
Citation: Alamer, G.; Alyahya, S.;

Al-Dossari, H. Identifying Users and

Developers of Mobile Apps in Social

Network Crowd. Electronics 2023, 12,

3422. https://doi.org/10.3390/

electronics12163422

Academic Editors: Iouliia Skliarova,

Jinhyun Kim, Seonah Lee and

Suwon Lee

Received: 4 July 2023

Revised: 8 August 2023

Accepted: 10 August 2023

Published: 12 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Identifying Users and Developers of Mobile Apps in Social
Network Crowd
Ghadah Alamer * , Sultan Alyahya and Hmood Al-Dossari

Department of Information Systems, College of Computer and Information Sciences, King Saud University,
Riyadh 11574, Saudi Arabia; sualyahya@ksu.edu.sa (S.A.); hzaldossari@ksu.edu.sa (H.A.-D.)
* Correspondence: 438204456@student.ksu.edu.sa

Abstract: In the last fifteen years, an immense expansion has been witnessed in mobile app usage and
production. The intense competition in the tech sector and also the rapidly and constantly evolving
user requirements have led to increased burden on mobile app creators. Nowadays, fulfilling users’
expectations cannot be readily achieved and new and unconventional approaches are needed to
permit an interested crowd of users to contribute in the introduction of creative mobile apps. Indeed,
users and developers of mobile apps are the most influential candidates to engage in any of the
requirements engineering activities. The place where both can best be found is on Twitter, one of the
most widely used social media platforms. More interestingly, Twitter is considered as a fertile ground
for textual content generated by the crowd that can assist in building robust predictive classification
models using machine learning (ML) and natural language processing (NLP) techniques. Therefore,
in this study, we have built two classification models that can identify mobile apps users and
developers using tweets. A thorough empirical comparison of different feature extraction techniques
and machine learning classification algorithms were experimented with to find the best-performing
mobile app user and developer classifiers. The results revealed that for mobile app user classification,
the highest accuracy achieved was ≈0.86, produced via logistic regression (LR) using Term Frequency
Inverse Document Frequency (TF-IDF) with N-gram (unigram, bigram and trigram), and the highest
precision was ≈0.86, produced via LR using Bag-of-Words (BOW) with N-gram (unigram and bigram).
On the other hand, for mobile app developer classification, the highest accuracy achieved was ≈0.87,
produced by random forest (RF) using BOW with N-gram (unigram and bigram), and the highest
precision was ≈0.88, produced by multi-layer perception neural network (MLP NN) using BERTweet
for feature extraction. According to the results, we believe that the developed classification models
are efficient and can assist in identifying mobile app users and developers from tweets. Moreover,
we envision that our models can be harnessed as a crowd selection approach for crowdsourcing
requirements engineering activities to enhance and design inventive and satisfying mobile apps.

Keywords: tweets; classification; machine learning; feature extraction; users; developers; mobile
apps; crowdsourcing requirements engineering

1. Introduction

Owing to the continuous progression of communication and computer-based tech-
nologies, various paradigms have emerged, such as mobile and social computing. Indeed,
the overwhelming transformation in software applications and their communicative and
dynamic means of use have emphasized the necessity for extending user involvement to
a global level throughout the phases of requirements engineering (RE) [1,2]. The practice
of narrowing user involvement to a set of selected representatives, as performed by con-
ventional requirements engineering, may not be reliable enough to keep pace with these
new computing paradigms [2,3]. Currently, applications are surrounded by a community
of stakeholders that could possibly range from hundreds to even millions of heterogenous
and distributed users [1,4].

Electronics 2023, 12, 3422. https://doi.org/10.3390/electronics12163422 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163422
https://doi.org/10.3390/electronics12163422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0215-9352
https://orcid.org/0000-0002-3870-7613
https://doi.org/10.3390/electronics12163422
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163422?type=check_update&version=2

Electronics 2023, 12, 3422 2 of 17

A promising method for scaling user involvement is employing the principle of
crowdsourcing (CS), which has potential in a vast range of requirements engineering
activities [2,5]. A recently emerged approach called Crowd-Based Requirements Engineer-
ing (CrowdRE) has attracted attention from researchers in the discipline of requirements
engineering. CrowdRE aims to harness the power of the crowd in requirements engi-
neering. In essence, it is a term pertaining to all the automated activities of requirements
engineering engaging the crowd, and it was first introduced by Groen et al. [6]. In fact,
identifying appropriate sources and collecting the right needs, which are the main tasks in
the requirements elicitation process, are non-trivial tasks [7]. Keeping in consideration that
contemporary applications’ stakeholders may be a crowd such as users of mobile apps, it is
thus challenging to identify [1,4] and recruit sufficient representatives from the substantial
pool of users [8]. Moreover, it is of paramount importance to find a proper crowd of
stakeholders and gather their needs and requirements to establish a solid basis within
the early phases of the mobile application development process [8,9]. Therefore, crowd
selection is one of the quality control mechanisms that can be applied when crowdsourcing.
Crowd selection focuses on selecting a well-suited segment of the crowd to contribute in a
crowdsourcing task [10], which can be leveraged when crowdsourcing RE activities.

Mobile app users express their thoughts and opinions in various channels such as app
publishing platforms (e.g., Apple App Store and Google Play Store) and also social media
platforms (e.g., Twitter) [11]. Apparently, when observing tweets on Twitter, we realized
that numerous Twitter users tend to voice their interests and opinions about mobile apps
they have used, and might also recommend others to use them. In addition, mobile apps
developers are keen to post mobile apps they have developed on Twitter. According to that,
users and developers of mobile apps could be the best participants to be nominated when
crowdsourcing RE tasks for mobile apps. This is due to the knowledge they have gained
by using or developing a mobile app. For instance, when crowdsourcing requirements
elicitation for a certain mobile app, users and developers of similar mobile apps would
most probably contribute with valuable requirements than a randomly selected crowd.
Hence, Twitter can be considered as a suitable stage for identifying and selecting a crowd to
crowdsource mobile app requirements engineering tasks, where both users and developers
of mobile apps are accessible.

This research study extends our position paper in [12] that proposed a crowd selection
approach that mainly consists of two parts: mobile app user and developer identification
and then mobile app domain identification. The approach aims to select users and develop-
ers of mobile apps in a certain domain to crowdsource mobile app RE (e.g., requirements
elicitation). In this research, we worked on the first part of the proposed approach, which is
mobile app user and developer identification via Twitter. After surveying the landscape of
research in the area of crowdsourcing RE, we have found that there is no method or strategy
particularly designed to overcome this gap in the area. Therefore, we work on training
two classification models, one for identifying mobile app users and another for identifying
mobile app developers. To find the best-performing model, we conduct a comprehensive
comparison between a selected number of feature extraction techniques and classification
machine learning algorithms using tweets from Twitter that were collected for this study.
Bag-of-Words (BOW), Term Frequency Inverse Document Frequency (TF-IDF), N-gram
(unigram, bigram and trigram), Word2vec, BERT Base and BERTweet were all used for
feature extraction. In addition, the following set of well-known classification machine
learning algorithms were used for training the models: Support Vector Machine (SVM),
logistic regression (LR), random forest (RF), Decision Tree (DT), multi-layer perception
neural network (MLP NN) and Naïve Bayesian (NB). This article presents related work
(Section 2), methods and results which describe all the phases for building the models
and showcase the produced results (Section 3) and, finally, conclusions and future work
(Section 4).

Electronics 2023, 12, 3422 3 of 17

2. Related Work

To the extent of our current knowledge, only the related studies discussed in this section
have investigated crowd identification and selection to crowdsource requirements engineering
activities. The studies have applied different techniques and approaches to handle the crowd
identification process. StakeNet was introduced by Ling Lim et al. [13], which is a stakeholder
analysis method that could cope with wide-scale software projects having a crowd up to hun-
dreds of stakeholders. The method employs a variety of social network measures to identify
and prioritize a crowd of stakeholders based on the impact level they have on a software
development project. To construct a social network of stakeholders, stakeholders are asked to
recommend other stakeholders who also recommend others—this is called the snowballing
technique—through a face-to-face survey until a social network is generated. Additionally, the
study [14] complements the previous one by developing an enhanced tool called StakeSource,
which supports StakeNet in its identification and prioritization process. In the proposed
StakeNet method [13], experts are required to manually approach stakeholders so that they
recommend others, which is a tedious task, especially for large software projects. Alternatively,
the StakeSource [14] web-based tool has utilized crowdsourcing instead to crowdsource the
process of stakeholder analysis and alleviate the workload on experts by only prompting
them to start off with an initial list of stakeholders. Furthermore, StakeSource2.0 [15] extended
the work performed on the stakeholder analysis tool StakeSource [14]. StakeSource2.0 is an
improved tool that uses the following three main techniques: crowdsourcing, social network
analysis and collaborative filtering to conduct the identification and prioritization of stake-
holders along with their requirements. Moreover, StakeRare [16] made use of StakeSource2.0
for identifying and prioritizing the crowd of stakeholders and their elicited requirements.
From another perspective, Mughal et al. [17] has pointed out a shortcoming in the previ-
ous studies which is the in-group bias issue. They have defined the in-group bias as the
situation when stakeholders lean towards recommending others with whom they have a
positive rapport. This bias might lead to inaccurate identification and the prioritization of
stakeholders. Hence, for the sake of reducing this issue, the authors sought to propose a
social network-based approach that proved its effectiveness.

Studies that were previously discussed have leveraged social network analysis for
identifying a suitable crowd depending on the impact level they have on a software project.
However, the studies [8,18,19] have rather based the crowd identification process on the do-
main knowledge the crowd possesses. Wang et al. [8] stated that requirements acquisition
tasks require participants with certain domain knowledge. Therefore, a framework was
presented by the authors which seeks to recruit a crowd of stakeholders that hold certain
domain knowledge depending on their spatiotemporal availability using opportunistic
network for distributing the task among the crowd. They observed that people that cluster
in the same spatiotemporal space are more probably to have the same domain knowl-
edge. In addition, Srivastava and Sharma [19] have used crowdsourcing for requirements
elicitation for the MyERP application. LinkedIn, a social media platform, was used as a
source to find well-suited stakeholders with expertise in ERP by utilizing a web-based
crawling tool to obtain LinkedIn users who have added ERP to their skill set. Furthermore,
LinkedIn was also used by Lim et al. [18] as a source to reach and find an inaccessible
and hidden crowd of stakeholders of business-to-business solutions in large firms. The
authors have designed AdvisorNet, which is a systematic method. AdvisorNet can help in
bridging the gap between the outside world and the hidden stakeholders in a target orga-
nization through a set of selected advisors who are found using hypothesis-driven social
media search.

On the other hand, there are studies that have proposed an identification process
by focusing on the crowd’s domain of interest, such as in [4,20]. A study conducted by
Lim et al. [20] has utilized the Twitter social networking site as a source to identify a
crowd to carry out complex tasks such as the process of eliciting requirements. A tool
named PseudoGravity was proposed to form social presence in a target audience’s domain
of interest. This is achieved by having PseudoGravity control a Twitter account. The

Electronics 2023, 12, 3422 4 of 17

tool aims to auto-generate content to attract the crowd and increase their engagement
and participation in a task. The content is generated using external public sources, and
also, a set of rules were applied to ensure relevant and suitable content are generated
for distribution in the form of tweets. In a study by Kolpondinos and Glinz [4], the
authors have utilized multiple social media platforms as a source for finding a well-suited
crowd. A stakeholder identification approach was designed to identify an interested crowd
of stakeholders beyond the reach of an organization and invite them to participate in
requirements engineering activities. To spot a potential crowd of stakeholders for the
SmaWoMo system, the authors have selected a number of online channels (e.g., Facebook
and LinkedIn) for distributing the questionnaire, they have and used search keywords
to find groups in these channels that are expected to show interest in the SmaWoMo
system. In addition, player types were used which are similar to personality traits to create
persona-based advertisements tailored to a potential crowd of stakeholders.

Furthermore, Condori-Fernandez et al. [21] have mentioned ResearchGate, LinkedIn
and Twitter as possible sources to assist in identifying a crowd of experts. The identification
of a crowd of experts is considered as one of the phases of the adapted methodology they
have proposed, which is based on the nichesourcing method Accurator [22]. Their proposed
methodology seeks to analyze sustainability requirements along with their dependencies.
The methodology consists of multiple phases where one of the phases that took place in
the initial part of the methodology is discovering community niches to choose potential
experienced contributors. Additionally, persona-based methods have been applied by
Alvertis et al. [23] for crowd identification, wherein anonymous personas and persona
builder were used. Via their proposed persona builder, software teams can either construct
a persona from scratch by defining specific characteristics and inserting input parameters
or by using predefined personas or reusing previously created and stored personas. By
using these personas, a crowd possessing characteristics which match these personas is
produced. Subsequently, the produced crowd can participate in tasks like requirements
elicitation. Moreover, Guzman et al. [24], as part of their study, have worked on identifying
stakeholder groups from tweets. They have defined three stakeholder groups, which are
technical, non-technical and general public, and the tweets they have collected were about
30 popular desktop and mobile applications. The highest precision values achieved were
as follows: technical stakeholder classifier, 0.54; non-technical stakeholder classifier, 0.77;
general public classifier, 0.78.

Overall, several limitations have been noticed in the previously discussed studies. To
discover an interested crowd of stakeholders, the strategy designed by Kolpondinos and
Glinz [4] was conducted in a manual manner using specific search keywords. Therefore,
an entire manual search would be required for every software project when adopting such
a strategy. The same applies to Lim et al. [18], where they have proposed AdvisorNet, an
unautomated method to perform a step-by-step search on the LinkedIn social site. To boost
the method’s scalability and effectiveness, it should be highly automated. Additionally,
relying on spatiotemporal availability as a basis to select a suitable portion of the crowd, as
performed by [8], might not be an accurate indicator to rely upon when selecting the crowd.

Alvertis et al. [23] applied persona-based approaches to identify a suitable crowd,
where personas are used to match with crowd members that hold a defined set of char-
acteristics. Few details have been clarified about the matching process, and neither did
they specifically declare the crowd’s source and their profiles according to which match-
ing is performed. In the same way, in the methodology proposed for nichesourcing by
Condori-Fernandez et al. [21], the crowd identification phase has not been described in
depth. Details have not been provided about if it would possibly be automated or con-
ducted manually. Moreover, utilizing social network analysis as an approach for crowd
identification, as performed in the studies [13–17], is practically more beneficial with a
well-connected crowd of stakeholders [20], and there is a high chance that this may not
occur in many cases.

Electronics 2023, 12, 3422 5 of 17

Therefore, we fill the gaps by developing an automated approach that uses machine
learning algorithms and natural language processing techniques. This research endeavors
to build a crowd selection strategy that identifies two critical roles in any software devel-
opment process: users and developers. Particularly, we focus on mobile apps due to their
wide prevalence and since they are an integral part of our daily lives. Furthermore, the
crowd is selected from publicly available tweets from Twitter where crowd members are
not necessarily connected.

3. Methods and Results

Our aim is to build a mobile app user classification model which can distinguish mobile
app users from tweets, and we also aimed to build a mobile app developer classification
model which can distinguish mobile app developers from tweets. Figure 1 illustrates our
methodology, which has been applied to develop the models.

Electronics 2023, 12, 3422 5 of 17

crowd of stakeholders [20], and there is a high chance that this may not occur in many
cases.

Therefore, we fill the gaps by developing an automated approach that uses machine
learning algorithms and natural language processing techniques. This research endeavors
to build a crowd selection strategy that identifies two critical roles in any software devel-
opment process: users and developers. Particularly, we focus on mobile apps due to their
wide prevalence and since they are an integral part of our daily lives. Furthermore, the
crowd is selected from publicly available tweets from Twitter where crowd members are
not necessarily connected.

3. Methods and Results
Our aim is to build a mobile app user classification model which can distinguish mo-

bile app users from tweets, and we also aimed to build a mobile app developer classifica-
tion model which can distinguish mobile app developers from tweets. Figure 1 illustrates
our methodology, which has been applied to develop the models.

Figure 1. Research methodology for building mobile app user and developer classification models.

3.1. Tweets Collection
A total of 266,618 tweets were collected through the Twitter API. Several run in-

stances of three queries were carried out between September 2021 and June 2022 in sepa-
rated periods. In fact, the reason behind the large number of retrieved tweets is that the
collection process involved all tweets, including duplicate tweets and retweets. In addi-
tion, we focused on mobile app-related tweets and, more specifically, Apple and Android
apps due to their wide prevalence among mobile users. Unlike studies such as [24], where
they have used apps names as keywords to retrieve app-related tweets, we adopt a quite
different approach to theirs. Indeed, we have noticed that tweets involving links pointing
to mobile apps in the app store are a good target to compile our dataset and serve our
research objectives. The text string “apps.apple” is a main segment of any Apple mobile
app link to the app store; likewise, the text sting “play.google” is a main segment of any
Android mobile app link. Accordingly, during tweets collection, both text strings were
used as a search filter. Moreover, during the collection process, tweets from accounts that
had fewer than 5 followers were filtered out to reduce spam. Three keyword-based search
queries were run, namely 𝑞ଵ, 𝑞ଶ and 𝑞ଷ, using AND and OR search operators. (𝑞ଵ) apps.apple OR play.google AND this app

The intention behind writing 𝑞ଵ in this from is to retrieve tweets that contain a link
to an apple or android app or even both, and it should contain the words “this” and “app”
regardless of the order of their occurrence. We added keywords “this” and “app” to

Figure 1. Research methodology for building mobile app user and developer classification models.

3.1. Tweets Collection

A total of 266,618 tweets were collected through the Twitter API. Several run instances
of three queries were carried out between September 2021 and June 2022 in separated
periods. In fact, the reason behind the large number of retrieved tweets is that the collection
process involved all tweets, including duplicate tweets and retweets. In addition, we
focused on mobile app-related tweets and, more specifically, Apple and Android apps due
to their wide prevalence among mobile users. Unlike studies such as [24], where they have
used apps names as keywords to retrieve app-related tweets, we adopt a quite different
approach to theirs. Indeed, we have noticed that tweets involving links pointing to mobile
apps in the app store are a good target to compile our dataset and serve our research
objectives. The text string “apps.apple” is a main segment of any Apple mobile app link
to the app store; likewise, the text sting “play.google” is a main segment of any Android
mobile app link. Accordingly, during tweets collection, both text strings were used as a
search filter. Moreover, during the collection process, tweets from accounts that had fewer
than 5 followers were filtered out to reduce spam. Three keyword-based search queries
were run, namely q1, q2 and q3, using AND and OR search operators.

(q1) apps.apple OR play.google AND this app
The intention behind writing q1 in this from is to retrieve tweets that contain a link

to an apple or android app or even both, and it should contain the words “this” and
“app” regardless of the order of their occurrence. We added keywords “this” and “app”
to eliminate tweets that contain only links and also to reduce the probability of retrieving
non-English tweets. Additionally, we are specifically interested in tweets with content, and
words like “this” are most likely used when describing apps. Moreover, the following are
query q2 and q3, which were run in addition to query q1:

Electronics 2023, 12, 3422 6 of 17

(q2) apps.apple OR play.google AND developed OR launched OR released OR imple-
mented OR wrote OR created OR published OR coded OR designed OR worked

(q3) apps.apple OR play.google AND develop OR launch OR release OR implement
OR write OR create OR publish OR code OR design OR work OR developing OR launching
OR releasing OR implementing OR writing OR creating OR publishing OR coding OR
designing OR working

The tweets were exported into a CSV file format. In addition to the tweet text attribute
which will be used for training the classification models, other attributes were collected
such as the following: username, name and bio of the user who posted the tweet.

3.2. Tweets Pre-Processing

The collected tweets have a very large number of retweets, replies, duplicate, spam,
unrelated and unclear tweets. Therefore, a large portion of the dataset has been filtered out,
ending with a total of 21,381 tweets ready for annotation and for training the models. The
tweets have been through stages of cleaning, and to decide what cleaning and preprocessing
techniques to apply, the tweets were manually explored in advance. Both manual and
automatic methods were performed for cleaning and pre-processing using Pandas, Tweet-
preprocessor and NLTK Python libraries.

The first step in the pre-processing stage was removing retweets and duplicates. Our
dataset has a large number of retweets and duplicates that constitute more than 60% of the
collected tweets. This might be due to the queries designed for tweets collection and also
due to the search keywords used in these queries. In addition, this is not surprising since
we have targeted tweets involving links to mobile apps during collection, which might
increase such types of tweets. To reduce uninformative tweets, filtering conditions have
been identified using a set of selected accounts’ usernames and keywords that would most
probably indicate that the tweet is uninformative to our concern. We have eliminated tweets
from accounts that post unrelated content and post very frequently, system-generated
tweets (e.g., news, music), tweets that lack clear context, unrelated tweets, spam tweets that
mention strings indicating spam (e.g., earn money, earn cash), non-English tweets, hashtag-
only tweets and tweets less than two words long. As a matter of fact, short tweets can
reveal information that help in recognizing the role of the tweet author (user or developer).
Due to that, we have decided not to completely neglect short tweets.

Moreover, to further clean the tweets, we have used Tweet-preprocessor Python
Library. This library is written particularly for cleaning tweets data to remove mentions,
hashtags, URLs, numbers, emojis, smileys and reserved words (RT and FAV). We set
the options to remove mentions, URLs, numbers, emojis and smileys. We purposefully
kept hashtags since we believe they are informative parts of a tweet and could provide
important cues that are useful in training our classification models. Further cleaning
and normalization were performed using NLTK and stop words Python libraries. Stop
words were removed by customizing the stop words list through excluding pronouns
(e.g., I, my, our, we, myself, ours, ourselves, own, by, me, I’ll, I’ve, I’m, we’ve, we’ll, we’d
and we’re). This was performed to keep them in the tweets which we find crucial when
building our classification models. Furthermore, we removed punctuation, lowercased
letters and performed tokenization of tweets using word tokenizer and stemming using
Porter Stemmer from NLTK library.

3.3. Annotation

The annotation phase we followed consists of three major steps starting with content
analysis performed by analyzing and annotating a selected sample of tweets from our
collected dataset to define the categories for tweet annotation. Secondly, we continue
to manually annotate the tweets using the categories that were defined during content
analysis. Lastly, annotations were aggregated to produce a final label for each tweet.

Electronics 2023, 12, 3422 7 of 17

3.3.1. Content Analysis

The manual content analysis of the tweets helped in getting aquatinted with the nature
of the dataset and determine the categories the tweets belong to. In addition, analyzing
and understanding the dataset helped in designing an accurate and consistent annota-
tion guideline for annotators. Manual content analysis was performed on a sample of
2836 tweets from different parts of the dataset produced by query q1. When annotating each
tweet, its content has been analyzed to determine the role of a tweet’s author from a tweet’s
content, whether it is a mobile app user or developer. The two main categories are user and
developer; however, additional ones were recognized, such as news, quotes, fan groups, show
advertisements and other unrelated tweets. Therefore, we plan to add another category, i.e.,
others, that involves all tweets that do not belong to the user or developer category.

After multiple rounds of analysis and readings of the tweets, we have settled on three
main categories: user, developer and others. Since our focus is building models to discover
users and developers of mobile apps, annotating tweets into these three categories fits our
need. These categories were also suitable for annotating tweets collected using q2 and q3.

3.3.2. Manual Annotation

To enhance the quality of the annotation, the 21,381 tweets comprising our dataset
were annotated by three annotators. All three annotators had a background in software
engineering to ensure they understood the computer-related terminologies (e.g., flutter,
java, beta, etc.) they face during annotation. Each tweet was annotated by all three
annotators into one of three categories (user, developer or others), and it took ≈2 months to
complete the whole annotation process. The annotators were given a description of the task,
a guideline to follow and samples of annotated tweets for more clarification. They were
given the tweets along with the bio, name and username. Moreover, they were asked to
focus on and read each tweet and check other data once needed to help in decision making
when annotating. To keep up with their progress, they were asked to provide samples of
their work every now and then. This was to ensure they understood the task handed to
them, and they were given feedback accordingly. In addition, they were encouraged to ask
whenever needed in case there was any confusion. A description of each category is shown
in Table 1, which was also handed to the annotators.

Table 1. Descriptions of categories.

Category Description

User Includes tweets indicating that they are posted by a user of a mobile app.

Developer Includes tweets indicating that they are posted by a developer of a mobile app. A developer of
a mobile app can be an individual developer, company, development studio or a team.

Others

Includes unrelated tweets such as and not limited to:

• Fan groups (e.g., ask for votes for a celebrity).
• Advertisements for a show, series, episode, drama, match, radio show, interview.
• News.
• Quotes.
• Winners announcements for a contest (with no details about the app).
• Books releases.

3.3.3. Annotation Aggregation

A simple majority vote technique was used to find the final aggregated category, where
the annotation that receives the greatest number of votes was set as the final aggregated
annotation [25]. The final category was one of the following three: user, developer or others.
We defined three agreement levels: 3, 2 and 0. Table 2 illustrates the definition of each
agreement level and the final number of tweets and percentage in each level in our dataset.

Electronics 2023, 12, 3422 8 of 17

Table 2. Distribution of tweets across agreement levels.

Agreement Level Description Num. of Tweets Percentage

3 When all three annotators annotate a tweet with the same label 10,742 50.2%

2 When two annotators annotate a tweet with the same label 9230 43.2%

0 When none of the annotators agree on the same label 1409 6.6%

Total Dataset 21,381 100%

It is evident that all three annotators agreed on the same annotation for more than
half of the dataset, and at least two annotators agreed on the same annotation for ≈93.4%
of the dataset. The annotators disagreed on ≈6.6% of the dataset (1409 tweets), which is
a reasonable percentage since the nature of the tweets requires concentration, and hence,
disagreements and unintentional mistakes are expected. To ensure quality annotation,
a large part of the tweets with agreement level = 2 were reviewed, and mistakes were
corrected. In addition, disagreements were reconciled and further reviewed. The number
of tweets in each class, after annotation aggregation, is depicted in Table 3. It is worth
mentioning that because of the hard work completed in the pre-processing stage, a relatively
smaller number of tweets belonging to the others class resulted.

Table 3. Number of tweets in each class.

Class Number of Tweets

User 10,768

Developer 6883

Others 3730

Total 21,381

The dataset is annotated using three classes. However, since two models will be built,
one for identifying users of mobile apps and another one for identifying developers of
mobile apps, classes are merged in a way suitable for each model. For the user classification
model, all tweets annotated as belonging to the developer or others classes are merged into
one class named not user. On the other hand, for the developer classification model, all
tweets annotated as belonging to the user or others classes are merged into one class named
not developer. Eventually, we ended up with two datasets with the same tweets, albeit with
different categorizations, which shall be used for building two binary classification models.

The dataset prepared for the user classification model was balanced resulting with
10,768 tweets belonging to the user class and 10,613 tweets belonging to the not user
class. However, merging the user and others classes for the developer classification model
dataset has indeed created an unbalanced distribution of the resulting classes developer
and not developer. The developer class has 6883 tweets, and the not developer class has
14,498 tweets, making the developer class ≈ 53% smaller than the not developer class,
which is a large difference that cannot be overlooked. To address this issue, we have
performed undersampling of the majority class since the oversampling technique leads to
overfitting [26]. Random tweets in the majority class of not developer have been eliminated
until reaching 8000 tweets to achieve a balanced distribution of tweets among both classes.
Figures 2 and 3 illustrates the process for preparing the datasets for building a mobile app
user classification model and a mobile app developer classification model, respectively.

Electronics 2023, 12, 3422 9 of 17

Electronics 2023, 12, 3422 9 of 17

Figures 2 and 3 illustrates the process for preparing the datasets for building a mobile app
user classification model and a mobile app developer classification model, respectively.

Figure 2. Preparing dataset for building mobile app user classification model.

Figure 3. Preparing dataset for building mobile app developer classification model.

We have two versions of the dataset that will be used for building the user classifier
and developer classifier. We denote the dataset used for user classification as U-version
dataset and the dataset used for developer classification as the D-version dataset. Figure
4a shows the distribution of the classes (user, developer and others) in the original dataset,
Figure 4b shows the classes (user and not user) in the U-version dataset, and Figure 4c
shows the classes (developer and not developer) in the D-version dataset.

Figure 2. Preparing dataset for building mobile app user classification model.

Electronics 2023, 12, 3422 9 of 17

Figures 2 and 3 illustrates the process for preparing the datasets for building a mobile app
user classification model and a mobile app developer classification model, respectively.

Figure 2. Preparing dataset for building mobile app user classification model.

Figure 3. Preparing dataset for building mobile app developer classification model.

We have two versions of the dataset that will be used for building the user classifier
and developer classifier. We denote the dataset used for user classification as U-version
dataset and the dataset used for developer classification as the D-version dataset. Figure
4a shows the distribution of the classes (user, developer and others) in the original dataset,
Figure 4b shows the classes (user and not user) in the U-version dataset, and Figure 4c
shows the classes (developer and not developer) in the D-version dataset.

Figure 3. Preparing dataset for building mobile app developer classification model.

We have two versions of the dataset that will be used for building the user classifier
and developer classifier. We denote the dataset used for user classification as U-version
dataset and the dataset used for developer classification as the D-version dataset. Figure 4a
shows the distribution of the classes (user, developer and others) in the original dataset,
Figure 4b shows the classes (user and not user) in the U-version dataset, and Figure 4c
shows the classes (developer and not developer) in the D-version dataset.

Electronics 2023, 12, 3422 10 of 17Electronics 2023, 12, 3422 10 of 17

(a) (b) (c)

Figure 4. Distribution of tweets among the classes in the three built datasets: (a) Classes in original
dataset; (b) Classes in U-version dataset; (c) Classes in D-version dataset.

3.4. Feature Extraction
To build mobile app user and developer classification models, several feature extrac-

tion techniques have been experimented with using several classification algorithms. A
set of well-known feature extraction techniques were selected and applied, which are the
following: Bag-of-Words (BOW), Term Frequency Inverse Document Frequency (TF-IDF),
N-gram, Word2vec, BERT Base uncased and BERTweet. All these feature extraction tech-
niques were applied with the same settings when building both user and developer clas-
sification models.

The Scikit-learn Python library was utilized to perform BOW and TF-IDF. Certain
settings were applied that would fit our requirements and yield satisfying results. To re-
move too infrequently occurring words, words that appear in fewer than 4 tweets were
ignored. In addition, the maximum number of features was set to 10,000. Moreover, it is
worth mentioning that single characters such as the pronoun “I”, which we purposefully
have kept in our dataset, is important to consider. Therefore, to ensure single characters
are considered during vectorization, the token pattern was set to a regex that accepts sin-
gle characters. The N-gram technique was used in conjunction with the BOW and TF-IDF
techniques. The N-gram range was set in three different ways, where each setting was
experimented with separately (for easier readability, ranges are shortened to (x,y) when
used in graphs and tables). The lower and upper values were set to the following: (1,2) for
unigrams and bigrams, (1,3) for unigrams, bigrams and trigrams, and (2,3) for bigrams
and trigrams.

In addition to the frequency-based feature extraction approaches discussed above,
pre-trained word embeddings and language models, namely Word2vec and BERT mod-
els, were utilized as feature extraction techniques. The pre-trained models were used by
preserving the Word2ve and BERT model architectures and freezing the parameters, and
hence, the features were extracted directly from the pre-trained Word2vec and BERT mod-
els. The feature-extraction approach was adopted rather than finetuning the models since
the latter requires large amount of data [27] and is a time-consuming process [28]. For that,
the feature-extraction approach is best suited for this research, where interestingly, it was
proven that it can indeed achieve results close to finetuning [28,29].

The Genism Python library was utilized to load the pre-trained Word2vec model
from the publicly available file “GoogleNews-vectors-negative300.bin” [30]. The model
was harnessed to generate word embeddings for words in the tweets, and the mean of the
words embeddings for each tweet is calculated. Moreover, two variants of BERT were
selected in this experiment, which are the BERT Base uncased pretrained model [28] and
the BERTweet pretrained model [31] from Hugging Face. The Pytorch framework and

Figure 4. Distribution of tweets among the classes in the three built datasets: (a) Classes in original
dataset; (b) Classes in U-version dataset; (c) Classes in D-version dataset.

3.4. Feature Extraction

To build mobile app user and developer classification models, several feature ex-
traction techniques have been experimented with using several classification algorithms.
A set of well-known feature extraction techniques were selected and applied, which
are the following: Bag-of-Words (BOW), Term Frequency Inverse Document Frequency
(TF-IDF), N-gram, Word2vec, BERT Base uncased and BERTweet. All these feature ex-
traction techniques were applied with the same settings when building both user and
developer classification models.

The Scikit-learn Python library was utilized to perform BOW and TF-IDF. Certain
settings were applied that would fit our requirements and yield satisfying results. To remove
too infrequently occurring words, words that appear in fewer than 4 tweets were ignored.
In addition, the maximum number of features was set to 10,000. Moreover, it is worth
mentioning that single characters such as the pronoun “I”, which we purposefully have kept
in our dataset, is important to consider. Therefore, to ensure single characters are considered
during vectorization, the token pattern was set to a regex that accepts single characters. The
N-gram technique was used in conjunction with the BOW and TF-IDF techniques. The
N-gram range was set in three different ways, where each setting was experimented with
separately (for easier readability, ranges are shortened to (x,y) when used in graphs and
tables). The lower and upper values were set to the following: (1,2) for unigrams and bigrams,
(1,3) for unigrams, bigrams and trigrams, and (2,3) for bigrams and trigrams.

In addition to the frequency-based feature extraction approaches discussed above, pre-
trained word embeddings and language models, namely Word2vec and BERT models, were
utilized as feature extraction techniques. The pre-trained models were used by preserving
the Word2ve and BERT model architectures and freezing the parameters, and hence, the
features were extracted directly from the pre-trained Word2vec and BERT models. The
feature-extraction approach was adopted rather than finetuning the models since the latter
requires large amount of data [27] and is a time-consuming process [28]. For that, the
feature-extraction approach is best suited for this research, where interestingly, it was
proven that it can indeed achieve results close to finetuning [28,29].

The Genism Python library was utilized to load the pre-trained Word2vec model from
the publicly available file “GoogleNews-vectors-negative300.bin” [30]. The model was
harnessed to generate word embeddings for words in the tweets, and the mean of the
words embeddings for each tweet is calculated. Moreover, two variants of BERT were
selected in this experiment, which are the BERT Base uncased pretrained model [28] and
the BERTweet pretrained model [31] from Hugging Face. The Pytorch framework and
Transformers Python library were used to load and deal with the pre-trained BERT models.
To extract vector embedding for each tweet, the [CLS] token from the last hidden state
in BERT models was utilized. The [CLS] token is a special classification token which

Electronics 2023, 12, 3422 11 of 17

involves contextualized vector embedding of the entire text of the tweet [32]. Furthermore,
when using pre-trained Word2vec and the two variants of BERT models, the tweets were
unstemmed since stemming can change the meaning of words, and this is not necessary
since pre-trained models were trained on raw text. Additionally, since BERT models are
concerned with context, all stop words were kept, since they could provide the context of
the entire tweet.

In essence, the following feature extraction techniques have been performed on the
tweets: BOW, BOW + N-gram (1,2), BOW + N-gram (1,3), BOW + N-gram (2,3), TF-IDF,
TF-IDF + N-gram (1,2), TF-IDF + N-gram (1,3), TF-IDF + N-gram (2,3), Word2vec, BERT
Base uncased and BERTweet. The extracted vectors are then fed into six classification
algorithms discussed in the following section.

3.5. Classification, Evaluation and Results

A comprehensive comparison between different classification algorithms was con-
ducted to find the most robust model. To train and test the models, six well-known clas-
sification algorithms were experimented using Scikit-learn Python library. The following
are the classification algorithms: Support Vector Machine (SVM), logistic regression (LR),
Decision Tree (DT), random forest (RF), Naïve Bayesian (NB) and multi-layer perception
neural network (MLP NN).

Two evaluation metrics were used to showcase the performance results of the de-
veloped models, which are accuracy and precision. In addition to accuracy, we chose
precision since we are interested in finding a classification model that is precise and exact
in detecting a user or developer of a mobile app. Precision is a metric that is concerned
with the exactness of the classification model [33]; hence, it is a suitable metric that shall fit
this research context. The dataset was split into training and testing portions, where 25%
of the dataset was for testing, and the remaining 75% was for training the classifiers. This
split is a commonly used train/test split percentage in testing machine learning classifiers,
where an adequate portion of the dataset is dedicated for testing to produce reliable results.
Each classification algorithm was experimented with each feature extraction technique.
The combinations of experiments are shown in Table 4, which are conducted on both the
U-version dataset and D-version dataset to find the most efficient mobile app user and
developer classification models.

Table 4. Combination of experiments.

LR SVM RF DT NB MLP NN

BOW LR + BOW SVM + BOW RF + BOW DT + BOW NB + BOW MLP NN + BOW

BOW + (1,2) LR + BOW + (1,2) SVM + BOW + (1,2) RF + BOW + (1,2) DT + BOW + (1,2) NB + BOW + (1,2) MLP NN + BOW + (1,2)

BOW + (1,3) LR + BOW + (1,3) SVM + BOW + (1,3) RF + BOW + (1,3) DT + BOW + (1,3) NB + BOW + (1,3) MLP NN + BOW + (1,3)

BOW + (2,3) LR + BOW+ (2,3) SVM + BOW + (2,3) RF + BOW + (2,3) DT + BOW + (2,3) NB + BOW + (2,3) MLP NN + BOW + (2,3)

TF-IDF LR + TF-IDF SVM + TF-IDF RF + TF-IDF DT + TF-IDF NB + TF-IDF MLP NN + TF-IDF

TF-IDF + (1,2) LR + TF-IDF + (1,2) SVM + TF-IDF + (1,2) RF + TF-IDF + (1,2) DT + TF-IDF + (1,2) NB + TF-IDF + (1,2) MLP NN + TF-IDF + (1,2)

TF-IDF + (1,3) LR + TF-IDF + (1,3) SVM + TF-IDF + (1,3) RF + TF-IDF + (1,3) DT + TF-IDF + (1,3) NB + TF-IDF + (1,3) MLP NN + TF-IDF + (1,3)

TF-IDF + (2,3) LR + TF-IDF + (2,3) SVM + TF-IDF + (2,3) RF + TF-IDF + (2,3) DT + TF-IDF + (2,3) NB + TF-IDF + (2,3) MLP NN + TF-IDF + (2,3)

Word2vec LR + Word2vec SVM + Word2vec RF + Word2vec DT + Word2vec NB + Word2vec MLP NN + Word2vec

BERT Base LR + BERT Base SVM + BERT Base RF + BERT Base DT + BERT Base NB + BERT Base MLP NN + BERT Base

BERTweet LR + BERTweet SVM + BERTweet RF + BERTweet DT + BERTweet NB + BERTweet MLP NN + BERTweet

3.5.1. User Classification Models Results

For better illustration, the results of the user classification models are visualized in
Figures 5 and 6. Each figure demonstrates the results using one of the two metrics, where
Figure 5 shows the accuracy results, and Figure 6 shows the precision results. The results
reveal that the highest accuracy achieved for user classification is ≈0.86, which is produced
using a logistic regression classification algorithm and TF-IDF with N-gram (unigram,

Electronics 2023, 12, 3422 12 of 17

bigram and trigram) for features extraction. In addition, the highest precision achieved
is ≈0.86, which is produced using a logistic regression classification algorithm and BOW
with N-gram (unigram and bigram) for feature extraction.

Electronics 2023, 12, 3422 12 of 17

using a logistic regression classification algorithm and TF-IDF with N-gram (unigram, bi-
gram and trigram) for features extraction. In addition, the highest precision achieved is
≈0.86, which is produced using a logistic regression classification algorithm and BOW
with N-gram (unigram and bigram) for feature extraction.

Figure 5. Accuracy results of user classification models.

Figure 6. Precision results of user classification models.

3.5.2. Developer Classification Models Results
In this section, we present the results of the developer classification models. Figure 7

shows the accuracy results, and Figure 8 shows the precision results. The results reveal
that the highest accuracy achieved for developer classification is ≈0.87, which is produced
using the random forest classification algorithm and BOW with N-gram (unigram and
bigram) for features extraction. In addition, the highest precision achieved is ≈0.88, which
is produced using the Multi-layer Perception Neural Network classification algorithm and
BERTweet for feature extraction.

Figure 5. Accuracy results of user classification models.

Electronics 2023, 12, 3422 12 of 17

using a logistic regression classification algorithm and TF-IDF with N-gram (unigram, bi-
gram and trigram) for features extraction. In addition, the highest precision achieved is
≈0.86, which is produced using a logistic regression classification algorithm and BOW
with N-gram (unigram and bigram) for feature extraction.

Figure 5. Accuracy results of user classification models.

Figure 6. Precision results of user classification models.

3.5.2. Developer Classification Models Results
In this section, we present the results of the developer classification models. Figure 7

shows the accuracy results, and Figure 8 shows the precision results. The results reveal
that the highest accuracy achieved for developer classification is ≈0.87, which is produced
using the random forest classification algorithm and BOW with N-gram (unigram and
bigram) for features extraction. In addition, the highest precision achieved is ≈0.88, which
is produced using the Multi-layer Perception Neural Network classification algorithm and
BERTweet for feature extraction.

Figure 6. Precision results of user classification models.

3.5.2. Developer Classification Models Results

In this section, we present the results of the developer classification models. Figure 7
shows the accuracy results, and Figure 8 shows the precision results. The results reveal
that the highest accuracy achieved for developer classification is ≈0.87, which is produced
using the random forest classification algorithm and BOW with N-gram (unigram and
bigram) for features extraction. In addition, the highest precision achieved is ≈0.88, which
is produced using the Multi-layer Perception Neural Network classification algorithm and
BERTweet for feature extraction.

Electronics 2023, 12, 3422 13 of 17Electronics 2023, 12, 3422 13 of 17

Figure 7. Accuracy results of developer classification models.

Figure 8. Precision results of developer classification models.

3.5.3. Findings and Discussion
The user and developer classification models with the highest accuracy and precision

are illustrated in Table 5. In addition, we shed the light on some important findings which
was observed from the achieved results. Indeed, it was evident that LR and RF performed
the best with almost all feature extraction techniques, except when applied on Word2Vec,
BERT Base or BERTweet, where MLP NN surpassed.

Table 5. User and developer classification model with highest accuracy and precision.

User Classification Model
Highest Accuracy LR + TF-IDF + (1,3) 0.86
Highest Precision LR + BOW + (1,2) 0.86

Developer Classification Model
Highest Accuracy RF + BOW + (1,2) 0.87
Highest Precision MLP NN + BERTweet 0.88

Figure 7. Accuracy results of developer classification models.

Electronics 2023, 12, 3422 13 of 17

Figure 7. Accuracy results of developer classification models.

Figure 8. Precision results of developer classification models.

3.5.3. Findings and Discussion
The user and developer classification models with the highest accuracy and precision

are illustrated in Table 5. In addition, we shed the light on some important findings which
was observed from the achieved results. Indeed, it was evident that LR and RF performed
the best with almost all feature extraction techniques, except when applied on Word2Vec,
BERT Base or BERTweet, where MLP NN surpassed.

Table 5. User and developer classification model with highest accuracy and precision.

User Classification Model
Highest Accuracy LR + TF-IDF + (1,3) 0.86
Highest Precision LR + BOW + (1,2) 0.86

Developer Classification Model
Highest Accuracy RF + BOW + (1,2) 0.87
Highest Precision MLP NN + BERTweet 0.88

Figure 8. Precision results of developer classification models.

3.5.3. Findings and Discussion

The user and developer classification models with the highest accuracy and precision
are illustrated in Table 5. In addition, we shed the light on some important findings which
was observed from the achieved results. Indeed, it was evident that LR and RF performed
the best with almost all feature extraction techniques, except when applied on Word2Vec,
BERT Base or BERTweet, where MLP NN surpassed.

Table 5. User and developer classification model with highest accuracy and precision.

User Classification Model

Highest Accuracy LR + TF-IDF + (1,3) 0.86

Highest Precision LR + BOW + (1,2) 0.86

Developer Classification Model

Highest Accuracy RF + BOW + (1,2) 0.87

Highest Precision MLP NN + BERTweet 0.88

Electronics 2023, 12, 3422 14 of 17

Generally, among all feature extraction techniques, BOW, TD-IDF, BOW + N-gram(1,2),
BOW + N-gram(1,3), TD-IDF + N-gram(1,2), TD-IDF + N-gram(1,3) and BERTweet pro-
duced the best results. Moreover, utilizing N-gram with BOW and TF-IDF for feature
extraction has clearly enhanced the results. On the other hand, the worst-performing
classification algorithm was DT, and the worst-performing feature extraction techniques
were TF-IDF + N-gram(2,3), BOW + N-gram(2,3) and Word2vec, except when applied with
MLP NN, where it performed better.

Among all experimented models, the 15 best-performing user classification models
out of 66 in terms of accuracy and precision are shown in Figure 9a,b. Furthermore, the
15 best-performing developer classification models in terms of accuracy and precision are
shown in Figure 10a,b. The models are ordered in descending order, where the first model
represents the one with highest score.

Electronics 2023, 12, 3422 14 of 17

Generally, among all feature extraction techniques, BOW, TD-IDF, BOW + N-
gram(1,2), BOW + N-gram(1,3), TD-IDF + N-gram(1,2), TD-IDF + N-gram(1,3) and
BERTweet produced the best results. Moreover, utilizing N-gram with BOW and TF-IDF
for feature extraction has clearly enhanced the results. On the other hand, the worst-per-
forming classification algorithm was DT, and the worst-performing feature extraction
techniques were TF-IDF + N-gram(2,3), BOW + N-gram(2,3) and Word2vec, except when
applied with MLP NN, where it performed better.

Among all experimented models, the 15 best-performing user classification models
out of 66 in terms of accuracy and precision are shown in Figure 9a,b. Furthermore, the 15
best-performing developer classification models in terms of accuracy and precision are
shown in Figure 10a,b. The models are ordered in descending order, where the first model
represents the one with highest score.

(a) (b)

Figure 9. Results of top 15 user classification models in terms of accuracy and precision: (a) User
classification models with highest accuracy; (b) User classification models with highest precision.

(a) (b)

Figure 10. Results of top 15 developer classification models in terms of accuracy and precision: (a)
Developer classification models with highest accuracy; (b) Developer classification models with
highest precision.

Figure 9. Results of top 15 user classification models in terms of accuracy and precision: (a) User
classification models with highest accuracy; (b) User classification models with highest precision.

Electronics 2023, 12, 3422 14 of 17

Generally, among all feature extraction techniques, BOW, TD-IDF, BOW + N-
gram(1,2), BOW + N-gram(1,3), TD-IDF + N-gram(1,2), TD-IDF + N-gram(1,3) and
BERTweet produced the best results. Moreover, utilizing N-gram with BOW and TF-IDF
for feature extraction has clearly enhanced the results. On the other hand, the worst-per-
forming classification algorithm was DT, and the worst-performing feature extraction
techniques were TF-IDF + N-gram(2,3), BOW + N-gram(2,3) and Word2vec, except when
applied with MLP NN, where it performed better.

Among all experimented models, the 15 best-performing user classification models
out of 66 in terms of accuracy and precision are shown in Figure 9a,b. Furthermore, the 15
best-performing developer classification models in terms of accuracy and precision are
shown in Figure 10a,b. The models are ordered in descending order, where the first model
represents the one with highest score.

(a) (b)

Figure 9. Results of top 15 user classification models in terms of accuracy and precision: (a) User
classification models with highest accuracy; (b) User classification models with highest precision.

(a) (b)

Figure 10. Results of top 15 developer classification models in terms of accuracy and precision: (a)
Developer classification models with highest accuracy; (b) Developer classification models with
highest precision.

Figure 10. Results of top 15 developer classification models in terms of accuracy and precision:
(a) Developer classification models with highest accuracy; (b) Developer classification models with
highest precision.

Electronics 2023, 12, 3422 15 of 17

4. Conclusions and Future Work

In this study, we have worked on developing two binary classification models, one
for identifying mobile app users and another one for identifying mobile app developers
from tweets. The results were encouraging and show that the methodology we have
undertaken has contributed in producing effectively performing models. The comparison
conducted between various feature extraction techniques and classification algorithms was
comprehensive enough to find well-performing models, where we have managed to reach
an accuracy ≈ 0.86 and a precision ≈ 0.86 for mobile app user classification, and we have
achieved an accuracy ≈ 0.87 and a precision ≈ 0.88 for mobile app developer classification.
In addition, we believe that this work contributes to the field of crowdsourcing RE for
mobile apps, where our models can identify a suitable segment of the crowd that would
participate with more value than a randomly selected crowd. Furthermore, for future
work, we plan to continue working on the crowd selection approach by adding another
component that focuses on the domains of the used and developed mobile apps mentioned
in the tweets. The crowd selection approach will be enhanced using semantic similarity
techniques in order to identify users and developers of mobile apps in domains and
subdomains similar to the mobile app described by the crowdsourcing requester. This
shall assist in finding a suitable crowd of specific mobile app users and developers that
can engage in requirements engineering activities such as the process of requirements
elicitation for mobile apps. Furthermore, we intend to evaluate the complete approach by
crowdsourcing requirements elicitation using our crowd selection approach. In addition,
to prove the validity and effectiveness of our proposed approach, we plan on assessing the
quality and creativity of the crowdsourced requirements using the approach.

Author Contributions: Conceptualization, G.A.; methodology, G.A.; software, G.A.; validation, G.A.;
formal analysis, G.A.; investigation, G.A.; resources, G.A.; data curation, G.A.; writing—original draft
preparation, G.A.; writing—review and editing, G.A., S.A. and H.A.-D.; visualization, G.A.; supervision,
S.A. and H.A.-D. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Deanship of Scientific Research at King Saud University.

Data Availability Statement: The dataset is not publicly available.

Acknowledgments: The authors would like to thank the Deanship of Scientific Research at King
Saud University for funding and supporting this research through the initiative of DSR Graduate
Students Research Support (GSR).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hosseini, M.; Phalp, K.; Taylor, J.; Ali, R. Towards Crowdsourcing for Requirements Engineering. CEUR Workshop Proc. 2014,

1138, 82–87.
2. Snijders, R.; Dalpiaz, F.; Hosseini, M.; Shahri, A.; Ali, R. Crowd-Centric Requirements Engineering. In Proceedings of the 2014

IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC 2014, London, UK, 8–11 December 2014; pp.
614–615. [CrossRef]

3. Hosseini, M.; Phalp, K.; Taylor, J.; Ali, R. The Four Pillars of Crowdsourcing: A Reference Model. In Proceedings of the
International Conference on Research Challenges in Information Science, Marrakech, Morocco, 28–30 May 2014; pp. 1–12.
[CrossRef]

4. Kolpondinos, M.Z.; Glinz, M. GARUSO: A Gamification Approach for Involving Stakeholders Outside Organizational Reach in
Requirements Engineering. Requir. Eng. 2020, 25, 185–212. [CrossRef]

5. Snijders, R.; Dalpiaz, F.; Brinkkemper, S.; Hosseini, M.; Ali, R.; Özüm, A. REfine: A Gamified Platform for Participatory
Requirements Engineering. In Proceedings of the 1st International Workshop on Crowd-Based Requirements Engineering,
CrowdRE 2015, Ottawa, ON, Canada, 25 August 2015; pp. 1–6. [CrossRef]

6. Groen, E.C.; Doerr, J.; Adam, S. Towards Crowd-Based Requirements Engineering a Research Preview. In Requirements Engineering:
Foundation for Software Quality, Proceedings of the 21st International Working Conference, REFSQ 2015, Essen, Germany, 23–26 March
2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9013, pp. 247–253.

7. Sharma, R.; Sureka, A. CRUISE: A Platform for Crowdsourcing Requirements Elicitation and Evolution. In Proceedings of the
2017 10th International Conference on Contemporary Computing (IC3), Noida, India, 10–12 August 2017; pp. 1–7. [CrossRef]

https://doi.org/10.1109/UCC.2014.96
https://doi.org/10.1109/RCIS.2014.6861072
https://doi.org/10.1007/s00766-019-00314-z
https://doi.org/10.1109/CrowdRE.2015.7367581
https://doi.org/10.1109/IC3.2017.8284308

Electronics 2023, 12, 3422 16 of 17

8. Wang, H.; Wang, Y.; Wang, J. A Participant Recruitment Framework for Crowdsourcing Based Software Requirement Acquisition.
In Proceedings of the 2014 IEEE 9th International Conference on Global Software Engineering (ICGSE), Shanghai, China, 18–21
August 2014; pp. 65–73. [CrossRef]

9. Hu, W.-C.; Jiau, H.C. UCFrame. ACM SIGSOFT Softw. Eng. Notes 2016, 41, 1–13. [CrossRef]
10. Moayedikia, A.; Yeoh, W.; Ong, K.L.; Boo, Y.L. Framework and Literature Analysis for Crowdsourcing’s Answer Aggregation. J.

Comput. Inf. Syst. 2020, 60, 49–60. [CrossRef]
11. Van Vliet, M.; Groen, E.C.; Dalpiaz, F.; Brinkkemper, S. Identifying and Classifying User Requirements in Online Feedback via

Crowdsourcing. In Requirements Engineering: Foundation for Software Quality, Proceedings of the 26th International Working Conference,
REFSQ 2020, Pisa, Italy, 24–27 March 2020; Springer: Cham, Switzerland, 2020; Volume 12045, pp. 143–159. [CrossRef]

12. Alamer, G.; Alyahya, S. A Proposed Approach to Crowd Selection in Crowdsourced Requirements Engineering for Mobile Apps.
In Proceedings of the ICISE 2022: 2022 7th International Conference on Information Systems Engineering, Charleston, CA, USA,
4–6 November 2022; pp. 1–5.

13. Lim, S.L.; Quercia, D.; Finkelstein, A. StakeNet: Using Social Networks to Analyse the Stakeholders of Large-Scale Software
Projects. In Proceedings of the 2010 International Conference on Computational Intelligence and Software Engineering, Wuhan,
China, 10–12 December 2010; Volume 1, pp. 295–304. [CrossRef]

14. Lim, S.L.; Quercia, D.; Finkelstein, A. StakeSource: Harnessing the Power of Crowdsourcing and Social Networks in Stakeholder
Analysis. In Proceedings of the 2010 International Conference on Computational Intelligence and Software Engineering, Wuhan,
China, 10–12 December 2010; Volume 2, pp. 239–242. [CrossRef]

15. Lim, S.L.; Damian, D.; Finkelstein, A. StakeSource2.0: Using Social Networks of Stakeholders to Identify and Prioritise Require-
ments. In Proceedings of the 2011 International Conference on Computational Intelligence and Software Engineering, Honolulu,
HI, USA, 21–28 May 2011; pp. 1022–1024. [CrossRef]

16. Lim, S.L.; Finkelstein, A. StakeRare: Using Social Networks and Collaborative Filtering for Large-Scale Requirements Elicitation.
IEEE Trans. Softw. Eng. 2012, 38, 707–735. [CrossRef]

17. Mughal, S.; Abbas, A.; Ahmad, N.; Khan, S.U. A Social Network Based Process to Minimize In-Group Biasedness during
Requirement Engineering. IEEE Access 2018, 6, 66870–66885. [CrossRef]

18. Lim, S.L.; Bentley, P.J.; Ishikawa, F. Reaching the Unreachable: A Method for Early Stage Software Startups to Reach Inaccessible
Stakeholders within Large Corporation. In Proceedings of the 28th IEEE International Requirements Engineering, Zurich,
Switzerland, 31 August–4 September 2020; pp. 376–381. [CrossRef]

19. Srivastava, P.K.; Sharma, R. Crowdsourcing to Elicit Requirements for MyERP Application. In Proceedings of the 1st International
Workshop on Crowd-Based Requirements Engineering, CrowdRE 2015, Ottawa, ON, Canada, 25 August 2015; pp. 31–35.
[CrossRef]

20. Lim, S.L.; Bentley, P.J. Using PseudoGravity to Attract People An Automated Approach to Engaging a Target Audience Using
Twitter. In Proceedings of the 2017 Future Technologies Conference, Vancouver, BC, Canada, 29–30 November 2017.

21. Condori-Fernandez, N.; Lago, P.; Luaces, M.; Catala, A. A Nichesourcing Framework Applied to Software Sustainability
Requirements. In Proceedings of the International Conference on Research Challenges in Information Science, Brussels, Belgium,
29–31 May 2019; pp. 1–6. [CrossRef]

22. Dijkshoorn, C.; De Boer, V. Accurator: Nichesourcing for Cultural Heritage. Hum. Comput. 2014, 1, 101–131. [CrossRef]
23. Alvertis, I.; Papaspyros, D.; Koussouris, S.; Mouzakitis, S.; Askounis, D. Using Crowdsourced and Anonymized Personas

in the Requirements Elicitation and Software Development Phases of Software Engineering. In Proceedings of the 2016 11th
International Conference on Availability, Reliability and Security (ARES), Salzburg, Austria, 31 August–2 September 2016; pp.
851–856. [CrossRef]

24. Guzman, E.; Alkadhi, R.; Seyff, N. A Needle in a Haystack: What Do Twitter Users Say about Software? In Proceedings of the
2016 IEEE 24th International Requirements Engineering Conference Workshops (REW), Beijing, China, 12–16 September 2016; pp.
96–105. [CrossRef]

25. Zhang, P.; Obradovic, Z. Integration of Multiple Annotators by Aggregating Experts and Filtering Novices. In Proceedings of the
2012 IEEE International Conference on Bioinformatics and Biomedicine, Philadelphia, PA, USA, 4–7 October 2012; pp. 131–136.
[CrossRef]

26. Mardjo, A.; Choksuchat, C. HyVADRF: Hybrid VADER-Random Forest and GWO for Bitcoin Tweet Sentiment Analysis. IEEE
Access 2022, 10, 101889–101897. [CrossRef]

27. Schm, R.; Wilcox, S. Harnessing Artificial Intelligence for Health Message Generation: The Folic Acid Message Engine. J. Med.
Internet Res. 2022, 24, 1. [CrossRef]

28. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

29. Peters, M.; Ruder, S.; Smith, N.A. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks. In Proceedings
of the 4th Workshop on Representation Learning for NLP, Florence, Italy, 2 August 2019.

30. Google Code Archive-Word2vec. Available online: https://code.google.com/archive/p/word2vec/ (accessed on 12 January 2023).
31. Nguyen, D.Q.; Vu, T.; Nguyen, A.T. BERTweet: A Pre-Trained Language Model for English Tweets. In Proceedings of the 2020

EMNLP (Systems Demonstrations), Online, 16–20 November 2020; pp. 9–14.

https://doi.org/10.1109/ICGSE.2014.26
https://doi.org/10.1145/2894784.2894795
https://doi.org/10.1080/08874417.2017.1394171
https://doi.org/10.1007/978-3-030-44429-7_11
https://doi.org/10.1145/1806799.1806844
https://doi.org/10.1145/1810295.1810340
https://doi.org/10.1145/1985793.1985983
https://doi.org/10.1109/TSE.2011.36
https://doi.org/10.1109/ACCESS.2018.2879385
https://doi.org/10.1109/RE48521.2020.00051
https://doi.org/10.1109/CrowdRE.2015.7367586
https://doi.org/10.1109/RCIS.2019.8877000
https://doi.org/10.15346/hc.v1i1.2
https://doi.org/10.1109/ARES.2016.71
https://doi.org/10.1109/RE.2016.67
https://doi.org/10.1109/BIBM.2012.6392657
https://doi.org/10.1109/ACCESS.2022.3209662
https://doi.org/10.2196/28858
https://code.google.com/archive/p/word2vec/

Electronics 2023, 12, 3422 17 of 17

32. Duki, D.; Keˇ, D.; Stipi, D. Are You Human? Detecting Bots on Twitter Using BERT. In Proceedings of the 2020 IEEE 7th
International Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 6–9 October 2020.

33. Rustam, F.; Khalid, M.; Aslam, W.; Rupapara, V.; Mehmood, A.; Choi, G.S. A Performance Comparison of Supervised Machine
Learning Models for Covid-19 Tweets Sentiment Analysis. PLoS ONE 2021, 16, e0245909. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0245909
https://www.ncbi.nlm.nih.gov/pubmed/33630869

	Introduction
	Related Work
	Methods and Results
	Tweets Collection
	Tweets Pre-Processing
	Annotation
	Content Analysis
	Manual Annotation
	Annotation Aggregation

	Feature Extraction
	Classification, Evaluation and Results
	User Classification Models Results
	Developer Classification Models Results
	Findings and Discussion

	Conclusions and Future Work
	References

