete cosine transform (DCT) to address the lack of
robustness of existing medical image watermarking algorithms. First, the structure of the pre-training
network NasNet-Mobile is adjusted by using a fully connected layer with 128 output and a regression
layer instead of the original Softmax layer and classification layer, thus generating a regression
network with 128 output, whereby the 128 features are extracted from the medical images using
the NasNet-Mobile network with migration learning. Migration learning is then performed on the
modified NasNet-Mobile network to obtain the trained network, which is then used to extract medical
image features, and finally the extracted image features are subjected to DCT transform to extract
low frequency data, and the perceptual hashing algorithm processes the extracted data to obtain a
32-bit binary feature vector. Before performing the watermark embedding, the watermark data is
encrypted using the chaos mapping algorithm to increase data security. Next, the zero watermarking
technique is used to allow the algorithm to embed and extract the watermark without changing the
information contained in the medical image. The experimental findings demonstrate the algorithm’s
strong resistance to both conventional and geometric assaults. The algorithm offers some practical
application value in the realm of medicine when compared to other approaches.

Keywords: NasNet-Mobile network; DCT; chaotic encryption; zero watermarking; migration learning

1. Introduction

The network is disseminating more data as communication technology advances,
whereby digital watermarking technology is being updated and iterated regularly to stop
the leaking of user information, and it is gradually becoming a trend to protect the privacy
of user information with the help of digital watermarking technology to provide security
for personal information [1]. Medical images in medical diagnoses play a crucial role in
medical diagnosis, treatment, and scientific research, providing a wealth of clinical data that
helps doctors make more accurate diagnoses and more effective treatment plans [2]. The
development of technology has promoted the integration of modern information technology
with medical care, and more and more physicians and patients are using telemedicine to
diagnose [3]. However, with the widespread dissemination of medical image information
on the internet, the security and integrity of patient information faces serious challenges [4].
In this context, medical image watermarking technology has emerged to provide technical
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support for protecting the privacy of patient information. By embedding invisible or
imperceptible watermark data in medical images, medical image watermarking technology
achieves copyright protection, integrity verification, and content authentication of medical
images [5]. This technique requires embedding watermarks without affecting image quality
and diagnostic accuracy and good robustness and invisibility to resist common image
attack processing [6].

Spatial domain watermarking technique and frequency domain watermarking tech-
nique are two common traditional watermarking techniques [7]. Spatial domain watermark-
ing uses techniques like least significant bit (LSB) replacement and pixel value mapping
to insert watermarking information directly in the original data [8]. Such methods are
relatively simple, but vulnerable to image attacks. Wang, Huanying et al. proposed a
color image watermarking method to obtain the elements of OR decomposition in the
spatial domain and perform watermark embedding and extraction in the spatial domain [9].
Basha, Shaik Hedayath et al. used ESP algorithm to compute Euclidean spatial points for
watermark embedding process and used Diffie-Hellman key exchange protocol to recover
the watermark, wherein the algorithm has some resistance to JPEG compression, cropping,
rotation, and other attacks [10]. Cao, H. et al. used quantization technique for watermark
embedding extraction by studying the relationship between the DFT DC component and
the domain pixel values [11]. The frequency domain watermarking technique converts the
original data to the frequency domain and then embeds the watermark information in the
converted data [12]. The frequency domain watermarking approach is considerably more
secure and attack-resistant than the spatial domain watermarking method [13]. Tang, Ming
et al. proposed a robust watermarking algorithm based on DWT and SVD by first applying
FRFT transform to the original image and the watermarked image to obtain the magnitude
of the image, next applying DWT transform to it, and finally applying SVD to the low
frequency sub-band of the second level DWT of the original image and the magnitude of
the watermarked image to construct a new matrix to embed the watermark using singular
values, and using FRFT transform for watermark encryption to improve the algorithm
security, which has good robustness in attacks such as rotation, clipping, Gaussian filtering,
and median filtering [14]. Jing, Liu. et al. combine the use of DTCWT-DCT transform
and perceptual hashing technique to achieve watermark embedding and extraction using
zero watermarking technique. The suggested method performs well against geometric and
conventional assaults, and particularly good at resisting geometric attacks [15].

With the development of image local feature extraction algorithms, more and more
researchers are applying feature extraction algorithms in the field of watermarking tech-
nology [16]. The traditional local feature extraction algorithms mainly include SIFT, SURF,
KAZE, etc. [17–19]. They have excellent rotation invariance and scale invariance in image
feature extraction and matching. Binary feature extraction algorithms have faster run
speeds, and the mainstream ones include BRIEF, ORB, BRISK, etc. [20–22]. Watermarking
researchers often combine feature extraction algorithms with frequency domain water-
marking techniques. Hamidi, Mohamed. et al. exploit SIFT’s geometric invariance to
improve watermarking’s robustness against geometric attacks and the proposed algorithm
combining DWT-DCT and SIFT has good robustness [23]. Soualmi et al. proposed an imper-
ceptible watermarking method for medical image tampering detection by combining SURF
descriptors with Weber descriptors (WD) and Arnold algorithm, applying SURF technique
to the region of interest (ROI) of medical images and then selecting the region around the
SURF points to insert the watermark, thus embedding and extracting the watermark using
Weber descriptors [24]. Cheng, Zeng et al. used the KAZE feature extraction algorithm
to extract original image features. The extracted features were then DCT transformed to
obtain the feature sequence of medical images using perceptual hashing, while embedding
and extracting watermarks using the zero-watermarking technique. The proposed KAZE-
DCT algorithm has better resistance to geometric attacks, but less resistant to conventional
attacks [25].
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In recent years, deep learning-based watermarking algorithms have gradually become
popular among watermarking technology researchers [26]. Deep learning models for image
processing are used in image watermarking systems [27]. Compared with traditional
watermarking methods, deep learning-based algorithms can better adapt to different image
contents and provide higher robustness and security [28]. Yu, Fan et al. used Inception V3
convolutional neural network to extract image features and then encrypted the embedded
watermark using the chaotic mapping system. The algorithm is resistant to a wide range of
geometric attacks but is less resistant to conventional attacks [29]. Wenxing, Zhang et al.
proposed a method to train the GoogLeNet network using migration learning, and the
trained network is used to extract the image features and encrypts the watermark using
two-dimensional Henon chaos cryptography, and the proposed GoogLeNet-DCT algorithm
has strong resistance to geometric attacks [30].

Based on the studies above, at the current stage, most medical image algorithms still
do not fully mitigate the problem of ownership protection, and most of these algorithms
can only defend against a small number of attacks. Therefore, watermarking researchers
should investigate new robust watermarking algorithms that can cope with more types of
attacks. The algorithm proposed in this paper is highly resistant to many conventional and
geometric attacks.

The main contributions of this study are as follows:

(1) Proposed a zero-watermarking algorithm for medical images based on improved
NasNet-Mobile and DCT.

(2) Double encryption of the watermark using Chen chaos mapping and Arnold trans-
form dislocation.

(3) Changing the NasNet-Mobile network structure to train the medical image dataset
and extract robust features.

(4) The proposed algorithm can withstand most of the conventional and geometric attacks
and the algorithm is robust.

2. Fundamental Principles
2.1. NasNet-Mobile Convolutional Neural Network

NasNet-Mobile is a lightweight neural network architecture [31] to achieve high-
performance, low-latency image recognition tasks. Developed by the Google Brain team
and based on Neural Architecture Search (NAS) technology, NasNet-Mobile’s network
architecture aims to maintain accuracy while significantly reducing computational resource
requirements and power consumption. Compared with the original version of NasNet,
NasNet-Mobile is optimized in terms of network hierarchy and parameters to provide
better performance while reducing computational complexity. The NasNet-Mobile network
structure consists of basic modules (Cells), NASNet search space, reinforcement learning,
and transfer (Skip) connections. In this paper, the NasNet-Mobile network is applied to
digital watermarking.

In NasNet-Mobile, the basic components are Cell structures, and there exist two types
of Cell structures called Normal Cells and Reduction Cells, which are a sub-network of
multiple convolutional layers with reusable and combinable characteristics. NasNet-Mobile
forms the entire network by stacking these basic modules (Normal Cells and Reduction
Cells) together. This modular design allows NasNet-Mobile to be highly flexible and can
be adapted to different task requirements and resource constraints. The network model
architecture is depicted in Figure 1 and the best-performing Normal Cell and Reduction
Cell structures are depicted in Figure 2.
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2.2. Discrete Cosine Transform (DCT)

The DCT transform is commonly used for lossy data compression of images with sepa-
rability and energy concentration. The principle of 1D-DCT is shown in Equation (1). In this
case, 2D-DCT applies the one-dimensional discrete cosine transform to two-dimensional
data, dividing the two-dimensional image into several small blocks, and then applying the
discrete cosine transform to each block to convert the high-frequency signals in the small
blocks into low-frequency signals. The 2D-DCT is shown in Equation (3):

F(u) = C(u)
N−1

∑
i=0

f (i) cos
[
(i + 0.5)uπ

N

]
(1)
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1
N , u = 0√
2
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(3)
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C(u) =


√

1
M , u = 0√
2
M , u = 1, 2, . . . , M− 1

(4)

C(v) =


√

1
N , v = 0√
2
N , v = 1, 2, . . . , N − 1

(5)

2.3. Chen Chaotic System

The Chen chaotic system is a particular type of three-dimensional nonlinear dynamical
system. Equation (6) is used to define the Chen chaotic system. Encrypting images with
the Chen chaotic system is common, mainly by generating a sequence of random numbers
to obfuscate and permute the image pixels for data protection.

dx
dt = a(y− x)

dy
dt = (c− a)x− xz + cy

dz
dt = xy− bz

(6)

where a, b, and c are the parameters of the Chen chaotic system, and x, y, and z denote the
three state variables of the system, respectively.

2.4. Arnold Mapping

Arnold mapping is a discrete-time mapping widely used in studying dynamical sys-
tems and chaos theory. Arnold mapping is a linear mapping defined in a two-dimensional
toroidal space as shown in Equation (7). Arnold mapping mainly achieves the encryption
of the original image by dislocating the pixels of the image and using a key to control the
number of iterations, thus making the original image unrecognizable.(

xn+1
yn+1

)
=

(
1 b
a ab + 1

)(
xn
yn

)
modN (7)

where (xn, yn) is the coordinate of the original point, (xn+1, yn+1) is the coordinate of the
mapped point, a, b, N should be positive integers, and N is the image pixel size.

3. Zero Watermark Algorithm

This paper proposes a robust zero watermarking algorithm for medical images based
on an improved NasNet-Mobile convolutional neural network and discrete cosine trans-
form (DCT), combining NasNet-Mobile network, DCT transform, and perceptual hash
function, watermarked image encryption using Chen chaotic system and Arnold transform
dislocation dual encryption algorithm, using zero watermarking technique to embed and
extract watermark, which has good effect in geometric attacks and some conventional
attacks, and can blindly extract watermark.

3.1. NasNet-Mobile Pre-Trained Network Migration Learning
3.1.1. NasNet-Mobile Network Restructuring

The NasNet-Mobile network structure uses the idea of repetitive stacking, and the
network itself has a strong feature extraction capability. To further improve the accuracy of
image feature extraction, we adapt the structure of the pre-trained network NasNet-Mobile
by using a fully connected layer with 128 output and a regression layer instead of the
original Softmax layer and classification layer, thus generating a regression network with
128 output, and selecting the fully connected layer with output value of 128 for extracting
feature values of medical images, as shown in Figure 3. After experiments, the improved
network has better feature extraction capability.
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3.1.2. Dataset Creation

The datasets in this paper are sourced from Medical Imaging Park and the American
Institutes for Research, employing the datasets from the categories of the brain, abdomen,
chest, bones, and muscles. We selected 350 original medical images as the training set,
150 original medical images as the validation set, and 100 original medical images as the
test set, and some of the medical images are shown in Figure 4. To improve the algorithmis
capacity to extract visual features, we perform data enhancement on the selected dataset
as shown in Table 1. Because the NasNet-Mobile pre-training network requires the input
image pixels to be 224 × 244, the image size needs to be set to 224 × 224, so that we get
37,450 training sets with 224 × 224 pixels and 16,050 validation sets. We perform 2D-DCT
transform on the training and test set images and select 128 low-frequency components of
16 × 8 as the data set labels.

3.1.3. Training Network

The programming Matlab 2022b was used for this experiment and the NasNet-Mobile
pre-trained network from the Neural Network Toolbox was selected. The computer con-
figuration used for the experiments was a processor (AMD Ryzen7 5800H with Radeon
Graphics), a graphics card (NVIDIA GeForce RTX 3060 Laptop GPU 6 G), and memory
(Samsung DDR4 3200 MHz 16 G). We trained the NasNet-Mobile pre-trained network.
During training, the initial learning rate is set at 0.001. At each iteration, the model will use
thirty samples for weight update and is trained for four rounds. At the beginning of each
round, the training data will be reordered randomly, and after every 1000 iterations, the
model will be evaluated using validation data. After the training, we save the well-trained
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grid and use the fully connected layer with an output value of 128 at the tail end of the
network as the feature values for image feature extraction.
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Table 1. Data Set Enhancement Methods.

Enhanced Type Intensity Number of New
Images

JPEG compression (%) 5, 10, 15, 20 4
Gaussian noise (%) 2, 4, 6, 8, 10, 12, 14, 16 8

Median filter [3 × 3] (times) 5, 10, 15, 20 4
Median filter [5 × 5] (times) 5, 10, 15, 20 4
Median filter [7 × 7] (times) 5, 10, 15, 20 4

Clockwise rotation (◦) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 12
Anticlockwise rotation (◦) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 12

Y-axis shear (%) 5, 10, 15, 20, 25, 30, 35, 40 8
Scaling 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 10

Right-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8
Left-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8

Down-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8
X-axis shear (%) 5, 10, 15, 20, 25, 30, 35, 40 8

Up-shift (%) 5, 10, 15, 20, 25, 30, 35, 40 8
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3.2. NasNet-Mobile Feature Extraction

In this paper, we use a trained NasNet-Mobile network to extract medical image
features and get 128 feature values N(i, j), after DCT transformation of the extracted
eigenvalues, 128 DCT transformed feature values D(i, j) are obtained, then select the
32 low frequency coefficients V(i, j) of feature values D(i, j), perform sign transformation
on the low frequency coefficients V(i, j), set the elements greater than 0 in the matrix to 1
and the other elements to 0 to get the 32 bit hash value H(i, j), and H(i, j) for the binary
feature sequence. The specific steps are shown in Figure 5.
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3.3. Watermark Encryption

Chen chaos system and Arnold chaos mapping are used to encrypt the picture twice
in order to improve the anti-interference and security of the embedded watermark. Firstly,
the initial values of the Chen chaos system are set as follows: x = 2, y = 1, z = 3, a = 35, b = 3,
c = 28. Subsequently, the system enters the chaotic state to obtain the chaotic sequence,
and then the chaos matrix is obtained by binarization. XOR operation is performed on
the chaotic matrix and the original watermark to obtain the watermark encrypted by the
Chen chaos system C(i, j), and finally, the watermark C(i, j) is dislocated by Arnold chaos
mapping to obtain the encrypted watermark L(i, j). The parameters of Arnold chaos
mapping in this paper are set as a = 3, b = 5, and the number of iterations is 10. The
watermark encryption process is shown in Figure 6.

3.4. Embedding Watermarks

We embed the encrypted watermark into the medical image, whereby first the trained
NasNet-Mobile network performs feature extraction on the original image to obtain the
hash value H(i, j), and then the binary feature sequence is XOR operation with the en-
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crypted watermark to obtain the logical key used to extract the watermark K(i, j). This
embedding watermark method uses the zero-watermark embedding technique, which
does not alter the original image. The specific embedding watermark steps are shown
in Figure 7.
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3.5. Watermark Extraction and Decryption

Finally, watermark extraction and decryption are performed. Firstly, the trained
NasNet-Mobile network is used to extract features from the image after the attack and
obtain the hash value H′(i, j), the extracted encrypted watermark L′(i, j) is obtained by
performing the XOR operation between H′(i, j) and the logical key K(i, j), the encrypted
watermark L′(i, j) is obtained by the Arnold inverse transformation to the watermark
encrypted by Chen chaos system C′(i, j). Finally, the watermark is restored by the initial
value of Chen chaos system. The specific watermark extraction step is shown in Figure 8.
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4. Experiments and Results

This paper uses MATLAB 2022b software to simulate and experiment on medical
images. Since the network input image pixel is 224 × 224, the medical image pixel used
for testing is 224 × 224. In this paper, three medical images from the test set are chosen
at random for testing, and the watermark image pixel size is chosen as 32 × 32, as seen
in Figure 9. The normalized correlation coefficient (NC), as shown in Equation (8), is
employed to determine how well the method can withstand assault by comparing how
similar the original watermark is to the watermark that was retrieved from the picture after
attack. The peak signal-to-noise ratio (PSNR), as shown in Equation (9), is used to represent
the quality of the image. In the case of medical images without any attacks, the NC values
are all 1.

NC =

∑
i

∑
j

W(i,j)W ′(i,j)

∑
i

∑
j

W2
(i,j)

(8)

PSNR = 10lg

 MNmax
i,j

(I(i, j))2

∑
i

∑
j

(
I(i, j)− I′(i, j)

)2

 (9)
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Figure 9. Tested images and watermarks. Brain image (a), palm image (b), abdominal image (c),
watermark image (d).
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4.1. Testing Different Images

Before testing the anti-attack performance of medical images, we first need to test ten
different medical images with the algorithm, as shown in Figure 10. At the same time,
their correlation coefficients are calculated to verify whether the algorithm can distinguish
different medical images. The outcomes of the experiment are displayed in Table 2. The
outcomes demonstrate that the NasNet-Mobile-DCT algorithm’s NC values for different
medical pictures are less than 0.5, which proves that the algorithm can distinguish different
medical images.
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Figure 10. Different medical images within the test (a–j).

Table 2. Correlation coefficient values between different images (32 bits).

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(a) 1.00
(b) 0.14 1.00
(c) 0.42 0.25 1.00
(d) 0.39 0.22 0.37 1.00
(e) 0.18 0.30 0.33 0.34 1.00
(f) 0.41 0 0.41 0.41 0.27 1.00
(g) 0.43 0.07 0.05 0.24 0.07 0.10 1.00
(h) 0.23 0.29 0.27 0.21 0.43 0.38 0.32 1.00
(i) 0.39 0.03 0.17 0.35 0.06 0.18 0.33 0.39 1.00
(j) 0.30 0.03 0.14 0.10 0.03 0.23 0.31 0.23 0.32 1.00

4.2. Conventional Attacks

The NasNet-Mobil-DCT algorithm is used to perform different levels of conventional
attacks on medical images that already contain encrypted watermarks, and then the wa-
termarks are extracted, and Figure 11 displays the conventionally attacked images along
with the extracted watermarks. Then the algorithm’s robustness for conventional attacks
is observed, and Table 3 displays the trial outcomes. The findings demonstrate that the
Gaussian attack strength is 0.02 and 0.04, the NC value is greater than 0.85, even if the
Gaussian attack strength is 0.10, the NC value is greater than 0.55, which indicates that the
proposed algorithm has certain ability to resist Gaussian attack. The NC value is greater
than 0.85 even when the JPEG compression quality is 5%, and when the quality of the JPEG
compression is greater than 20%, the NC value is 1, which indicates that the proposed
algorithm has good robustness to JPEG compression attack. When the attack strength is
20 times [5 × 5] median filtering, the measured NC values are higher than 0.74, even if the
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attack intensity is 10 times [7 × 7] median filter, the NC value is greater than 0.70, and this
shows that the algorithm is effectively resistant to median filtering. Experimental results
show that the algorithm proposed in this paper has good resistance to conventional attacks.
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Figure 11. Medical images and watermarks for conventional attacks. (a–c) denote medical images
and extracted watermarks after a Gaussian attack intensity of 0.06; (d–f) denote medical images and
extracted watermarks at a compression quality of 5%; (g–i) denote medical images and extracted
watermarks after 20 Me-dian filtering [5 × 5] attacks.

Table 3. Experimental data of watermarking based on conventional attacks.

Conventional
Attacks

PSNR (dB) NC

Intensity Img1 Img2 Img3 Img1 Img2 Img3

Gaussian noise

0.02 17.81 16.76 17.29 1.00 0.93 0.94
0.04 15.12 14.06 14.55 0.86 0.93 0.89
0.06 13.65 12.55 13.04 0.85 0.88 0.82
0.08 12.66 11.42 12.04 0.67 0.87 0.76

JPEG
compression

0.10 11.86 10.67 11.21 0.56 0.85 0.63
25% 33.39 32.03 34.27 1.00 1.00 1.00
20% 32.51 31.17 33.39 1.00 1.00 1.00
15% 31.25 30.03 32.37 0.90 0.94 1.00
10% 29.26 28.39 30.65 0.95 1.00 0.88

Median
filtering [5 × 5]

5% 26.46 25.16 27.68 0.95 0.86 0.88
5 (times) 25.13 27.00 28.35 1.00 0.86 0.83

10 (times) 24.29 25.99 27.60 0.92 0.92 0.83
15 (times) 23.86 25.48 27.24 0.89 0.92 0.83

Median filtering
[7 × 7]

20 (times) 23.56 25.09 27.07 0.84 0.92 0.75
5 (times) 22.49 24.75 26.61 1.00 0.86 0.83

10 (times) 21.77 23.14 25.70 0.72 0.86 0.83

4.3. Geometric Attacks

The NasNet-Mobil-DCT algorithm is robust under conventional attacks and the fol-
lowing tests are performed on geometric attacks. The medical images that already contain
the encrypted watermark are subjected to different degrees of rotation attack, scaling at-
tack, translation attack, X-axis shearing attack, and Y-axis shearing after extracting the
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watermark, and Figure 12 displays the extracted watermark and medical images following
the geometric attack. Following that, the algorithm’s resistance to geometrical assaults is
seen, and the experimental findings are displayed in Table 4. The experimental findings
demonstrate that the NC values were higher than 0.85 when the images were rotated by 5,
15, and 30 degrees, even after rotating the observed picture by 60 degrees, the NC value
remains higher than 0.80, it shows that the algorithm can effectively fend against rotational
attacks. When the scaling ratio is equal to 0.3 and 2.0, the NC value exceeds 0.86, and
this suggests that the algorithm is rather resistant to scaling attacks. When the measured
cryptomedical images were shifted upwards by 5%, the NC values were all greater than
0.92, the NC value exceeds to 0.75 when it is shifted to the up by 35%, the NC value is
higher than or equal to 0.75 when the measured encrypted medical image is shifted to the
right by 25%, demonstrating the algorithm’s strong robustness to translation attacks. When
the encrypted medical images are cut by 20% on the Y-axis, the NC value is greater than
0.85, even when the encrypted medical image is cropped 40% on the Y-axis, the NC value
is greater than 0.82, when they are cut by 40% on the X-axis, the NC values are greater than
0.80, indicating that the algorithm has strong resistance to shear attacks. In conclusion, the
algorithm proposed in this paper performs well against multiple geometric attacks.
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Figure 12. Medical images and watermarks for geometric attacks. (a–c) represent the medical image
and extracted watermark after a 60-degree clockwise rotation attack; (d–f) represent the medical
image and extracted watermark at a scaling of 0.3; (g–i) represent the medical image and extracted
watermark after a 25% right shift; (j–l) denote the medical image and extracted watermark after a
20% X-axis clipping of the medical image and the extracted watermark.

Table 4. Experimental data of watermarking based on geometric attacks.

Geometric Attacks
PSNR (dB) NC

Intensity Img1 Img2 Img3 Img1 Img2 Img3

Rotation
(clockwise)

5◦ 18.36 14.63 22.50 0.95 0.94 0.94
15◦ 15.05 10.06 19.58 0.95 0.87 0.94
30◦ 14.56 9.14 18.11 1.00 0.86 1.00
45◦ 13.99 8.24 17.72 1.00 0.80 0.93
60◦ 13.68 7.44 17.03 0.95 0.94 0.83

Scaling

0.3 20.97 21.32 25.67 1.00 0.88 0.88
0.6 27.13 27.25 29.70 1.00 1.00 0.94
1.5 46.44 43.72 45.19 1.00 1.00 0.93
2.0 46.40 43.61 44.94 1.00 1.00 0.93
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Table 4. Cont.

Geometric Attacks
PSNR (dB) NC

Intensity Img1 Img2 Img3 Img1 Img2 Img3

Right translation

5% 14.60 10.37 19.13 1.00 1.00 0.93
15% 12.98 8.12 16.04 0.95 0.92 0.89
25% 11.34 6.62 15.25 0.90 0.92 0.75
40% 10.11 5.75 14.50 0.90 0.80 0.82

Up translation

5% 14.67 13.42 17.99 0.95 0.92 1.00
15% 13.17 8.81 15.08 1.00 0.92 0.82
25% 11.97 7.08 14.32 1.00 0.73 0.82
35% 11.08 6.06 13.34 1.00 0.92 0.76

Y-axis cropping

10% 15.66 15.14 18.75 1.00 0.86 1.00
20% 15.26 12.27 16.21 1.00 0.86 0.89
30% 14.95 11.29 15.02 1.00 0.86 0.83
40% 14.69 10.57 14.48 0.95 0.94 0.83

X-axis cropping

10% 14.70 10.00 19.52 1.00 0.94 1.00
20% 13.14 8.80 18.07 1.00 0.81 0.94
30% 12.55 7.48 17.04 1.00 0.75 0.86
40% 12.14 7.70 16.67 1.00 0.81 0.88

4.4. Algorithm Comparison

To demonstrate the robustness of the NasNet-Mobil-DCT algorithm and use this
algorithm to compare with other algorithms, this comparison experiment uses a brain
image as the experimental object, as shown in Figure 9a, because this image is often used by
a wide range of medical image watermarking researchers in comparative experiments and
is representative. The comparison data are shown in Figure 13, in which black represents
the DCT algorithm [32], green represents the DWT-DCT algorithm [33], blue represents
the SIFT-DCT algorithm [34], purple represents the KAZE-DCT algorithm [25], orange
represents the Inception V3-DCT algorithm [34], and red represents the NasNet-Mobil-
DCT algorithm proposed in this paper. The NasNet-Mobil-DCT algorithm offers strong
resilience to conventional and geometric attacks, as observed from the experimental data.
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5. Conclusions

In this paper, we propose a robust zero watermarking algorithm for medical images
based on improved NasNet-Mobile convolutional neural network and discrete cosine trans-
form (DCT), which uses deep learning algorithm, chaotic encryption technique, perceptual
hashing algorithm, and zero watermarking technique to provide security for medical im-
age watermarking information. Before watermark embedding, Chen chaotic system and
Arnold mapping algorithm are used to double encrypt the watermarked data, which im-
proves the security of the data, and then migration learning is carried out on the improved
NasNet-Mobile network to get the trained medical image feature extraction network, and
finally, the extracted image features are subjected to DCT transformation to extract the
low-frequency data and the extracted data are processed by the perceptual hash algorithm
to get the 32-bit binary feature vectors, and finally, the zero-watermarking technology is uti-
lized for encrypting the medical images. The experimental results show that the algorithm
proposed in this paper can resist a variety of conventional attacks, and at the same time, it
is excellent in resisting geometric attacks such as rotation, translation, scaling, shearing,
etc., and shows strong robustness. Therefore, the algorithm can be used for medical images.
In the next research, we will improve the algorithm and look for algorithms that can extract
image features more effectively to cope with the watermarking techniques’ weak resistance
against various attacks.
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