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Abstract: An improved butterfly optimization algorithm (IBOA) is proposed to overcome the dis-
advantages, including slow convergence, generation of local optimum solutions, and deadlock
phenomenon, of the optimization algorithm in the path planning of mobile robots. A path-planning
grid model is established based on an improved obstacle model. First, the population diversity is
improved by introducing kent mapping during population position renewal in the normal butterfly
optimization algorithm (BOA) to enhance the global search ability of the butterfly population. Second,
an adaptive weight coefficient is introduced in the renewal process of each generation to increase
the convergence speed and accuracy. An opposition-based learning strategy based on convex lens
imaging is introduced to help the butterfly population jump out of the local optimum. Finally, a
mutation strategy is introduced to solve the path planning problem. On this basis, two path simplifi-
cation strategies are proposed to make up for the shortcomings of planning paths in grid maps. The
shortest path lengths solved by IBOA, BOA, and GA in the 20 × 20 map are 30.97, 31.799, and 31.799,
respectively. The numbers of iterations for the shortest paths searched by IBOA, BOA, and GA are 14,
24, and 38 in that order. The shortest path lengths solved by IBOA, BOA and GA in the 40 × 40 map
are 63.84, 65.60, and 65.84, respectively. The number of iterations for the shortest paths searched by
IBOA, BOA and GA are 32, 40, and 46, respectively. Simulation results show that IBOA has a strong
ability to solve robot path planning problems and that the proposed path simplification strategy can
effectively reduce the length of the optimal path in the grid map to solve the path planning problem
of mobile robots. The shortest paths solved by IBOA in 20 × 20 and 40 × 40 maps are simplified to
lengths of 30.2914 and 61.03, respectively.

Keywords: improved butterfly optimization algorithm; kent mapping; adaptive weight coefficient;
path simplification strategy; path planning

1. Introduction

In recent years, mobile robotics has garnered great research interest. Research on
mobile robots includes navigation and positioning, motion control, and path planning.
Path planning is one of the core topics of mobile robot research. Robot path planning is
a technique that enables a robot to find an optimal path from a starting point to a target
point in a static environment without colliding with obstacles [1–5].

With the working environment of mobile robots becoming increasingly complex, the
requirements of path-planning algorithms are getting higher and higher. The traditional
path-planning strategy can not be satisfied with the high demand for robot path planning.
In order to adapt to the complex application environment and application requirements
of mobile robots, there is an urgent need to design path-planning algorithms with shorter
solution paths and faster iterative processes in complex environments.
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Different path-planning methods for mobile robots have been proposed by sev-
eral scholars.

The first step in solving the mobile robot path planning problem is to set up a robot
movement map model. Scholars have proposed different research methods to establish
an environment model for mobile robots. An environment modeling method that collects
and integrates the obstacle information between the starting and the goal through a neural
network is proposed [6]. Although modeling the environment model through neural
networks is accurate, the integration of information requires extensive training of the
neural networks, which may also need to be retrained when performing tasks on new maps.
Therefore, this method has a large workload and is suitable only when a high accuracy
of the moving position is required, and the robot has been in a stable map environment
for a long time. Compared with other environmental modeling methods, the grid method
is more convenient in the modeling process, and the storage of each point information
is simpler in the operation process, which can help mobile robots read environmental
information quickly. Therefore, the grid method is widely used to model the environment
in robot path-planning problems [7–11]. The grid method of environment modeling has a
wide range of applications in path planning problems, and it can be well combined with
meta-heuristic algorithms to solve the path planning problems of mobile robots, so the grid
method is used in this study to model the environment. But the obstacle modeling in the
grid map still needs further processing.

Different types of algorithms have been introduced to solve the path-planning problem,
and they have achieved good results.

An enhanced particle swarm optimization algorithm was used to help mobile robots
generate the optimal collision-free path. Simulation and experimentation yielded good
results [12]. A method for fitting a smooth robot moving path and a smoothing criterion
for the robot path is proposed [13]. In the research, parameter adaptive strategy and
greedy strategy are proposed to provide ideas for this research. A novel path-planning
algorithm was proposed based on jump point search and Bessel curves. The experimental
results showed that the algorithm could achieve an optimal robot motion path between
the initial point and the target point [14]. Many algorithms in the field of path planning
have been inspired by biological technology, including the ant colony algorithm, bee colony
algorithm, genetic algorithm (GA), whale optimization algorithm, dragonfly algorithm, and
ant lion optimizer, to solve robot path planning, obstacle avoidance, and path optimization
problems [15–19]. The grey wolf optimization (GWO) algorithm has been used to search
for the optimal path in the mobile robot path-planning problem. The effect of random
parameters on the GWO algorithm was shown to be reduced by calculating the arithmetic
mean of the three optimal individuals of the population [20]. The path-planning scheme
proposed in the literature is as follows. First, a two-dimensional map is established to
simulate the robot’s mobile environment; then, the optimal path is calculated by the GWO,
and the coordinates of the key points in the optimal path recorded; finally, the key points
in the map are connected to generate the robot movement path. This provides a general
idea for this study. The storage, computation and updating of path information with
different numbers of grids is one of the keys to solving path planning problems by using
metaheuristic algorithms.

Among the mobile robot path-planning algorithms proposed by the above scholars,
metaheuristic algorithms showed the characteristics of fast solution speed and high solution
accuracy. However, the metaheuristic algorithms proposed by some scholars still have
some disadvantages for robot path planning, such as problems of low convergence speed
and accuracy, which need to be further optimized.

A butterfly optimization algorithm (BOA) was proposed. Through different tests, it
was verified that the BOA had a higher solving ability than other advanced metaheuristic
algorithms for most problems. The BOA has a more stable solution performance than
other algorithms [21]. By introducing kent mapping [22], self-adaptive weight, and ad-
versarial learning strategy, the algorithm is improved from different angles to improve
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the convergence speed and convergence accuracy of the BOA. The adaptability of BOA to
path planning problems could be improved by introducing a population variation strategy.
The improved butterfly optimization algorithm (IBOA) and GA are applied to the path-
planning problem, and the path length obtained by the IBOA is shorter and the number
of iterations is lower. Two simplification strategies were proposed to optimize the path
collaboratively according to the optimal path found by the algorithm, thereby further
shortening the path length. In the static obstacle environment, the IBOA and the simplified
strategy were applied to the mobile robot path-planning simulation experiment, and good
results were obtained, which verified the superiority and feasibility of the algorithm.

The remainder of this paper is organized as follows. Section 2 models the environment
through a grid approach and proposes an obstacle extension method to model obstacles.
Compared with traditional obstacle models, the proposed obstacle model guarantees that
the mobile robot will not collide with an obstacle when it passes over the vertices of the
obstacle grid. The traveling safety of the robot is guaranteed with the size of the obstacle
model as small as possible. Section 3 presents three ways to improve the BOA. These
three methods improve the population diversity, convergence speed, and ability of the
algorithm to jump out of the local optimal solution. The solving powers of the BOA and
IBOA are compared through six benchmark functions. In comparison to the normal BOA,
IBOA showed faster solving speed and higher solving accuracy. In Section 4, IBOA is
applied to the mobile robot path-planning problem. The method of storing paths in the
form of cell data used in this paper could effectively store the path information with the
different number of variables and unify the processing to complete the algorithm solving.
Compared with BOA and GA, the shortest path length for the solution of IBOA is shorter
and the number of iterations required for the solution of IBOA is smaller. Two methods for
simplifying the path were proposed to simplify the optimal path obtained by the algorithm.
This simplification addresses the unavoidable problem of planning paths in a grid graph.
Section 5 presents conclusions and discussions drawn from the findings. Compared with
the path simplification strategy in literature [11], the proposed simplification strategy can
be applicable to paths of different sizes and has an overlapping property that allows the
successive deletion of redundant points between necessary points.

2. Environment Modeling

Establishing a suitable environment model is critical for mobile robot path planning.
The grid method is easy to use and can effectively represent the layout of an environment.
Therefore, the grid method is a common environment modeling method for solving robot
path-planning problems [23,24].

This environment model adopts complete traversal modeling. The entire environment
is first probed, and the coordinate and contour information of all obstacles are recorded
in the mobile robot database so that the robot can plan a collision-free and shortest path.
Such environment modeling enables the robot to have a basic understanding of global
information and find an optimal path in the global environment [25].

In a static environment, the size, number, and position of obstacles are known and do
not change during the robot’s motion. The planning time of the robot and environmental
information is closely related to the size and number of grids. Therefore, in this study,
the external circle of the robot projected on the ground was used as the robot in the two-
dimensional map, and the diameter of the external circle was D. To plan the route accurately
and avoid collisions between the robot and obstacles, the side length of a single grid is
taken as D.

Based on this, a grid map was established, as shown in Figure 1. The black grid
represents the obstacle module, and the white grid represents the movable area. The
lower-left corner S is the starting point, and the upper-right corner E is the target point.
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As shown in Figure 1, the positive direction of the x-axis is defined from left to right, 
the positive direction of the y-axis is defined from bottom to top, and the grid length is 
defined as the unit length used to establish a two-dimensional coordinate plane. The grid 
is numbered using Equation (1), which is used to plan the movement route of the robot. 
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tial obstacle model; (b) The obstacle module after the first expansion process. 

All grids involved in the obstacle are set to black. When the planned robot path in-
cludes the path denoted by B→A in Figure 2, the robot may still come into contact with 
the obstacle module. Therefore, the obstacle model required a second expansion process. 

First, the edge grid of the obstacle model must be determined. As shown in Figure 3, 
if the black grid C is adjacent to two sides connected to two free grids A and B, and the 
free grids A and B are in the diagonal positions of the 2 × 2 square grid, it is necessary to 
determine the relationship between the distance L and D/2. L is the distance from the point 
on the obstacle in the grid to the line connecting the center points of grids A and B. 

Figure 1. Grid method environment modeling.

As shown in Figure 1, the positive direction of the x-axis is defined from left to right,
the positive direction of the y-axis is defined from bottom to top, and the grid length is
defined as the unit length used to establish a two-dimensional coordinate plane. The grid
is numbered using Equation (1), which is used to plan the movement route of the robot.

num = (x− 1) + (y− 1) ∗ xmax, (1)

where num denotes the number of grids, x denotes the number of columns in the current
grid, y denotes the number of rows in the current grid, and xmax denotes the total number
of columns in the grid map.

The obstacle models were obtained by expanding the real obstacle, as shown in
Figure 2, which is a comparison diagram of the preliminary expansion treatment of the
obstacle module.
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Figure 2. Comparison diagram of preliminary expansion treatment of obstacle models: (a) The initial
obstacle model; (b) The obstacle module after the first expansion process.

All grids involved in the obstacle are set to black. When the planned robot path
includes the path denoted by B→A in Figure 2, the robot may still come into contact with
the obstacle module. Therefore, the obstacle model required a second expansion process.

First, the edge grid of the obstacle model must be determined. As shown in Figure 3,
if the black grid C is adjacent to two sides connected to two free grids A and B, and the
free grids A and B are in the diagonal positions of the 2 × 2 square grid, it is necessary to
determine the relationship between the distance L and D/2. L is the distance from the point
on the obstacle in the grid to the line connecting the center points of grids A and B.
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Figure 3. Analysis diagram of the second step expansion processing of obstacles.

As shown in Figure 3, if the distance min(L) > D/2, then the free grid remains blank.
Otherwise, the black grid C is divided into two triangular areas, C1 and C2, according to
the dashed diagonal line, as shown in Figure 3. The section with L < D/2 on the obstacle
model will be named the out-of-bounds part, and the free grid that is connected to the
triangle area where the out-of-bounds part is located will be changed to a black grid. If the
out-of-bounds part is in two triangular areas at the same time, the free grids on the robot
motion path that connect the two triangular areas will all become black grids.

As shown in Figure 3, the out-of-bounds part of the obstacle only exists in the C1 trian-
gle area, so grid A needs to be set as a black grid to avoid collision with the obstacle. Code.

3. Improved Butterfly Optimization Algorithm

Each butterfly in the BOA emits a specific fragrance. At the same time, individual
butterflies can perceive each other’s fragrances. According to the fragrance concentra-
tion, each butterfly mainly renews the position of the butterfly population through two
search methods during the search process. Equation (2) for the fragrance concentration of
butterflies is as follows:

f = cIa, (2)

where f is the odor intensity magnitude, c is the perceptual form, I is the stimulus intensity,
and a is the power exponent. The ranges of a and c were [0, 1]. In the BOA, a is 0.1, and the
initial value of c is 0.01.

The selection of the search method was determined by a random parameter within
[0, 1]. The first search method used was a global search. These butterflies produce fra-
grances at their positions. By comparing the fragrance of each butterfly, the butterfly
with the strongest fragrance was selected and its position was regarded as the optimal
position. In the global search stage, the butterfly population moves towards the butterfly
with the strongest fragrance to achieve the purpose of renewing the position of the butterfly
population. The specific search method was as Equation (3):

xt+1
i = xt

i + (r2 × g∗ − xt
i )× fi, (3)

where xi
t is the solution vector xi for ith butterfly in iteration number t. Here, g* is the

globally optimal individual in the current iteration. The fragrance of the ith butterfly is
denoted by fi and r is a random number in [0, 1].

The second search method is local search. Considering other factors, such as the
distance between butterfly individuals, the algorithm performs a local search using Equa-
tion (4).

xt+1
i = xt

i + (r2 × xt
j − xt

k)× fi, (4)

where xj
t and xk

t represent the solution vector of the ith and kth butterfly in the solution
space. And r is a random number in [0, 1].

Although the BOA has a fast search speed in the global search, once a butterfly
individual with a strong fragrance appears, other butterflies will move toward it quickly.
The algorithm solution process has a poor diversity of solution results and is easily trapped
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in local extremes. The local search depends only on two random solution vectors, so the
algorithm can easily miss the better solution. The following improvement strategies were
proposed to solve the aforementioned problems of the BOA.

3.1. Kent Mapping

Chaos theory is characterized by randomness, non-repeatability, ergodicity, and regu-
larity. Compared to the stochastic search, chaos theory can perform a comprehensive and
thorough search in the search space. The introduction of chaos theory into the metaheuris-
tic algorithm could effectively increase the diversity of the population and improve the
solving power. The introduction of chaotic mapping in the BOA improves the convergence
accuracy of the algorithm, ensures the diversity of butterfly positions, improves the global
search ability of the algorithm, and avoids falling into the local optimal solution in the
process of the algorithm operation.

There are many types of chaotic mappings, and kent mapping has good uniform
traversal, which can effectively improve the diversity of butterfly populations. Therefore, in
this study, kent mapping is chosen to optimize the random parameter r in the BOA position
renewal process so that the butterfly individual position distribution is more random.
Incorporating the mapped parameter r into the operation can significantly improve the
ability of the BOA to jump out of the local optimum. In addition, the fixed mapping number
is set to avoid the overall slow iteration speed while improving the local optimal ability in
the early search. The specific mathematical model is as follows:

During the first 1/3 population position iteration process, the parameter u is set to 0.6,
and the value of r is solved by Equation (5).

r =
{

(1− r)/(1− u) r < u
r/u r = u

(5)

The butterfly position renewal process was optimized by incorporating the mapped r
into the position renewal calculation of the butterfly population.

3.2. Adaptive Inertia Weights

The addition of adaptive inertia weights can effectively improve the convergence
speed and accuracy of the optimization algorithm [26].

By analyzing the principle of the BOA, it can be seen that the individual butterfly
mainly renews its position through its current position and the position of the current
optimal solution. This renewal method can easily cause BOA to fall into a local optimum.
The convergence speed of BOA cannot be effectively controlled. Therefore, in this study,
the adaptive weight coefficient w is added in the process of butterfly position renewal to
improve the algorithm’s ability to jump out of the local optimum in the early stage and
speed up the convergence speed and accuracy of the algorithm in the later stage. The
mathematical expression of the adaptive weight coefficient w is given by Equation (6):

w = 2.5(sin(
π

2
(

t
N_iter

)
0.8
)− 3). (6)

The improved Equation (3) is shown in Equation (7):

xt+1
i = xt

i + (r2 × w× g∗ − xt
i )× fi. (7)

The improved Equation (4) is shown in Equation (8):

xt+1
i = xt

i + (r2 × w× xt
j − xt

k)× fi. (8)
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3.3. Opposition-Based Learning Strategy Based on Convex Lens Imaging

To ensure the diversity of the entire population and avoid the problem of “premature”
convergence and low optimization accuracy of the algorithm, an opposition-based learning
strategy based on convex lens imaging is introduced into BOA, and it is applied to the
current optimal individual to generate new individual [27].

The principle of searching for an opposing individual of the optimal butterfly indi-
vidual based on an opposition-based learning strategy based on convex lens imaging is as
follows. Suppose that in a one-dimensional space, there is a butterfly individual P with
height h on the coordinate axis interval [lb, ub]. The projection of P on the x-axis is X (X is
the global optimal individual), and the value range of the global solution is set to [ub, lb]. A
convex lens with a focal length of F is placed at the base point position O (the base point
position in this study is (lb + ub)/2), and the individual butterfly P obtains an inverted
image P* with a height of h* through the convex lens. The imaging of the convex lens
produces an opposing individual X* on the X-axis, and the imaging principle is shown in
Figure 4.
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In Figure 4, the global optimal butterfly individual X finds the corresponding opposing
individual X* through the base point O, and Equation (9) is obtained according to the
principle of convex lens imaging.

h
h∗

=
(ub + lb)/2− X
X∗ − (ub + lb)/2

. (9)

Equation (10) is obtained from the Equation (9) transformation.

h
h∗

= η, (10)

where η is the scaling factor, that is, the corresponding proportional relationship between
the object and image.

According to Equations (9) and (10), Equation (11) for X* can be obtained:

X∗ =
ub + lb

2
+

ub + lb
2 · η − X

η
. (11)

In the calculation process of BOA, the scaling factor η was used as a microregulatory
factor to strengthen the local development capability of the algorithm, and the optimal η
was determined by comparing different values. Through opposition-based learning of the
global optimal individual in the algorithm, the solution accuracy of the algorithm is greatly
increased. Figure 5 shows a flowchart of IBOA.
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Figure 5. Flow chart of IBOA.

3.4. Comparison of BOA with IBOA

To verify the optimization effect of the IBOA proposed in this paper, the six general
benchmark functions of metaheuristic algorithms are solved using the BOA and IBOA
algorithms. These benchmark functions contain unimodal and multimodal functions.
Unimodal functions can evaluate the solution speed of the algorithm. Multimodal functions
can evaluate the ability of the algorithm to jump out of the local optimal solution during
the solution. By analyzing the solution results of the two algorithms, their superiority and
stability were compared.

The relevant information of the test function used this time is shown in Table 1.

Table 1. Benchmark functions used in this study.

Function V_no Range fmin

F1(x) = ∑n
i=1 (∑

i
j−1 xj)

2 100 [−100, 100] 0

F2(x) = maxi{|xi|, 1 ≤ i ≤ n} 100 [−100, 100] 0
F3(x) = ∑n

i=1 x2
i 100 [−100, 100] 0

F4(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] 100 [−5.12, 5.12] 0

F5(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2)− e( 1
n ∑n

i=1 cos(2πxi)) + 2 + exp(1) 100 [−32, 32] 0

F6(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos( xi√
i
) + 1 100 [−600, 600] 0

Figure 6 depicts the convergence curves of BOA and IBOA on 50 iterations. It can
be observed from Figure 6 that the IBOA exhibits a faster convergence speed and higher
convergence accuracy in the process of solving different benchmark functions.
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Figure 6. Comparison of the solving procedures for the benchmark functions F1-F6: (a) Solution
process of the datum function F1; (b) Solving process of the reference function F2; (c) Solution process
of the reference function F3; (d) Solution process of the reference function F4; (e) Solution process of
the reference function F5; (f) Solution process of the reference function F6.

To verify the effectiveness of the IBOA strategy, the six benchmark functions were
solved 20 times by the BOA and IBOA. In this study, the mean and standard deviation
of 20 solutions of the two algorithms for each benchmark function were calculated. The
overall accuracy of the algorithm’s solution is observed by comparing the means, and the
stability of the algorithm’s solution is determined by comparing the standard deviations.
The solution results are shown in Table 2.
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Table 2. Comparison of the solution results obtained from the benchmark function.

F
BOA IBOA

ave std ave std

F1 2.4432 × 10−5 2.5048 × 10−6 3.7334 × 10−9 1.74 × 10−9

F2 0.0018123 0.00013418 9.406 × 10−7 4.6296 × 10−7

F3 3.035 × 10−5 2.2703 × 10−6 3.9923 × 10−9 2.6031 × 10−9

F4 2.2523 7.8826 1.8149 × 10−7 5.9147 × 10−7

F5 0.036973 0.0036808 0.00012988 0.00027588
F6 0.017841 0.0032376 9.0913 × 10−7 1.0834 × 10−6

It can be seen from the mean and standard deviation of the solution results of multiple
benchmark functions, that the IBOA has a higher accuracy than the traditional BOA
solution, indicating that the IBOA solution is more accurate, and the IBOA solution ability
is more powerful. The standard deviation of the results of the IBOA solution is generally
small, indicating that the solution ability of the IBOA is more stable. Therefore, it can be
shown that IBOA has a faster convergence rate and more accurate and stable solutions.

4. Path Planning Based on IBOA
4.1. Application of IBOA in Path Planning

The process of solving the mobile robot path-planning problem using the BOA is as
follows [28]. The path change process is shown in Figure 7.
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First, in the 20 × 20 grid, as shown in Figure 7a, a free grid was selected as the point
through which the robot passes in each of the 18 rows in the middle of the starting and
target points. These necessary grids were represented by hollow circles. These 20 grids
were referred to as individual butterfly clusters in IBOA.



Electronics 2023, 12, 3424 11 of 19

However, the path formed by these 20 grids could not be directly used as the path of
the robot. Therefore, first-generation routing must be interpolated. All two discontinuous
points in the path are interpolated until all adjacent grids in the path are continuous, and
the algorithm outputs a path for the robot to move.

The second-generation paths after interpolation of the first-generation paths are shown
as solid lines in Figure 7b. The length of each path in the second-generation path set is
calculated and used as the fitness value of the individual butterfly.

For storing the path information, the cell array was applied to store the path infor-
mation of different lengths. For reading and computing path information, the numeric
array was applied to read specific path information from the cell array for computation
and iteration.

Although the number of grids contained in each path in the second-generation path
set is inconsistent, it causes problems in the overall position update of the IBOA population.
However, the interpolation method employed follows a strict logic. Therefore, the first-
generation paths correspond one-to-one with the second-generation paths. When IBOA is
operated, the renewing result of the first-generation path composed of 20 grids is the same
as the renewing result of the second-generation path.

However, as shown by the dashed box in Figure 7b, some detour paths may appear
during the second-generation path. To avoid the detour path included in the final solution
path, the second-generation path was processed. This study introduces the mutation pro-
cess of GA to improve the BOA. The third-generation path is solved. The third generation
path was shown in Figure 7c. The edge length of the grid is assumed to be 1 m.

To verify the effectiveness of the improved strategy in solving the path planning
problem, IBOA, GA, and BOA were compared. Figure 8a depicts the convergence curves of
the shortest path lengths for IBOA and BOA after 50 iterations. The number of algorithm
populations and the maximum number of iterations are 200 and 50, respectively. As shown
in Figure 8a, IBOA has the fastest search for the optimal path and the shortest length of the
optimal path. The shortest paths solved by the three optimization algorithms in grid maps
are shown in Figure 8b.
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The shortest path lengths searched by IBOA, BOA, and GA are successively 30.97 m,
31.799 m, and 31.799 m in Figure 8a. The number of iterations for the shortest paths
searched by IBOA, BOA, and GA are 14, 24, and 38 in that order.

In order to further investigate the solving capability of the IBOA algorithm, this study
solved the shortest path of a more complex map by IBOA, BOA, and GA. The map is a
combination of the maps in reference [3] and reference [18]. Thus, the map is 40× 40 in size
and has a more complex environment. The results of the solution are shown in Figure 9.
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The population size of the algorithm needs to be increased to 4000 because the map
is substantially larger. The number of iterations for the shortest paths searched by IBOA,
BOA, and GA are 32, 40, and 46 in that order. The shortest paths solved by IBOA, BOA,
and GA in the 40 × 40 map are shown in Figure 10.
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Despite the increased complexity of the map environment, the IBOA solution still has
the shortest path lengths and the fastest solution speed.

In order to better verify the ability of the algorithms to solve the shortest path, each
algorithm solved the path 10 times. The minimum/maximum/average/median values
of the shortest path lengths solved by the algorithms multiple times were compared. The
comparison results are shown in Table 3.

Table 3. Comparison of multiple solution results for 20 × 20 maps.

Value IBOA BOA GA

Max 31.7989898700000 36.6274170000000 36.9705627500000
Min 30.9705627500000 31.7989898700000 31.7989898700000

Average 31.7161471580000 33.7989898730000 33.1504617360000
Median 31.7989898700000 33.2132034400000 32.3847763100000

The minimum/maximum/mean/median values of the shortest path lengths solved
by IBOA multiple times are smaller than those of BOA and GA.

A comparison of the results of multiple solutions for the 40 × 40 map is shown in
Table 4.
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Table 4. Comparison of multiple solution results for 40 × 40 maps. The results from the comparison
show that the path of the IBOA solution is the shortest.

Value IBOA BOA GA

Max 68.5269119345812 67.9411254969543 73.0121933088197
Min 63.8406204335659 65.5979797500000 65.8406204300000

Average 65.7778787337689 66.8766594032423 69.4440692218820
Median 65.8406204335659 66.7695526217004 69.6984848100000

4.2. Solution of Redundant Routes in Path Planning

To reduce the energy consumption of the robot during movement, it is necessary to
shorten the path length as much as possible. Therefore, this study proposes two simplifica-
tion strategies to minimize the path length [29,30].

Strategy 1: The methods for determining the simplistic path are mainly divided into
three cases, as shown in Figure 11a.
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Figure 11. Two path simplification strategies: (a) Simplified schematic of strategy 1; (b) Simplified
schematic of strategy 2; (c) The shortest path solved by IBOA; (d) Shortest path searched by IBOA
after combining two simplification strategies.

The end of the path is defined as a Pend point, and the current point is assumed to be
P(i), where i(i < Pend − 1) is the position of the current point in the path.

Case 1: When the line connecting P(i) and P(i + 2) is the diagonal line of a 3 × 2
rectangular frame if the 6 grids in the rectangular frame are all free, then P(i + 1) will be
judged that the point can be deleted, and the matrix is judged to be a reducible rectangle.

Case 2: When P(i) and P(i + 2) are in the same row, it is necessary to determine whether
the grids in the 3 × 3 matrix whose rectangular midline is the connecting line between
P(i) and P(i + 2) are free. If the nine grids are all free, the matrix is judged to be a reduced
rectangle, and P(i + 1) is judged to be a point that can be deleted.

Case 3: When two consecutive points and more, that is, when the points P(i) to P(i +
nc), nc < Pend − 1 − i, satisfy one of the above two cases, then the points P(i + 1) to P(i + nc
+ 1) can be judged as removable points.
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This simplification strategy applies to both the horizontal and vertical directions of
the path.

Strategy 2: The main process simplifies the path when some of the grids in the n × 2
rectangular grids composed of three consecutive points in the path are obstacle grids. Grids
were calculated between the first and third points.

The horizontal direction was simplified as an example, as shown in Figure 11b. In the
lower path diagram in Figure 11b, the fine solid line is the original path, and the dashed
line is the simplified path. When the robot passes three points, 1→2→3, point 1 is called
the simplified initial point, and the number nin of the horizontal grids between points 1
and 3 is calculated. When the number of continuous horizontal free grids at point 1 in the
direction of point 3 reaches np and the number of continuous horizontal free grids at point
3 in the direction of point 1 also reaches np, the condition for removing point 2 is satisfied,
and the path can be simplified. nin and np are calculated as follows:

nin =
|x3 − x1| − 1

2
, (12)

where x1 is the number of columns of the simplified initial point, and x3 is the number of
columns of the 3rd point.

np = ceil(0.5nin). (13)

As shown in Figure 11, when the robot passes through the four points 5→6→7→8, it
can be found that both the 5→6→7 and 6→7→8 segments satisfy the path simplification
conditions. At this time, the path is in a simplified path superposition situation because
point 4 can be deleted when the 5→6→7 path segment satisfies the simplified conditions
and point 5 can be deleted when the 6→7→8 road segment satisfies the path simplified
conditions. Therefore, Section 5→6→7→8 is simplified to 5→8. As shown in Figure 11b,
the 5→8 route exists in the simplified paths 5→7 and 6→8, so the feasibility of 5→8
can be guaranteed. Extending this rule, when m simplified initial points appear in the
path consecutively, let Po(ii) be the first simplified initial point, Po(ii + m − 1) is the mth
simplified initial point, and ii is the sequence number of points in the robot’s motion path
only needs to keep the points Po(ii) and Po(ii + m + 1). Points in the middle were deleted to
simplify the path.

This simplification strategy also applies to both the horizontal and vertical paths.
Schematics of the two simplification strategies are shown in Figure 11.

Two simplification strategies are introduced into the IBOA for path planning. Figure 11c
shows the shortest path solved by IBOA. The path length is 31.799 m. Figure 11d depicts
the shortest path finally solved by the IBOA. The path length is 30.2914 m, and the path
length is significantly reduced.

In order to verify the generality of the application of the proposed simplification
strategy, it was applied to the fusion environment model with a size of 40 × 40 as described
in the previous section. In Figure 12, the IBOA_2g curve is the simplified robot movement
path and the IBOA curve is the path solved by IBOA.

Figure 13 shows the overall flow chart of robot path planning.
First, the algorithm generated an initial population containing 50 individuals. Each

of these individuals is composed of one blank grid selected from any one of the rows of
the grid map. The number of variables contained in a single individual is equal to that of
rows in the grid map. Next, each individual is interpolated to make it a feasible path that
each route grid is connected to. Individuals that cannot be interpolated to a feasible path
would be discarded. The above process was repeated, and the loop jumped out when the
set number of iterations was reached. Finally, the shortest path solved by the algorithm
was simplified by the proposed path simplification strategies to obtain the final path.
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5. Discussion

In the path planning problem, the accurate obstacle model can effectively avoid the
collision between the mobile robot and the obstacle. At present, most of the different
algorithms can solve shorter paths, but the accuracy and speed of the shortest path still
need to be improved. Therefore, the quadratically inflated obstacle model, the IBOA, and
the two path simplification strategies were proposed.

In the traditional obstacle collision model, there is a risk of collision with an obstacle
when the mobile robot passes over the vertices of the obstacle grid. The obstacle model
proposed in this paper ensures that a mobile robot does not collide with an obstacle while
passing through the vertices of the obstacle grid. The traveling safety of the robot is
guaranteed with the size of the obstacle model as small as possible.

For the general BOA, although it has a faster solution speed, it is easy to fall into
the local optimum. For the improvement of the optimization algorithm, many scholars
have used chaos theory and the design of appropriate adaptive weights to modify the
algorithm. Therefore, in this study, kent mapping and convex lens inverse imaging theory
were introduced to improve the ability of the algorithm to jump out of the local optimum.
In addition, the convergence speed of IBOA was effectively adjusted by the designed
adaptive weight.
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A mobile robot moving in a raster map must pass through the center of the raster,
and, therefore, the passing rasters must be in contact with each other. This will generate
some redundant points in the planned path. To address this part of the problem, the
literature [11] proposed a path simplification strategy which was applied to small-scale
path simplification. The path simplification strategy designed in this study is suitable for
path simplification in a small range and can also remove redundant sections in a large range.

Combined with the above scheme, this research was completed to investigate the path-
planning algorithm for mobile robots. A safer obstacle model was designed in this paper.
This research effectively improved the solving ability of BOA and, therefore, improved
the solving speed as well as the solving accuracy of the robot path planning algorithm.
The path simplification strategies designed in this paper effectively solved the problem of
redundant points in the planned paths under grid maps.

Different algorithms have their own merits, and the path planning algorithms will
be further improved by comparing them with more algorithms. Domestic and foreign
scholars also tend to fuse more than one algorithm. In addition, further research on the
speed and energy management of the moving mobile robot on the planned path is also the
work needed in the future.

6. Conclusions

The further simplification of the shortest path solved by the algorithm can effectively
avoid the redundant points caused by the grid map. In this study, a quadratic inflated
obstacle model is proposed. Compared with the inflated model in the literature [25], the
proposed quadratic inflated obstacle model could better avoid contact between the mobile
robot and the obstacles, which ensures the safety of the mobile robot traveling according
to the planned path. For the improvement of the traditional BOA, this paper designs
adaptive weight giving for the BOA and introduces the kent mapping as well as the convex
lens-based backward learning strategy into BOA for the first time. The effectiveness of
the improvement strategies was verified by testing different test functions. Applying the
IBOA algorithm to the mobile robot path planning problem, the IBOA algorithm solves
the shortest path with higher accuracy and faster iteration speed compared with BOA and
GA. In both the 20 × 20 map and the 40 × 40 map, the IBOA algorithm shows stronger
solving ability, and as the complexity of the environment increases, the advantage of the
algorithm IBOA algorithm solving becomes more and more obvious. In the 40 × 40 map,
the IBOA algorithm converges in 32 generations, and the shortest path is 63.84, while
BOA and GA converge in 40 and 46 generations, respectively, and their shortest paths
are 65.60 and 65.84. From the analysis of the max/min/average/median values of paths
many times solved, IBOA has a significant advantage. For the solved shortest path, the
two simplification strategies proposed in this paper can simplify the redundant sections in
the path. Compared with the path simplification strategies in the literature [11], the main
way of the proposed simplification strategies is to remove the redundant points in the path.
The proposed simplification strategy has the superposition property, which can remove the
redundant paths between two points that can be directly connected. The simplified length
of the shortest path solved by IBOA is 61.03.
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