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Abstract: The introduction of publicly available large-scale datasets and advances in generative
adversarial networks (GANs) have revolutionized the generation of hyper-realistic facial images,
which are difficult to detect and can rapidly reach millions of people, with adverse impacts on the
community. Research on manipulated facial image detection and generation remains scattered and
in development. This survey aimed to address this gap by providing a comprehensive analysis of
the methods used to produce manipulated face images, with a focus on deepfake technology and
emerging techniques for detecting fake images. The review examined four key groups of manipulated
face generation techniques: (1) attributes manipulation, (2) facial re-enactment, (3) face swapping,
and (4) face synthesis. Through an in-depth investigation, this study sheds light on commonly
used datasets, standard manipulated face generation/detection approaches, and benchmarking
methods for each manipulation group. Particular emphasis is placed on the advancements and
detection techniques related to deepfake technology. Furthermore, the paper explores the benefits of
analyzing deepfake while also highlighting the potential threats posed by this technology. Existing
challenges in the field are discussed, and several directions for future research are proposed to
tackle these challenges effectively. By offering insights into the state of the art for manipulated face
image detection and generation, this survey contributes to the advancement of understanding and
combating the misuse of deepfake technology.

Keywords: deepfake; image forensics; face manipulation; GAN; deep learning

1. Introduction

The dominance of cost-effective and advanced mobile devices, such as smartphones,
mobile computers, and digital cameras, has led to a significant surge in multimedia con-
tent within cyberspace. These multimedia data encompass a wide range of formats, in-
cluding images, videos, and audio. Fueling this trend, the dynamic and ever-evolving
landscape of social media has become the ideal platform for individuals to effortlessly
and quickly share their captured multimedia data with the public, contributing to the
exponential growth of such content. A representative example of this phenomenon is
Facebook, a globally renowned social networking site, which purportedly processes ap-
proximately 105 terabytes of data every 30 min and scans about 300 million photos each
day (Source: https://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-billion-
pieces-of-content-and-500-terabytes-ingested-every-day/ (accessed on 10 December 2021)).

With the advent of social networking services (SNSs), there has been a remarkable
increase in the demand for altering multimedia data, such as photos on Instagram or videos
on TikTok, to attract a larger audience. In the past, the task of manipulating multimedia data
was daunting for regular users, primarily due to the barriers posed by professional graphics
editor applications like Adobe and the GNU Image Manipulation Program (GIMP), as
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well as the time-consuming editing process. However, recent advancements in technology
have significantly simplified the multimedia data manipulation process, yielding more
realistic outputs. Notably, the rapid progress in deep learning (DL) technology has intro-
duced sophisticated architectures, including generative adversarial networks (GANs) [1]
and autoencoders (AEs) [2]. These cutting-edge techniques enable users to effortlessly
create genuine faces with identities that do not exist or produce highly realistic video face
manipulations without the need for manual editing.

AEs, which first emerged in 2017, are what the research community commonly refers
to as deepfakes. AEs quickly gained attention when they were utilized to synthesize adult
videos using the faces of famous Hollywood actors and politicians. Subsequently, a wave
of face manipulation applications, such as FaceApp and FaceSwap, flooded the scene. To
make the matter worse, the introduction of a smart undressing app called Deepnude in
June 2019 sent shock waves across the world [3]. It has become increasingly challenging for
regular users to filter out manipulated content, as multimedia data can spread like wildfire
on the internet, leading to severe consequences like election manipulation, warmongering
scenarios, and defamation. Moreover, the situation has worsened with the recent prolif-
eration of powerful, advanced, and user-friendly mobile manipulation apps, including
FaceApp [4], Snapchat [5], and FaceSwap [6], making it even more difficult to authenticate
and verify the integrity of images and videos.

To address the escalating threat of progressively advancing and realistic manipulated
facial images, the research community has dedicated substantial efforts to introducing
innovative approaches that can efficiently and effectively identify signs of manipulated
multimedia data [7]. The growing interest in digital face manipulation identification is
evident in the increasing number of (1) papers at top conferences; (2) global research
programs like Media Forensics (MediFor) backed by the Defense Advanced Research
Project Agency (DARPA) [8]; and (3) global artificial intelligence (AI) competitions, such
as the Deepfake Detection Challenge (DFDC) (https://www.kaggle.com/c/deepfake-
detection-challenge (accessed on 10 December 2021)) organized by Facebook, the Open
Media Forensics Challenge (OpenMFC) (https://www.nist.gov/itl/iad/mig/open-media-
forensics-challenge (accessed on 10 December 2021)) backed by the National Institute
of Standards and Technology (NIST), and the Trust Media Challenge launched by the
National University of Singapore (https://trustedmedia.aisingapore.org/ (accessed on
10 December 2021)).

Traditional approaches for identifying manipulated images commonly rely on camera
and external fingerprints. Camera fingerprints refer to intrinsic fingerprints injected by
digital cameras, while external fingerprints result from editing software. Previous manipu-
lation detection methods based on camera fingerprints have utilized various properties
such as optical lens characteristics [9], color filter array interpolation [10], and compression
techniques [11]. On the other hand, existing manipulation detection approaches based
on external fingerprints aim to identify copy-paste fingerprints in different parts of the
image [12], frame rate reduction [13], and other features. While these approaches have
achieved good performance, most of the features used in the training process are hand-
crafted and heavily reliant on specific settings, making them less effective when applied to
testing data in unseen conditions [14]. Currently, external fingerprints are considered more
important than camera fingerprints due to the prevalence of manipulated media being
uploaded and shared on social media sites, which automatically modify uploaded images
and videos through processes such as compression and resizing operations [15].

In contrast to traditional approaches that heavily depend on manual feature engineer-
ing, DL entirely circumvents this process by automatically mapping and extracting essential
features through a deep structure comprising multiple convolutional layers [16]. DL has
demonstrated remarkable performance in image-related tasks [17], leading to a significant
surge in the development of DL-based face manipulation detection models recently [18,19].

https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.nist.gov/itl/iad/mig/open-media-forensics-challenge
https://www.nist.gov/itl/iad/mig/open-media-forensics-challenge
https://trustedmedia.aisingapore.org/
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1.1. Relevant Surveys

Table 1 describes the key contributions of the latest comprehensive surveys that have
examined various aspects of face manipulation. The increasing number of surveys in recent
times reflects the growing interest and significance of the digital face manipulation topic.

Table 1. Summary of previous digital face manipulation reviews, including references, publication
year, and primary contributions.

ID Ref. Year Contributions

1 [20] 2022

• Reviewed the latest deepfake creation and detection methods.
• Presented existing deepfake datasets.
• Explored the current challenges and trends in deepfake creation

and detection.

2 [21] 2022

• Analyzed existing deepfake generation methods and categorized them into
five main categories.

• Explored the identification of deepfakes in face images and videos,
considering different approaches and their performance.

• Described the current trends in deepfake datasets.

3 [22] 2021
• Assessed the latest deepfake tools and techniques.
• Discussed the latest efficient strategies to address deepfake challenges.
• Explored the related challenges and future deepfake trends.

4 [23] 2021

• Investigated the latest methods for generating and detecting deepfake images.
• Focused on summarizing and analyzing the architectures of deepfake

creation and detection techniques.
• Presented future directions to enhance the architecture of deepfake models.

5 [14] 2021

• Focused on showcasing the latest research on deepfake video detection and
generation processes.

• Analyzed the robustness and generalization of deepfake video detection
and generation models.

• Provided an overview of existing benchmarks for deepfake video creation.

6 [24] 2020
• Provided a comprehensive review of standard image forgery methods.
• Described open data sources for image manipulation identification research.
• Focused on DL-based image manipulation identification.

7 [25] 2020

• Offered a comprehensive review of current face manipulation methods,
including deepfake, and strategies for identifying such manipulations.

• Divided existing facial manipulation techniques into four main groups.
• Reviewed publicly available datasets and crucial benchmarks for face

manipulation and manipulated face detection.

8 [26] 2020

• Conducted a comprehensive analysis of the identification of manipulated
images and videos.

• Emphasized the emerging deepfake phenomenon from the forensic
analyst’s viewpoint.

• Highlighted the drawbacks of the latest forensic software, addressed urgent
issues, explored upcoming challenges, and provided recommendations for
future research directions.

9 [27] 2020

• Defined deepfake and provided an overview of its fundamental technology.
• Categorized deepfake approaches and discussed the risks and opportunities

associated with each group.
• Introduced a framework to address deepfake risks effectively.

10 [17] 2020
• Reviewed the applications and developments of recent DL-based face

synthesis and semantic manipulations.
• Discussed future perspectives to enhance face perception further.

11 [28] 2020

• Differentiated and explained the relationships between image forgery,
image manipulation, and image tampering.

• Provided motivations and explanations for various tampering detection methods.
• Explored standard benchmark datasets.
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Since the term “deepfake” was introduced, deepfake technology has been prominently
featured in recent headlines, leading to various studies on the topic of image manipulation.
Notably, two recent studies discussed some of the latest developments in deepfake creation
and detection [20,21]. In 2021, three surveys were released, with two of them focusing
on the detection of deepfake content [14,22]. The remaining study conducted by Mirsky
et al. [23] delved into the latest approaches to effectively generate and detect deepfake im-
ages. In 2020, two comprehensive surveys concerning general digital image manipulation
were introduced [24,26]. While Thakur et al. explored DL-based image forgery detec-
tion [24], Verdoliva et al. conducted a thorough review of detecting manipulated images
and videos [26]. In the same year, both Tolosana et al. and Kietzmann et al. offered insights
into different aspects of deepfake [25,27], including the definition of deepfake [27] and pub-
licly available deepfake datasets, along with crucial evaluation methods [25]. Additionally,
Abdolahnejad et al. showcased the applications and advancements of current DL-based
face synthesis methods in 2020 [17], while Zheng et al. analyzed the distinctive features of
image forgery, image manipulation, and image tampering during the same year [28].

1.2. Contributions

The substantial number of studies on the face manipulation topic reflects a growing
interest in the subject across various sectors and disciplines. This survey stands out from
previous reviews due to the following distinct characteristics and contributions:

1. This review categorizes and discusses the latest studies that have achieved state-of-
the-art results in face manipulation generation and detection.

2. Covering over 160 studies on the creation and detection of face manipulation, this survey
categorizes them into smaller subtopics and provides a comprehensive discussion.

3. The review focuses on the emerging field of DL-based deepfake content generation
and detection.

4. The survey uncovers challenges, addresses open research questions, and suggests
upcoming research trends in the domain of digital face manipulation generation and
detection.

The rest of the manuscript is organized as follows. Section 2 provides the essential
background on face manipulation. Subsequently, Section 3 discusses various types of digital
face manipulation and the associated datasets. Sections 4–7 delve into the critical aspects of
each type of face manipulation, encompassing detection methods, identification techniques,
and benchmark results. Moving forward, Section 8 elaborates on the evolution of deepfake
technology. In Section 9, we shed light on open issues and future trends concerning face
manipulation creation and detection. Finally, the paper ends with Section 10, presenting
our concluding remarks.

1.3. Research Scope and Collection

This section addresses the scope of this work, the review methodology, and the process
of selecting relevant papers.

1.3.1. Scope

The main scope of this survey is face manipulation, especially deepfake technology.
Initially, previous face manipulation studies are categorized into four main categories:
face swapping, facial re-enactment, face attribute manipulation, and face synthesis. Sub-
sequently, explanations are provided for benchmark datasets, standard generation, and
detection methods for each manipulation category. Finally, the survey discusses the chal-
lenges and trends for each category.

1.3.2. Research Collection

To efficiently and effectively collect related face manipulation papers, various sources
were utilized for research paper collection. Initially, approximately 70 research papers
of interest were gathered from two popular GitHub repositories on face manipulation
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(https://github.com/clpeng/Awesome-Face-Forgery-Generation-and-Detection (accessed
on 15 December 2021)) and the deepfake topic (https://github.com/Billy1900/Awesome-
DeepFake-Learning (accessed on 15 December 2021)). Additionally, the latest deepfake
publications from two well-known scientific portals, namely Google Scholar and Scopus, as
well as arXiv, were queried using predefined keywords, including “DeepFake”, “fake face
image”, “face-swapping”, “face synthesis”, “GAN”, “manipulated face”, “face forgery”,
and “tampered face”. Furthermore, face manipulation is a prominent topic at top-tier con-
ferences and workshops. Consequently, related publications from these events, published
within the last three years, were also collected. It is noteworthy that the generation ap-
proaches were primarily identified based on the techniques mentioned in related detection
studies for each category.

After completing the paper collection process, a total of 160 papers published between
June 2008 and 2022 were downloaded from various scholarly search engines. The majority
of these papers were related to the generation and detection of face manipulation, as
well as the emergence of deepfake technology. As shown in Figure 1a, interest in face
manipulation has seen a significant surge since the appearance of realistic fake videos
towards the end of 2017. Figure 1b illustrates the distribution of research publications
across various publication types, including papers from top references, journals, and other
sources. Overall, the number of publications on the face manipulation topic has exhibited a
stable growth over the years.
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Figure 1. Evidence of the growing interest in the face manipulation topic is demonstrated through
(a) Google trends for the keyword “face manipulation” and (b) the distribution of face-manipulation-
related studies collected in this study over the years. Note: the Google interest over time is graphed
relative to the highest point on the chart worldwide between October 2016 and October 2021.

https://github.com/clpeng/Awesome-Face-Forgery-Generation-and-Detection
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In the realm of face manipulation generation methods, a substantial amount of re-
search has originated from CVPR and arXiv. Approximately one-third of the downloaded
publications were published at high-ranking conferences and in top journals, suggesting
that most creation techniques underwent a rigorous review process, lending credibility to
their findings. Similarly, for the face manipulation detection topic, the majority of articles
were sourced from CVPR and other relevant conferences. In summary, in the face manipu-
lation detection domain, a significant number of studies have been derived from arXiv and
other sources, while research from top conferences and journals constitutes approximately
one-third of the collected papers. Notably, as depicted in Figure 1b, around 65% of the
studies published during the last three years have exhibited a growing research interest in
face manipulation generation and detection topics.

2. Background

Image manipulation dates back to as early as 1860, when a picture of southern politi-
cian John C. Calhoun was realistically altered by replacing the original head with that
of US President Abraham Lincoln [29]. In the past, image forgery was achieved through
two standard techniques: image splicing and copy-move forgery, wherein objects were
manipulated within an image or between two images [30]. To improve the visual appear-
ance and perspective coherence of the forged image while eliminating visual traces of
manipulation, additional post-processing steps, such as lossy JPEG compression, color
adjustment, blurring, and edge smoothing, were implemented [31].

In addition to conventional image manipulation approaches, recent advancements in
CV and DL have facilitated the emergence of various novel automated image manipulation
methods, enabling the production of highly realistic fake faces [32]. Notably, hot topics in
this domain include the automatic generation of synthetic images and videos using algo-
rithms like GANs and AEs, serving various purposes, such as realistic and high-resolution
human face synthesis [17] and human face attribute manipulation [33,34]. Among these,
deepfake stands out as one of the trending applications of GANs, capturing significant
public attention in recent years.

Deepfake is a technique used to create highly realistic and deceptive digital media,
particularly manipulated videos and images, using DL algorithms [35]. The term “deep-
fake” is derived from the terms “deep learning” and “fake”. It involves using artificial
intelligence, particularly deep neural networks, to manipulate and alter the content of an
existing video or image by superimposing someone’s face onto another person’s body or
changing their facial expressions [36]. Deepfake technology has evolved rapidly, and its
sophistication allows for the creation of highly convincing fake videos that are challenging
to distinguish from genuine footage. This has raised concerns about its potential misuse,
as it can be employed for various purposes, including spreading misinformation, creating
fake news, and fabricating compromising content [23,27]. For example, in May 2019, a
distorted video of US House Speaker Nancy Pelosi was meticulously altered to deceive
viewers into believing that she was drunk, confused, and slurring her words [37]. This
manipulated video quickly went viral on various social media platforms and garnered over
2.2 million views within just two days. This incident served as a stark reminder of how
political disinformation can be easily propagated and exploited through the widespread
reach of social media, potentially clouding public understanding and influencing opinions.

Another related term, “cheap fake”, involves audio-visual manipulations produced
using more affordable and accessible software [38]. These techniques include basic cutting,
speeding, photoshopping, slowing, recontextualizing, and splicing, all of which alter the
entire context of the message delivered in existing footage.

3. Types of Digital Face Manipulation and Datasets
3.1. Digitally Manipulated Face Types

Previous studies on digital facial manipulation can be classified into four primary
categories based on the degree of manipulation. Figure 2 provides visual descriptions
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of each facial manipulation category, ranging from high-risk to low-risk in terms of the
potential impact on the public. The high risk associated with face swapping and facial
re-enactment arises from the fact that malicious individuals can exploit these techniques to
create fraudulent identities or explicit content without consent. Such concerns are rapidly
increasing, and if left unchecked, they could lead to widespread abuse.

Face swapping

Source

Target

Output

Source

Target

Output

Facial reenactment

Real

Fake

Real

Fake

Face attribute editing

Face synthesis

High risk Low risk

Figure 2. Four primary categories of face manipulation, including face swapping, facial re-enactment,
face attribute editing, and face synthesis. Note: the gradient color bar on the bottom left of the image
visualizes the risk levels based on the survey outcomes.

• Face synthesis encompasses a series of methods that utilize efficient GANs to gen-
erate human faces that do not exist, resulting in astonishingly realistic facial im-
ages. Figure 2 introduces various examples of entire face synthesis created using the
PGGAN structure [39]. While face synthesis has revolutionized industries like gaming
and fashion [40], it also carries potential risks, as it can be exploited to create fake
identities on social networks for spreading false information.

• Face swapping involves a collection of techniques used to replace specific regions of
a person’s face with corresponding regions from another face to create a new com-
posite face. Presently, there are two main methods for face swapping: (i) traditional
CV-based methods (e.g., FaceSwap), and (ii) more sophisticated DL-based methods
(e.g., deepfake). Figure 2 illustrates highly realistic examples of this type of manipula-
tion. Despite its applications in various industrial sectors, particularly film production,
face swapping poses the highest risk of manipulation due to its potential for malevo-
lent use, such as generating pornographic deepfakes, committing financial fraud, and
spreading hoaxes.

• Face attribute editing involves using generative models, including GANs and vari-
ational autoencoders (VAEs), to modify various facial attributes, such as adding
glasses [33], altering skin color and age [34], and changing gender [33]. Popular social
media platforms like TikTok, Instagram, and Snapchat feature examples of this manip-
ulation, allowing users to experiment with virtual makeup, glasses, hairstyles, and
hair color transformations in a virtual environment.

• Facial re-enactment is an emerging topic in conditional face synthesis, aimed at two
main concurrent objectives: (1) transferring facial expressions from a source face to
a target face, and (2) retaining the features and identity of the target face. This type
of manipulation can have severe consequences, as demonstrated by the popular fake
video of former US President Barack Obama speaking words that were not real [41].
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3.2. Datasets

To generate fake images, researchers often utilize authentic images from public face
datasets, including CelebA [34], FFHQ [42], CASIAWebFace [43], and VGGFace2 [44].
Essential details about each of these public datasets are provided in Table 2.

Table 2. Publicly available face datasets used for performing face image manipulation.

Name Year Source Number of
Images Reference

VGGFace2 2018 Google
Images 3.31 M [44]

CelebFaces Attributes (CelebA) 2015 Internet 500 K [34]

Flickr-Faces-HQ dataset (FFHQ) 2014 Flickr 70 K [42]

CASIA-WebFace 2014 Internet 500 K [43]

Labeled Faces in the Wild (LFW) 2007 Internet 13 K [45]
Note: “M” indicates million, and “K” stands for thousand.

3.2.1. Face Synthesis and Face Attribute Editing

Despite the significant progress in GAN-based algorithms [33,46], to the best of our
knowledge, few benchmark datasets are available for these topics. This scarcity is mainly
attributed to the fact that most GAN frameworks can be easily re-implemented, as their
codes are accessible online [47]. As a result, researchers can either download GAN-specific
datasets directly or generate their fake datasets effortlessly.

Table 3 presents well-known publicly available datasets for studies on face synthesis
and face attribute editing manipulation. Interestingly, each synthetic image is characterized
by a specific GAN fingerprint, akin to the device-based fingerprint (fixed pattern noise)
found in images captured by camera sensors. Furthermore, most of the mentioned datasets
consist of synthetic images generated using GAN models. Therefore, researchers inter-
ested in conducting face synthesis generation experiments need to utilize authentic face
images from other public datasets, such as VGGFace2 [44], FFHQ [42], CelebA [34], and
CASIAWebFace [43].

In general, most datasets in the table are relevant because they are associated with
well-known GAN frameworks like StyleGAN [48] and PGGAN [39]. In 2019, Karras
et al. introduced the 100K-Generated-Images dataset [48], consisting of approximately
100,000 automatically generated face images using the StyleGAN structure applied to
the FFHQ dataset [42]. The unique architecture of StyleGAN enabled it to automatically
separate high-level attributes, such as pose and identity (human faces), while also handling
stochastic variations in the created images, such as skin color, beards, hair, and freckles.
This allowed the model to perform scale-specific mixing operations and achieve impressive
image generation results.

Another publicly available dataset is 100K-Faces [49], comprising 100,000 synthe-
sized face images created using the PGGAN model at a resolution of 1024 by 1024 pixels.
Compared to the 100K-Generated-Images dataset, the StyleGAN model in the 100K-Faces
dataset was trained using about 29,000 images from a controlled scenario with a simple
background. This resulted in the absence of strange artifacts in the image backgrounds
created by the StyleGAN model.

Recently, Dang et al. introduced the DFFD dataset [50], containing 200,000 synthe-
sized face images using the pre-trained StyleGAN model [48] and 100,000 images using
PGGAN [39]. Finally, the iFakeFaceDB dataset was released by Neves et al. [51], compris-
ing 250,000 and 80,000 fake face images generated by StyleGAN [48] and PGGAN [39],
respectively. An additional challenging feature of the iFakeFaceDB dataset is that GAN-
printR [51] was used to eliminate the fingerprints introduced by the GAN architectures
while maintaining a natural appearance in the images.
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Table 3. Well-known public datasets for each type of face manipulation.

Type Name Year Source T:O Dataset Size Consent Reference

Face synthesis
and
face attribute
editing

Diverse Fake Face Dataset (DFFD) 2020 StyleGAN and PGGAN 300 K images X [50]

iFakeFaceDB 2020 StyleGAN and PGGAN 330 K images X [51]

100K-Generated-Images 2019 StyleGAN 100 K images X [48]

PGGAN 2018 PGGAN 100 K images X [39]

100K-Faces 2018 StyleGAN 100 K images X [49]

Face swapping
and
facial
re-enactment

ForgeryNIR 2022 CASIA NIR-VIS 2.0 [52] 1:4.1 50 K identities × [53]

Face Forensics in the Wild (FFIW10K) 2021 YouTube 1:1 40 K videos × [54]

OpenForensics 2021 Google open images 1:0.64 115 K BBox/masks X [55]

ForgeryNet 2021 CREMAD [56], RAVDESS [57],
VoxCeleb2 [58], and AVSpeech [59] 1:1.2 221 K videos X [60]

Korean Deepfake Detection (KoDF) 2021 Actors 1:0.35 238 K videos X [61]

Deepfake Detection Challenge (DFDC) 2020 Actors 1:0.28 128 K videos X [62]

Deepfake Detection Challenge Preview
(DFDC_P) 2020 Actors 1:0.28 5K videos X [63]

DeeperForensics-1.0 2020 Actors 1:5 60 K videos × [64]

A large-scale challenging dataset for deepfake
(Celeb-DF) 2020 YouTbe 1:0.1 6.2 K videos × [65]

WildDeepfake 2020 Internet 707 videos × [66]

FaceForensics++ 2019 YouTube 1:4 5 K videos Partly [67]

Google DFD 2019 Actors 1:0.1 3 K videos X [68]

UADFV 2019 YouTube 1:1 98 videos × [69]

Media Forensic Challenge (MFC) 2019 Internet
100 K images
4 K videos × [70]

Deepfake-TIMIT 2018 YouTube Only fake 620 videos × [71]
Note: T:O indicates the ratio between tampered images and original images.
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3.2.2. Face Swapping and Facial Re-Enactment

Table 3 presents a collection of datasets commonly used for conducting face swapping
and facial re-enactment identification. Some small datasets, such as WildDeepfake [66],
UADFV [69], and Deepfake-TIMIT [71], are early versions and contain less than 500 unique
faces. For instance, the WildDeepfake dataset [66] consists of 3805 real face sequences and
3509 fake face sequences originating from 707 fake videos. The Deepfake-TIMIT database
has 640 fake videos created using Faceswap-GAN [69]. Meanwhile, the UADFV dataset [71]
contains 98 videos, with half of them generated by FakeAPP.

In contrast, more recent generations of datasets have exponentially increased in size.
FaceForensics++ (FF++) [67] is considered the first large-scale benchmark for deepfake
detection, consisting of 1000 pristine videos from YouTube and 4000 fake videos created
by four different deepfake algorithms: deepfake [72], Face2Face [73], FaceSwap [74], and
NeuralTextures [75]. The Deepfake Detection (DFD) [68] dataset, sponsored by Google,
contains an additional 3000 fake videos, and video quality is evaluated in three categories:
(1) RAW (uncompressed data), (2) HQ (constant quantization parameter of 23), and (3) LQ
(constant quantization parameter of 40). Celeb-DF [65] is another well-known deepfake
dataset, comprising a vast number of high-quality synthetic celebrity videos generated
using an advanced data generation procedure.

Facebook introduced one of the biggest deepfake datasets, DFDC [62], with an earlier
version called DFDC Preview (DFDC-P) [63]. Both DFDC and DFDC-P present signif-
icant challenges, as they contain various extremely low-quality videos. More recently,
DeeperForensics1.0 [64] was published, modifying the original FF++ videos with a novel
end-to-end face-swapping technique. Additionally, OpenForensics [55] was introduced
as one of the first datasets designed for deepfake detection and segmentation, consider-
ing that most of the abovementioned datasets were proposed for performing deepfake
classification. Figure 3 displays two sample images from each of the five well-known face
synthesis datasets.

Figure 3. Comparison of fake images extracted from various deepfake datasets. From left to right,
FaceForensics++ [67], DFDC [63], DeeperForensics [64], Celeb-DF [65], and OpenForensics [55].

While the number of public datasets has gradually increased due to advancements in
face manipulation generation and detection, it is evident that Celeb-DF, FaceForensics++,
and UADFV are currently among the most standard datasets. These datasets boast a vast
collection of videos with varying categories that are appropriately formatted. However,
there is a difference in the number of classes between the datasets. For example, the
UADFV database is relatively simple and contains only two classes: pristine and fake. In
contrast, the FaceForensics++ dataset is more complex, involving different types of video
manipulation techniques and encompassing five main classes.

One common issue among existing deepfake datasets is that they were generated by
splitting long videos into multiple short ones, leading to many original videos sharing
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similar backgrounds. Additionally, most of these databases have a limited number of
unique actors. Consequently, synthesizing numerous fake videos from the original videos
may result in machine learning models struggling to generalize effectively, even after being
trained on such a large dataset.

4. Face Synthesis

Entire face synthesis has emerged as an intriguing yet challenging topic in the fields
of CV and ML. It encompasses a set of methods that aim to create photo-realistic images
of faces that do not exist by utilizing a provided semantic domain. This technology
has recently gained significance as a critical pre-processing phase for mainstream face
recognition [71,76] and serves as an extraordinary testament to AI’s capabilities in utilizing
complex probability distributions. GANs have become the most standard technology for
performing face synthesis. GANs belong to a class of unsupervised learning models that
utilize real human face images as training data and attempt to generate new face images
from the same distribution.

Figure 4 illustrates an architecture-variant tree graph for GANs from 2014 to 2020, as
described in this section. Notably, there are various interconnections between different
GAN architectures. The relationship between GAN models and digital face manipulation
has led to significant advancements in the quality and realism of generated manipulated
face images. GAN models like DCGAN [1], WGAN [77], PGGAN [39], and StyleGAN [48]
have been applied to facial attribute editing, deepfakes, face swapping, and facial re-
enactment. For instance, cGAN allows controlled face image synthesis based on specific
attributes, enabling targeted facial attribute editing [78]. CycleGAN enables unpaired
image-to-image translation, facilitating face-to-face translation and facial attribute transfer
without paired training data [79]. StyleGAN, on the other hand, produces high-quality
manipulated face images with better control over specific features, resulting in realistic
deepfake faces and facial re-enactment [48]. Additionally, advancements in GAN models
and related techniques have contributed to a more comprehensive understanding of image
manipulation methods, fostering the development of robust countermeasures to detect
manipulated face images and ensure the integrity and trustworthiness of digital media [80].
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Figure 4. Tree graph depicting the relationships among various GAN models.

4.1. Generation Techniques

A generative adversarial network (GAN) is a type of DL model introduced by Ian Good-
fellow and his colleagues in 2014 [81]. GANs consist of two neural networks, the generator
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and the discriminator, which are trained simultaneously through a competitive process.
Figure 5 illustrates the GAN process.

G

Generator

D

Discriminator

𝒵

Cost

Real image

𝑥

Learns data 

distribution
Distinguishes  

between pristine and 

fake data

Latent

space

Figure 5. Key components of a generative adversarial network (GAN).

The generator’s main task is to create realistic synthetic data, such as images or text,
from random noise. It tries to generate data that are indistinguishable from real examples in
the training dataset. On the other hand, the discriminator acts as a detective, attempting to
distinguish between real and fake data provided by the generator. During the training process,
the generator continuously improves its ability to produce more realistic data as it receives
feedback from the discriminator. At the same time, the discriminator becomes more adept at
accurately classifying real and fake data. The following equation describes the process:

min
G

max
D

V(D, G) = Ex∼pdata (x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))] (1)

where V(D, G) represents the value of the objective function, which is the measure of
how well the GAN is performing. The higher the value, the better the discriminator is at
distinguishing real data from generated data, and, consequently, the better the generator
is at producing realistic data. E is the expected value of the logarithm of the discrimina-
tor’s output when fed with real data samples (x) from the true data distribution pdata (x).
z represents random noise samples drawn from a prior distribution pz(z).

• Generative modeling in GANs aims to learn a generator distribution that closely
resembles the target data distribution pdata(x). Instead of explicitly assigning a proba-
bility to each variable x in the data distribution, GAN constructs a generator network
G that creates samples by converting a noise variable z ∼ pz(z) into a sample G(z)
from the generator distribution.

• Discrimination modeling in GANs seeks to generate an adversarial discriminator
network D that can effectively discriminate between samples from the generator’s
distribution PG and the true data distribution Pdata. The discriminator’s role is to
distinguish between real data samples and those generated by the generator, thus
creating a competitive learning dynamic.

The first extension of the GAN structure, which integrated a convolutional neural net-
work (CNN) into a GAN, were deep convolutional GANs, or DCGANs [1]. Unlike previous
GAN architectures, a DCGAN utilizes convolutional and transposed convolutional layers
in the generator and discriminator, respectively, without fully connected and max-pooling
layers. A DCGAN is an unsupervised learning approach that employs the discriminator’s
learned features as a feature extractor for a classification model. Its generator can easily
manipulate various semantic properties in generated images using arithmetic vectors.
DCGANs significantly improved image generation quality, which laid the groundwork
for digital face manipulation tasks. Researchers used DCGANs to generate realistic faces,
and their application was later extended to create manipulated faces by modifying specific
attributes or facial features [82,83].
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In the early generations of GANs, researchers faced the challenge of balancing the
generator and discriminator during training to avoid mode dropping. Mode dropping
refers to the issue where the generator fails to learn certain details from the evaluator,
resulting in incomplete learning [84]. Therefore, many studies have been conducted to
stabilize GAN training process [85,86]. One significant advancement in addressing this
problem was the Wasserstein GAN (WGAN). The WGAN improves model stability during
training by introducing a loss function that corresponds to the quality of the generated
images [77]. Instead of using a discriminator to predict whether an image is real or fake, the
WGAN replaces it with a critic that evaluates the realness or fakeness of an input image. The
WGAN served as a foundation for various other studies. For example, WGAN gradient
penalty (WGAN-GP) [77] addressed some issues of the WGAN, such as convergence
failures and poor sample generation due to weight clipping. WGAN-GP focused on
penalizing the norm of the gradient of the discriminator using the input. This technique
demonstrated robust modeling performance and stability across different architectures.

One additional limitation of the initial GAN structures was their ability to gener-
ate only relatively low-resolution images [87], such as 64 × 64 or 128 × 128 pixels. As a
result, several studies have proposed new architectures aimed at efficiently generating
high-quality, detailed images of at least 1024 × 1024 pixels, making it challenging to distin-
guish between genuine and fake images. Notably, Progressive Growing of GANs (PGGAN)
has gained recognition for introducing an efficient method to produce high-resolution
outputs [39]. PGGAN achieves this by maintaining a symmetric mapping of the generator
and discriminator during training and progressively adding layers to enhance the gen-
erator’s image quality and the discriminator’s capability. This approach accelerates the
training process and significantly stabilizes the GAN. However, some output images may
appear unrealistic during the PGGAN testing phase. Recently, BigGAN [88] aimed to create
large, high-fidelity outputs by combining several current best approaches. It focused on
generating class-conditional images and significantly increased the number of parameters
and batch size to achieve its objectives.

4.2. Detection Techniques

In recent years, there have been a huge number of studies focusing on detecting face
synthesis. Table 4 presents a comprehensive discussion of the most important research in
this area, including crucial information such as datasets, methods, classifiers, and results.
The best performances for each benchmark dataset are highlighted in bold, providing
insights into the top-performing approaches.

It is worth noting that various evaluation metrics, such as the equal error rate (EER)
and area under the curve (AUC), were utilized in these studies, which can sometimes
make it challenging to directly compare different research findings. Additionally, some
researchers have analyzed and leveraged the GAN structure itself to identify the artifacts
between generated faces and genuine faces, further enhancing the detection capabilities.

Table 4. Comparison of current face synthesis identification studies.

Features Classifier Dataset Performance Reference

Frequency
discrepancy

CNN
ProGAN ACC = 90.7%

[89]
StarGAN ACC = 94.4%

Frequency
discrepancy

CNN
StyleGAN ACC = 99.9%

[90]
PGGAN ACC = 97.4%

Deep CNN Own (PCGAN and BEGAN) ACC = 98.0% [91]

Deep
CNN +

attention
mechanism

DFFD
(ProGAN,
StyleGAN)

AUC = 100%
EER = 0.1%

[50]
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Table 4. Cont.

Features Classifier Dataset Performance Reference

Deep CNN
100K-Faces (StyleGAN) EER = 0.3%

[51]
iFakeFaceDB EER = 4.5%

Multi-level CNN Own (reconstruction) ACC = 94% [92]

Textural CNN
StyleGAN ACC = 95.51%

[93]
PGGAN ACC = 92.28%

Layer-wise neuron Support vector
machine (SVM) Own (InterFaceGAN, StyleGAN) ACC = 84.7% [94]

Steganalysis CNN 100K-Faces (StyleGAN) EER = 1.23% [95]

Landmark SVM Own (PCGAN) ACC = 94.13% [96]

GAN SVM NIST MFC2018 AUC = 70.0% [97]

Note: The best performance on each benchmark dataset is highlighted in bold. AUC indicates area under the
curve, ACC is accuracy, and EER represents equal error rate.

As shown in Table 4, numerous face synthesis identification studies relied on con-
ventional forensic-based methods. They examined datasets to detect differences between
genuine images and those generated by GAN models, manually extracting these features.
For example, McCloskey et al. demonstrated that the treatment of color between the camera
sensor and GAN-generated images was distinguishable [97]. They extracted color features
from the NIST MFC2018 dataset and used a support vector machine (SVM) model to classify
whether an input image was real or fake, achieving the highest recorded performance of a
70% AUC. While these methods showed good performance on the collected dataset, they
are susceptible to various attacks, such as compression, and may not scale well with larger
training datasets, as often observed in shallow-learning-based models.

Another intriguing approach in this category was proposed by Yang et al. [96]. They
focused on analyzing facial landmark points to identify GAN-generated images. The
authors found that facial parts in images produced by GAN networks differed from those
in the original images due to the loss of global constraints. Consequently, they extracted
facial landmark features and fed them into an SVM model, achieving the highest accuracy
of 94.13% on the PGGAN database. However, most of these approaches become ineffective
when dealing with images generated by more advanced and complicated GANs. Moreover,
they are sensitive to simple perturbation attacks such as compression, cropping, blurring,
or noise. Consequently, the models need to be retrained for each specific scenario.

Currently, most face synthesis identification research is based on DL, harnessing
the advantages of CNNs to automatically learn the differences between genuine and fake
images. DL-based approaches have achieved state-of-the-art results on well-known publicly
available datasets. For instance, Dang et al. utilized a lightweight CNN model to efficiently
learn GAN-based artifacts for detecting computer-generated face images [91]. In another
approach, Chen et al. customized the Xception model to locally detect GAN-generated
face images [92]. They incorporated customized modules such as dilated convolution, a
feature pyramid network (FPN), and squeeze and excitation (SE) to capture multi-level and
multi-scale features of the local face regions. The experimental results demonstrated that
their approach achieved higher performance compared to existing architectures that relied
on the global features of the generated faces.

Inspired by steganalysis, Nataraj et al. introduced a detection system that combined
pixel co-occurrence matrices and a CNN [95]. The robustness of the detection model was
tested using fake images created by CycleGAN and StarGAN, achieving the highest equal
error rate (EER) of 12.3%. Additionally, recent studies have shown that current GAN-based
models struggle to reproduce high-frequency Fourier spectrum decay features, and re-
searchers have utilized this characteristic to perform GAN-generated image identification.
For instance, Jeong et al. achieved state-of-the-art detection performance on images created
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by ProGAN and StarGAN models [89] with an accuracy of 90.7% and 94.4%, respectively.
Moreover, attention mechanisms have been explored to enhance face manipulation detec-
tion during the training process. Dang et al. utilized attention mechanisms to evaluate the
feature maps used for training the CNN model [50] . Through experiments, the authors
demonstrated that the extracted attention maps accurately emphasized the GAN-generated
artifacts. This approach achieved state-of-the-art performance compared to other methods,
highlighting the potential of novel attention mechanisms in face manipulation detection.

Although the listed DL-based models have shown promising performance in con-
trolled conditions, they face challenges in identifying unseen types of synthesis data. To
address this, Marra et al. recently introduced a multi-task incremental learning manipu-
lation identification approach that could identify unseen groups of images generated by
a GAN without compromising the quality of the output images [98]. The model utilized
representation learning (iCaRL) and incremental classifier techniques, allowing it to adapt
to new classes by simultaneously learning classifiers and feature representations. The
evaluation process involved assessing five well-known GAN models, and the XceptionNet-
based model demonstrated accurate detection of new GAN-generated images. Finally,
for completeness, we also include references to some crucial research related to detecting
general GAN-generated image manipulations, not limited to face manipulation. Interested
readers can refer to Mi et al. [99] and Marra et al. [100].

5. Face Attribute Editing

The investigation of face attributes, which represent various semantic features of a
face such as “sex”, “hair color”, and “emotion”, has received significant attention due to
its wide-ranging applications in fields like face recognition [101], facial image search [102],
and expression parsing [103]. Altering face attributes, such as hairstyle, hair color, or the
presence of a beard, can drastically change a person’s identity. For instance, an image
captured during a person’s youth can appear entirely different from one taken during
adulthood, all due to the “age” attribute. Consequently, face attribute editing, also known
as face attribute manipulation, holds great importance for numerous applications.

For example, face attribute editing enables people to virtually design their fashion
styles by visualizing how they would appear with different face attributes [104]. Fur-
thermore, it enhances the robustness of face recognition by providing facial images with
varying ages of a specific identity. Just like face synthesis, GAN architectures are commonly
employed for face attribute editing. Some popular GAN models used for this purpose are
StarGAN [105] and STGAN [106].

5.1. Generation Techniques

In recent years, GANs have emerged as the standard DL architecture for image
generation. While previous GAN models could generate random plausible images for a
given dataset, controlling specific properties of the output images proved challenging [107].
To address this limitation, conditional GANs (cGANs) were introduced as an extension of
the GAN, incorporating information constraints to generate images based on conditional
information y targeting a specific type [78]. For digital face manipulation, cGANs allowed
the generation of manipulated face images with desired attributes or expressions, opening
avenues for facial attribute editing and facial expression synthesis [108,109]. Among the
efforts to perform GAN-based face attribute editing using cGANs, the Invertible cGAN
(IcGAN) stands out [110]. IcGAN combines a cGAN with an encoder, where the encoder
maps an original image to the latent space and a conditional representation to reconstruct
and modify face attributes. While IcGAN demonstrates appropriate and robust face
attribute manipulation, it completely alters a person’s identity. Additionally, IcGAN’s
limitations include the inability to perform face attribute editing across more than two
domains, requiring the processing of multiple models independently for each pair of image
domains, making the process tedious and cumbersome [111].
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To address the need for a more efficient face attribute manipulation approach, Star-
GAN [105] was proposed. StarGAN’s structure comprised a generator and a discriminator
that could be simultaneously trained on multiple different-domain databases, enabling
image-to-image translations for various domains. The model incorporated a conditional
attribute transfer model involving cycle consistency loss and attribute classification loss,
resulting in visually impressive outcomes compared to previous studies. However, it
could sometimes produce strange modifications, such as undesired skin color changes.
To further address these challenges, a novel GANimation model was introduced, which
anatomically encoded consistent face deformations using action units (AUs) [112]. This
allowed the management of the magnitude of activation for each AU separately and the
production of a more diverse set of facial expressions compared to StarGAN, which was
limited by the dataset’s content. StarGAN allowed the manipulation of multiple facial
attributes in a single generator, which contributed to more versatile and efficient facial
attribute editing [113,114].

An emerging trend in face attribute editing is real-time and interactive manipu-
lation, with two representative GAN models leading the way: MaskGAN [115] and
StyleMapGAN [116], both outperforming existing state-of-the-art GAN models. MaskGAN,
a recent proposal by Lee et al. [115], is a novel face attribute editing model based on interac-
tive semantic masks. It enables flexible face attribute manipulation while preserving high
fidelity. The authors also introduced CelebAMask-HQ, a high-quality dataset containing
over 30,000 fine-grained face mask annotations. In a different approach, Kim et al. intro-
duced StyleMapGAN [116] with a novel spatial-dimensions-enabled intermediate latent
space and spatially variant modulation. These improvements enhanced the embedding
process while retaining the key properties of GANs.

Existing approaches have tried to discover a latent representation that is attribute-
independent to perform extra face attribute editing, but this request for an attribute-
independent representation is unreasonable, since facial attributes are inherently rele-
vant [117]. This approach may cause information loss and limit the representation ability
of attribute editing. To address this, AttGAN [118] proposed replacing the strict attribute-
independent constraint with an attribute classification constraint on the latent representa-
tion, ensuring attribute manipulation accuracy. AttGAN can also directly control attribute
intensity on various facial attributes. By incorporating the attribute classification constraint,
adversarial learning, and reconstruction learning, AttGAN offers a robust face attribute
editing framework. However, both StarGAN [105] and AttGAN [118] faced challenges
when attempting arbitrary attribute editing using the target attribute vector as input, which
could lead to undesired changes and visual degradation. As a solution, STGAN has been
recently proposed [106], simultaneously enhancing attribute manipulation ability by care-
fully considering the gap between source and target attribute vectors as the model’s input.
Additionally, the introduction of a selective transfer unit significantly improves the quality
of attribute editing, resulting in more realistic and accurate face attribute editing results.

Most of the existing research leverages GANs for face attribute editing, but they often
alter irrelevant attribute parts of the face. To address this issue, recent works have been
introduced. For example, Zhang et al. integrated a spatial attention component into a
GAN to modify only the attribute-specific parts while keeping unrelated parts intact [46].
The experimental results on the CelebA and LFW databases demonstrated superior per-
formance compared to previous face attribute editing approaches. In another approach,
Xu et al. implemented region-wise style codes to decouple colors and texture, and 3D
priors were used to separate pose, expression, illumination, and identity information [33].
Adversarial learning with an identity-style normalization component was then used to
embed all the information. They also addressed disentanglement in GANs by introducing
disentanglement losses, enabling the recognition of representations that can determine
distinctive and informative aspects of data variations. With a different strategy, Collins et al.
improved local face attribute alteration in the StyleGAN model by extracting latent object
representations and using them during style interpolation [119]. The enhanced StyleGAN
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model generated realistic attribute editing parts without introducing any artifacts. Recently,
Xu et al. proposed a novel transformer-based controllable facial editing named TransEd-
itor [120], which improved interaction in a dual-space GAN. The experimental results
demonstrated that TransEditor outperformed baseline models in handling complicated
attribute editing scenarios.

5.2. Detection Techniques

Originally, face attribute editing was primarily implemented for face recognition to
assess the robustness of biometric systems against potential factors like occlusions, makeup,
or plastic surgery [28]. However, with the advancement in image quality and resolution and
the rapid growth of mobile applications supporting face attribute manipulation, such as
FaceApp and TikTok, the focus has shifted towards detecting such manipulations. Table 5
provides a comprehensive analysis of the latest detection techniques for face attribute
manipulation, including descriptions of datasets, approaches, classifiers, and performance
for each study.

Table 5. Comparison of previous face attribute editing identification research.

Features Classifier Dataset Performance Reference

Steganalysis CNN StarGAN AUC = 93.4% [95]

Layer-wise
neuron

SVM
StarGAN ACC = 88%

[94]
STGAN ACC = 90%

Expectation–
maximization

(EM)
CNN

StarGAN ACC = 93.17%

[121]
AttGAN ACC = 92.67%

GDWCT ACC = 88.4%

STYLEGAN2 ACC = 99.81%

Deep
CNN +

attention
mechanism

FF++ AUC = 99.4%
EER = 3.4%

[50]

Deep CNN
ProGAN ACC = 99%

[122]
Adobe Photoshop AUC = 74.9%

Facial patches CNN
ND-IIITD ACC = 99.65%

[123]
StarGAN ACC = 99.83%

Facial patches

Supervised
restricted

Boltzmann
machine
(SRBM)

ND-IIITD ACC = 87.1%
[124]

Celebrity ACC = 96.2%

Facial patches Hierarchical CNN StarGAN ACC = 99.98% [125]

Note: The highest performance on each public dataset is highlighted in bold. AUC indicates area under the curve,
ACC is accuracy, and EER represents equal error rate.

Based on the same architecture used for entire face synthesis detection, Wang et al.
demonstrated the significance of neuron behavior observation in detecting face attribute
manipulation [94]. They found that neurons in the later layers captured more abstract
features crucial for fake face detection. The study investigated this technique on authentic
faces from the CelebA-HQ dataset and manipulated faces generated using StarGAN and
STGAN, achieving the best manipulation detection accuracy of 88% and 90% for StarGAN
and STGAN, respectively. Steganalysis features have also been explored for face attribute
manipulation detection. As discussed in Section 4.2 for the face synthesis topic, Nataraj et al.
proposed a GAN-generated image detection approach that extracted color channels from an
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image and fed them into a CNN model [95]. They created a new face attribute manipulation
dataset using the StarGAN model, achieving the highest classification accuracy of 93.4%.

Given the dominance of DL, many studies have focused on using DL models for
attribute manipulation detection. Researchers have either extracted face patches or used
entire faces and then fed them into CNN networks. For example, Bharati et al. introduced
a robust face attribute manipulation detection framework by training a restricted Boltz-
mann machine (RBM) network [124]. Two manipulated datasets were created based on the
ND-IIITD dataset and a collection of celebrity pictures from the internet. Face patches were
extracted and fed into the RBM model to extract discriminative features for differentiating
between pristine and fake images. The experimental results on the ND-IIITD and celebrity
datasets were 87.1% and 96.2%, respectively. Similarly, Jain et al. utilized a CNN network
with six convolutional layers and two fully connected layers to extract fundamental fea-
tures for detecting synthetically altered images [123]. The proposed network achieved an
altered image identification accuracy of 99.7% on the ND-IIITD database, outperforming
existing models.

Furthermore, face attribute manipulation analysis using the entire face has been
extensively explored in the literature, generally yielding high performance. Tariq et al.
presented a DL-based GAN and human-created fake face image classifier that did not
rely on any meta-data information [122]. Through an ensemble approach and various pre-
processing methods, the model robustly identified GAN-based and manually retouched
images with an accuracy of 99% and an AUC score of 74.9%, respectively.

Attention mechanisms have recently garnered significant attention as a hot research
topic due to their potential to enhance the detection rate of face attribute editing when
integrated with deep feature maps. Dang et al. incorporated attention mechanisms into
a CNN model, revealing that the extracted attention maps effectively highlighted the
critical regions (genuine face versus fake face) for evaluating the classification model
and visualizing the manipulated regions [50]. The experimental results on the novel
DFFD dataset demonstrated the system’s high performance, achieving an EER close to
1.0% and a 99.9% AUC.

Another intriguing study by Guarnera et al. [121] focused on fake face detection using
local features extracted from an expectation–maximization (EM) algorithm. This approach
enabled the detection of manipulated images produced by different GAN models. The
extracted features effectively addressed the underlying convolutional generative process,
supporting the detection of fake images generated by recent GAN architectures, such
as StarGAN [105], AttGAN [118], and StyleGAN2 [126]. With an average classification
accuracy of over 90%, this work demonstrated that a model could identify images generated
by various GANs without any prior knowledge of the GAN training process.

In summary, most face attribute manipulation research has relied on DL, achieving
high detection performances of nearly 100% on various GAN-generated datasets and
human-generated fake datasets, as presented in Table 5. This indicates that DL effectively
learns the GAN-fingerprint artifacts present in fake images. However, as discussed in
the face synthesis section, the latest GAN architectures have gradually eliminated such
GAN fingerprints from the generated images and improved the fake images’ quality
simultaneously [127]. This advancement poses a new challenge for the most advanced
manipulation detectors, calling for novel approaches to be explored.

6. Face Swapping

Face swapping is a popular technique in CV and image processing that involves
replacing the face of one person in an image or video with the face of another. The process
typically begins with detecting and aligning the facial features of both individuals to ensure
proper positioning [128]. Then, the facial features of the target face are extracted and
mapped onto the corresponding regions of the source face. This mapping is achieved
through various techniques, such as landmark-based alignment or facial mesh deformation.
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By blending the pixels of the two faces, a seamless transition is created, making it appear
as though the target face is part of the original image or video.

The application of face swapping has gained widespread attention in recent years,
especially in the realm of entertainment and social media [27]. It is commonly used for
creating humorous or entertaining content, such as inserting a celebrity’s face into a famous
movie scene or swapping faces between friends in photos. However, its misuse has raised
ethical concerns, as it can be used to create deepfake videos, where individuals’ faces are
superimposed onto explicit or false contexts, potentially leading to misinformation and
harm [26]. As a result, researchers and developers have been working on developing
advanced face-swapping detection techniques to combat the spread of fake or malicious
content and protect the integrity of visual media.

6.1. Generation Techniques

Face swapping has a rich history in CV tasks, dating back over two decades. The
face-swapping pipeline is depicted in Figure 6. The process begins by extracting frames
from a source video, followed by localizing faces using a face detection technique. Once
the faces are detected, they are converted into masks of the target face, while preserving
the facial expressions. The original faces are then replaced with the synthesized facial
masks, achieved through the precise alignment of the facial landmarks. Finally, additional
trimming and post-processing methods are applied to the generated videos, aiming to
enhance the overall output quality [129].

Video2Image

Source video
Extracted frames

(Source video)

Face 

detection

Detected face

Extracted frames

(Target video)

Face 

detection

Image2Video Substitution

Target faceFake faceFake frames
Fake video

Figure 6. Complete pipeline for face swapping.

The face conversion process, which primarily relies on the AE structure, serves as a
crucial component in the face-swapping generation pipeline. Training an AE model with
an adequate amount of data from the target individual is essential to produce high-quality
outputs and ensure efficient synthesis [130]. Beyond gathering training data, the overall face-
swapping pipeline requires minimal human interference. The attractiveness of face swapping
and deepfake lies in the quality of the generated fake faces and the simplicity of the generation
process, which have garnered significant attention from the research community.

Over time, two generations of face-swapping approaches have emerged. The first
generation, prevalent before 2019, was characterized by datasets such as FaceForensics++
[67]. These datasets featured low-resolution, poor-quality, and contrasting videos, resulting
in poorly rendered face regions with noticeable GAN artifacts, such as misaligned land-
marks, spliced region boundaries, inconsistent orientation, and mismatched skin colors
across various videos. In contrast, the second generation of face-swapping datasets, ex-
emplified by DFDC [63] and Celeb-DF [65], exhibited substantial improvements in the
face-swapping generation procedure. These datasets presented highly realistic videos with
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higher resolutions and fewer visual artifacts, leading to more convincing and visually
appealing results.

6.1.1. Traditional Approach

The earliest face-swapping methods required various manual adjustments. For exam-
ple, Bitouk et al. introduced an end-to-end face replacement framework that automatically
replaced an input face with another face selected from a large collection of images [128].
The method involved face detection and alignment on the input image, followed by the
selection of candidate face images based on pose and appearance similarity. The color,
lighting, and pose of the selected face images were then updated to mimic the conditions
of the original faces. However, this approach had two significant weaknesses: it altered
the facial expression of the original face, and it lacked supervision over the identity of the
output image.

Other works focused specifically on improving the post-processing processes after
swapping faces. For instance, Xingjie et al. addressed the issue of the rigid boundary
lines that occurred when there was a noticeable difference in color and brightness between
the swapped face regions [131]. The authors proposed a novel blending approach using
adaptive weight values to efficiently solve the problem with low computational cost. In
a more recent work, Chen et al. combined various post-processing methods to enhance
face-swapping performance [132]. They implemented a face parsing module to precisely
detect the face regions of interest (ROIs) and applied a Poisson image editing module
for color correction and boundary processing. The suggested framework was proven to
significantly improve the overall performance of the face-swapping task.

The more challenging problem of replacing faces in videos was addressed by
Dale et al. [133], as a sequence of images introduces extra complexities involving tempo-
ral alignment, evaluating face-swapping quality, and ensuring the temporal consistency
of the output video. The framework employed by [133] was intricate, relying on a 3D
multi-linear model to track facial quality and 3D geometry for source and target face
warping. However, this complexity also resulted in longer processing times and required
significant user guidance.

The studies mentioned above mainly relied on a complex multi-stage pipeline, in-
volving face detection, tracking, alignment, and image compositing algorithms. Although
they demonstrated acceptable outputs, which were sometimes indistinguishable from real
photos, none of them fully addressed the aforementioned challenges.

6.1.2. Deep Learning Approach

During recent decades, DL-based face-swapping methods have demonstrated state-of-
the-art performances. For instance, Perov et al. introduced DeepFaceLab, a novel model for
performing high-quality face swapping [134]. The framework was flexible and provided a
loose coupling structure for experts who wanted to customize the model without writing
complex code from scratch. In 2019, Nirkin et al. presented a novel end-to-end recurrent
neural network (RNN)-based system for subject-agnostic face swapping that accepted
any pair of faces (image or video) without the need to collect data and train a specific
model [135]. The proposed system efficiently preserved lighting conditions and skin color.
However, it struggled with the texture quality of swapped faces when there was a large
angular difference between the target and source faces. In another study, Li et al. introduced
a two-stage FaceShifter system [129], where the second stage was trained in a supervised
manner to address the face occlusion challenge by recovering abnormal areas.

Although these approaches showed good face-swapping performance, they heavily
relied on the backbone architecture. For instance, the encoder of AE networks is responsible
for extracting the target face’s attributes and identity information so that the decoder
can reconstruct the face using that information. This process poses a high risk of losing
crucial information during feature extraction [2]. On the other hand, GAN-based structures
often fail to deal with the temporal consistency issue and occasionally generate incoherent
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outputs due to the backbone [98]. As a result, more recent work has been proposed to
address these challenges. For instance, Liu et al. implemented a U-Net model in a novel
neural identity carrier to efficiently extract fine-grained facial features across poses [136].
The proposed module prevented the loss of information in the decoder and generated
realistic outputs. Taking a different approach, Zhu et al. introduced a novel one-shot face-
swapping approach, including a hierarchical representation face encoder and a face transfer
(FTM) module [137]. The encoder was implemented in an extended latent space to retain
more facial features, while the FTM enabled identity transformation using a nonlinear
trajectory without explicit feature disentanglement. Demonstrating an innovative idea,
Naruniec et al. emphasized the importance of a multi-way network containing an encoder
and multiple decoders to enable multiple face-swapping pairs in a single model [138]. The
approach was proven to produce images with higher resolution and fidelity. In another
approach, Xu et al. leveraged the learned knowledge of a pre-trained StyleGAN model
to enhance the quality of the face-swapping process [139]. Moreover, a landmark-based
structure transfer latent module was proposed to efficiently separate identity and pose
information. Through extensive experiments, the model outperformed previous face-
swapping models in terms of swapping quality and robustness.

Furthermore, DL-based face-swapping systems have demonstrated appealing perfor-
mance. For example, Chen et al. introduced Simple Swap (SimSwap) [140], a DL-based
face-swapping framework that effectively preserved the target face’s attributes. The authors
proposed a novel weak feature matching loss to enhance attribute preservation capability.
Through various experiments, SimSwap demonstrated that it retained the target’s face
attributes significantly better than existing models. However, DL models often contain
millions of parameters and require substantial computational power. Consequently, using
them in real-world systems or installing them on smart devices, such as smartphones and
tablets, becomes impractical.

To address this limitation, Xu et al. presented a lightweight subject-agnostic face-
swapping model by incorporating two dynamic CNNs, including weight modulation and
weight prediction, to automatically update the model parameters [141]. The model required
only 0.33G floating-point operations per second (FLOPs) per frame, making it capable
of performing face swapping on videos using smart devices in real time. This approach
significantly reduced the computational burden, allowing for efficient and practical face-
swapping applications on mobile devices without compromising performance

6.2. Detection Techniques

As the quality of generated face-swapped data has significantly improved, sev-
eral techniques have been introduced to detect face swapping robustly and effectively.
Table 6 presents different state-of-the-art face-swapping approaches. Currently, most face-
swapping studies rely on DL and various kinds of features to identify face-swapped images
robustly. Among these, deep features are extensively extracted and utilized due to their
effectiveness. For example, Dang et al. combined attention maps with the original deep fea-
tures to enhance face-swapping detection performance and enable the visualization of the
manipulated regions [50]. This approach achieved the best accuracy of 99.4% on the DFFD
database. Using a different strategy, Nguyen et al. introduced a CNN network based on a
multi-task learning strategy to simultaneously classify manipulated images/videos and seg-
ment the fake regions for each query [142]. Recently, Zhou et al. [143] and Rossler et al. [67]
focused on using steganalysis features, such as tampered artifacts, camera traits, and local
noise residual evidence, along with deep features to improve tampered image detection
accuracy. Following the current trend of transformer self-attention learning, Dong et al.
proposed an identity consistency transformer face-swapping detection model to identify
multiple traits of image degradation [144]. The transformer-based model outperformed
previous baseline models and achieved the highest accuracy of 93.7% and 93.57% on the
DFDC and DeeperForensics datasets, respectively.
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Table 6. Face swapping: comparison of current detection approaches.

Features Classifier Dataset Performance Reference

Deep Transformer

FF++ ACC = 98.56%

[144]DFDC ACC = 93.7%

DeeperForensics ACC = 93.57%

Deep AE (multi-task learning) FaceSwap ACC = 83.71%/EER = 15.7% [142]

Deep CNN (attention mechanism) DFFD ACC = 99.4%/EER = 3.1% [50]

Deep CNN DFDC Precision = 93%/Recall = 8.4% [63]

Steganalysis
and deep

CNN
SVM

SwapMe AUC = 99.5%
[143]

FaceSwap AUC = 99.9%

Steganalysis
and deep CNN

FF++ (FaceSwap, LQ) ACC = 93.7%

[67]

FF+ (FaceSwap, HQ) ACC = 98.2%

FF+ (FaceSwap, Raw) ACC = 99.6%

FF+ (Deepfake, HQ) ACC = 98.8%

FF+ (Deepfake, Raw) ACC = 99.5%

Facial CNN

UADFV ACC = 97.4%

[151]DeepfakeTIMIT (LQ) ACC = 99.9%

DeepfakeTIMIT (HQ) ACC = 93.2%

Facial
(source) CNN

FF++ (Deepfake, -) AUC = 100%

[145]
FF++ (FaceSwap, -) AUC = 100%

DFDC AUC = 94.38%

Celeb-DF AUC = 99.98%

Facial Multilayer perceptron (MLP) Own AUC = 85.1% [152]

Facial Face-cutout + CNN

DFDC AUC = 92.71%

[146]FF++ (LQ) AUC = 98.77%

Celeb-DF AUC = 99.54%
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Table 6. Cont.

Features Classifier Dataset Performance Reference

Head pose SVM MFC AUC = 84.3% [69]

Temporal CNN + RNN
FF++ (Deepfake, LQ) ACC = 96.9%

[147]
FF++ (FaceSwap, LQ) ACC = 96.3%

Temporal CNN
DFDC (HQ) AUC = 91%

[146]
DCeleb-DF (HQ) AUC = 84%

Spatial and
temporal CNN

FF++ (LQ) AUC = 90.9%

[148]FF++ (HQ) AUC = 99.2%

DeeperForensics AUC = 90.08%

Spatial, temporal,
and steganalysis 3D CNN

FF++ ACC = 99.83%

[149]
DeepfakeTIMIT (LQ) ACC = 99.6%

DeepfakeTIMIT (HQ) ACC = 99.28%

Celeb-DF ACC = 98.7%

Textural CNN FF++ (HQ) AUC = 99.29% [153]

Note: The highest performance on each public dataset is highlighted in bold. AUC indicates area under the curve, ACC is accuracy, and EER represents equal error rate.
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Facial features have proven to be an effective channel extensively used for detecting
face forgeries. Zhao et al. discovered that the inconsistency of facial features in swapped
images can be extracted to effectively train ConvNets [145]. Through extensive experiments,
their model improved the average state-of-the-art AUC from 96.4% to 98.5%. Additionally,
Das et al. proposed Face-Cutout, a data augmentation approach that removed random
regions of a face using facial landmarks [146]. The dataset generated using this method
allowed the model to focus on the input’s important manipulated areas, enhancing model
generalizability and robustness. Moreover, temporal features [146,147] and spatial fea-
tures [148,149] have been extracted to detect face swapping in videos, enabling frame
texture extraction and frame content reduction. For example, Trinh et al. recently proposed
a lightweight 3D CNN, which fused spatial and temporal features, outperforming the
latest deepfake detection studies [148]. Although previous face-swapping detection models
achieved state-of-the-art results on benchmark datasets, interpreting the models’ output
remained challenging for experts. Dong et al. addressed this issue by applying various ex-
plainable algorithms to show how existing models detected face-swapping images without
compromising the models’ performance [150].

7. Facial Re-Enactment
7.1. Generation Techniques

Facial re-enactment, also known as facial expression transfer, is a fascinating tech-
nology that involves manipulating and modifying a target person’s facial expressions in
a video or image by transferring the facial movements from a source person’s video or
image [154]. The goal of facial re-enactment is to create realistic and convincing visual
content in which the target person’s face appears to express the same emotions or facial
gestures as the source person’s face.

This review focuses on two well-known facial re-enactment techniques: Face2Face [73]
and NeuralTextures [75], both of which have demonstrated state-of-the-art results in facial
re-enactment. To the best of our knowledge, the FaceForensics++ dataset [67] is currently
the only benchmark dataset available for evaluating facial re-enactment methods, and it is
an updated version of the original FaceForensics dataset [155].

Originally introduced in 2016, Face2Face gained popularity as a real-time facial re-
enactment approach that transfered facial expressions from a source video to a target video
without altering the target’s identity [73]. The process began by reconstructing the face shape
of the target subject using a model-based bundle adjustment algorithm. Then, the expressions
of both the source and target actors were tracked using a dense analysis-by-synthesis method.
The actual re-enactment took place using a deformation transfer module. Finally, the target’s
face, with transferred expression coefficients, was re-rendered, considering the estimated
environment lighting of the target video’s background. To synthesize a high-quality mouth
shape, an image-based mouth synthesis method was implemented, which involved extracting
and warping the most suitable mouth interior from available samples.

Later, the same authors presented NeuralTextures [75], which was a rendering frame-
work that learned the neural texture of the target subject using original video data. The
framework was trained using an adversarial loss and a photometric reconstruction loss.
It incorporated deferred neural rendering, an end-to-end image synthesis paradigm that
combined conventional graphics pipelines with learnable modules. Additionally, neural
textures, which are extracted feature maps carrying richer information, were introduced
and effectively utilized in the new deferred neural renderer. As a result of its end-to-end
nature, the neural textures and deferred neural renderer enabled the system to generate
highly realistic outputs, even when the inputs had poor quality.

Contrary to the Face2Face and NeuralTexture methods, which are mainly used for
video-level facial re-enactment, several recent methods have been introduced to perform
facial re-enactment in both images and videos. An influential method that automatically
enlivens a still image to mimic the facial expressions of a driving video was introduced by
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Averbuch-Elor et al. [156]. Unlike previous studies that typically require input source and
target sequences for facial re-enactment, Averbuch-Elor’s method only needs a single target
image. Due to the high potential for practical applications, multiple approaches have been
recently presented, providing outstanding performance for both one-shot [157] and few-shot
learning scenarios [158]. Lastly, with the smartphone revolution, many popular mobile appli-
cations have emerged, most of which rely on standard GAN models. For instance, FaceApp [4]
supports changing facial expressions such as smiling, sadness, surprise, happiness, and anger.

7.2. Detection Techniques

To the best of our knowledge, research on facial re-enactment detection has primarily
focused on videos. However, single image-level facial expression swap research can often
be conducted using the methods discussed in Section 6.2. As a result, this section provides
a comprehensive analysis of facial re-enactment detection at the video level, utilizing
benchmark databases such as FaceForensics++ [67] and DFDC [62].

Table 7 presents a thorough comparison of various research on the facial re-enactment
detection topic. For each work, essential information, including datasets, classifiers, features
under consideration, and recorded performances, is provided. The highest results recorded
for each dataset are highlighted in bold. It is essential to note that different evaluation
metrics were used in some cases, making it challenging to conduct a direct comparison
among the research. Furthermore, some studies mentioned in Section 6.2 for face swapping
also conducted experiments on facial re-enactment. Therefore, in this section, the facial
re-enactment results reported by those studies are discussed as well.

Table 7. Facial re-enactment: comparison of current state-of-the-art identification approaches.

Features Classifier Dataset Performance Reference

Deep CNN
FF++ (NeuralTextures, HQ) ACC = 94.2%

[159]
FF++ (Face2Face, HQ ACC = 95.7%

Deep AE FF++ (Face2Face, RAW) ACC = 86.6% [152]

Deep CNN DFFD AUC = 99.4%
EER = 3.4%

[50]

Deep AE FF++ (Face2Face, HQ) AUC = 92.7%
EER = 7.8%

[142]

Deep Transformer

FF++ (LQ) AUC = 94.2%

[160]FF++ (HQ) AUC = 99.4%

FF++ (Raw) AUC = 99.9%

Steganalysis +
deep CNN

FF++ (NeuralTextures, LQ) ACC = 82.1%

[67]

FF+ (NeuralTextures, HQ) ACC = 94.5%

FF++ (NeuralTextures, Raw) ACC = 99.36%

FF++ (Face2Face, LQ) ACC = 91.5%

FF+ (Face2Face, HQ) ACC = 98.3%

FF++ (Face2Face, Raw) ACC = 99.6%

Frequency CNN
FF++ (Face2Face, LQ) AUC = 95.8%

[161]
FF++ (NeuralTextures, LQ) AUC = 86.1%

Patch CNN
FF++ (NeuralTextures, HQ) ACC = 92%

[162]
FF++ (Face2Face, HQ ACC = 99.6%

Mesoscopic CNN

FF++ (Face2Face, LQ) ACC = 81.3%

[163]FF+ (Face2Face, HQ) ACC = 93.4%

FF++ (Face2Face, Raw) ACC = 96.8%
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Table 7. Cont.

Features Classifier Dataset Performance Reference

Facial CNN

FF++ (Face2Face, LQ) AUC = 91.2%

[164]FF+ (Face2Face, HQ) AUC = 98.1%

FF++ (Face2Face, Raw) AUC = 99.96%

Facial (source) CNN
FF++ (Face2Face, -) AUC = 98.97%

[145]
FF+ (NeuralTextures, -) AUC = 97.63%

Low-level texture CNN
FF++ (Face2Face, LQ) AUC = 94.6%

[165]
FF++ (NeuralTextures, LQ) AUC = 80.4%

Temporal
CNN +
RNN FF++ (Face2Face, LQ) ACC = 94.3% [147]

Optical flow CNN FF++ (Face2Face, -) AUC = 81.61% [166]

Temporal +
semantic

CNN
DFD (Facial re-enactment, LQ) AUC = 90%

[167]
DFD (Facial re-enactment, HQ) AUC = 87%

Note: The highest performance on each public dataset is highlighted in bold. AUC indicates area under the curve,
ACC is accuracy, and EER represents equal error rate.

Previous research has primarily focused on observing artifacts in the face region of
fake videos or specific texture features for facial re-enactment detection. For instance,
Kumar et al. trained a CNN model using facial features, achieving state-of-the-art perfor-
mance in detecting Face2Face manipulations [164] with nearly 100% accuracy on RAW
quality. In another study, Liu et al. fed low-level texture features into a CNN model to detect
facial re-enactment [165], showing significantly high performance on low-quality images
with AUC scores of 94.6% and 80.4% on the FF++ (Face2Face) and FF++ (NeuralTexture)
datasets, respectively. To boost facial re-enactment detection performance, Zhang et al.
introduced a facial patch diffusion (PD) component that could be easily integrated into
existing models [162].

Recently, research considering steganalysis and mesoscopic characteristics has gained
attention. In [67], Rossler et al. proposed a framework based on steganalysis and deep fea-
tures, achieving the highest accuracy of 99.3% and 99.6% on the RAW FF++ (NeuralTexture)
and FF++ (Face2Face) datasets, respectively. Additionally, the framework was evaluated
at various compression levels to verify the detection performance on different types of
videos uploaded to social networks. Another approach by Afchar et al. [163] involved the
extraction and use of mesoscopic features, resulting in a high accuracy of 96.8% on the
RAW quality FF++ (Face2Face) dataset. These studies demonstrated the effectiveness of
steganalysis and mesoscopic characteristics for robust facial re-enactment detection.

Attention mechanisms have gained increasing popularity in enhancing the training
process and providing interpretability to a model’s outputs. Dang et al. trained a CNN
model that integrated attention mechanisms using the FF++ dataset [50], outperforming
previous models with an impressive AUC performance of 99.4% on the DFFD database.
While stacked convolutions have proven effective in achieving good detection performance
by modeling local information, they are constrained in capturing global dependencies
due to their limited receptive field. The recent success of transformers in CV tasks [168],
which excel at modeling long-term dependencies, has inspired the development of various
transformer-based facial re-enactment detection methods. For instance, Wang et al., 2021
proposed a multi-scale transformer that operated on patches of various sizes to capture
local inconsistencies at different spatial levels [160]. This model achieved an impressive
AUC value of nearly 100% on FF++ RAW and HQ quality datasets.

Another intriguing approach to facial re-enactment detection involves the analysis of
both image and temporal information. For instance, Cozzolino et al. introduced a facial
re-enactment identification system that leveraged temporal and semantic features [167].
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The use of temporal facial features allowed the model to detect facial re-enactment without
being explicitly trained on such manipulations, while high-level semantic features ensured
the model’s robustness against various post-processing techniques.

8. Deepfake Evolution

Figure 7 depicts the evolution of deepfake technology over the past few years. The
first notable appearance of a deepfake occurred in September 2017, when a Reddit user
named “deepfake” shared a collection of remarkably realistic computer-generated content
featuring the faces of well-known celebrities superimposed onto pornographic videos. This
incident marked the beginning of public awareness regarding the potential misuse and
implications of deepfake technology. Subsequently, the introduction of DeepNude software
further fueled public concern as it allowed the creation of highly realistic fake nude images
of individuals, contributing to the rapid spread of deepfake-related issues.

Since then, numerous highly realistic deepfake videos have emerged, featuring politicians
like Russia’s President Vladimir Putin [169] and former US President Barack Obama [45],
as well as influencers such as Elon Musk [170] and David Beckham [171]. Even famous
celebrities like Tom Cruise [172] have not been immune to this technology’s manipulations,
underscoring the challenges posed by deepfake and their potential to deceive and mislead
viewers.
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Figure 7. Timeline of deepfake evolution.

Nowadays, deepfake is increasingly carried out on smartphone apps or open-source
programs and shared quickly on social networks with just a few simple steps. Table 8
reveals some well-known applications.

Deepfake technology and applications, such as FaceSwap [174], FaceApp [4], and
deepfake bot [188], have become more easily accessible, and users with a mobile phone
can quickly produce a fake video. In addition, related tutorials and open-source projects
on GitHub, such as DeepFaceLab [183], Deepware scanner [184], and Generated Pho-
tos [187], are readily available. During the last few years, major tech companies, such as
Microsoft [189], Twitter [190,191], and Facebook, have carried out various measures in
order to prevent the spread of deepfake.

In response to the growing threat of deepfake, major tech companies like Microsoft [189],
Twitter [190,191], and Facebook have taken various measures to curb their dissemination.
These efforts aim to prevent the widespread circulation of potentially harmful or decep-
tive content, as deepfake technology poses significant challenges to the authenticity and
trustworthiness of digital media.
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Table 8. Overview of deepfake creation software, mobile apps, and open-source projects.

Type Name Face
Swapping Re-enactment Attribute

Editing
Face

Synthesis Reference Note

CS

Adobe
Photoshop X X [173] Commercial application

Faceswap X [174] For learning and training purposes
Faster with GPU

MA

FaceApp X [4]

Xpression X [175]

Reface X [176] Simple process
Relies on face embeddings

Impressions X [177]

Myheritage X [178] Animates historical photos

Wombo X [179] Ensures users’ privacy

WA

Reflect X [180]

Deepfake
WEB X X [181]

Learns various features of the face
data
Takes hours to render the data

OS

Faceswap-
GAN X [182]

DeepFaceLab X X X [183] Advanced application
Needs a powerful PC

Deepware
scanner X X X [184] Supports API

Hosted website

Face2Face X [185]

Dynamixyz X [186]

Generated
Photos X [187]

Note: CS stands for commercial applications, MA indicates mobile applications, WA is web applications, and OS
refers to open-source applications.

9. Challenges and Future Trends

The following list presents the trending topics for each type of face manipulation that
require more attention from the research community:

• Face synthesis. Current face synthesis research typically relies on GAN structures, such
as WGAN and PGGAN, to generate highly realistic results [192]. However, it has been
demonstrated that face synthesis detectors can easily distinguish between authentic
and synthesized images due to GAN-specific fingerprints. The primary challenge in
face synthesis is to eliminate GAN-specific artifacts or fingerprints that can be easily
detected by face synthesis detectors. The continuous evolution of GAN structures
indicates that in the near future, it may become possible to eliminate these GAN
fingerprints or add noise patterns to challenge the detectors while simultaneously
improving the quality of the generated images [127]. Recent studies have focused on
this trend, as it poses a challenge even for state-of-the-art face synthesis detectors. In
addition, current face synthesis models struggle to generate facial expressions with
high fidelity [193]. Future research should focus on developing methods to improve
the realism and naturalness of generated facial expressions in synthesized faces.

• Face attribute editing. Similar to face synthesis, this type of manipulation also relies
mainly on GAN architectures, so GAN fingerprint reduction can also be applied
here [194]. Another challenge in face attribute editing is disentangling different facial
attributes to independently control and manipulate them without affecting other
attributes [195]. Finally, it is worth noting that there is a lack of benchmark datasets
and standard evaluation protocols for a fair comparison between different studies.
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• Face swapping. Even though various face-swapping databases have been described
in this review, it may be hard for readers to determine the best one due to many
issues. First of all, previous systems have generally shown promising performance
because they were explicitly trained on a database with a fixed compression level.
However, most of them demonstrated poor generalization ability when tested under
unseen conditions. Moreover, each face-swapping generation study has used different
experimental protocols and evaluation metrics, such as accuracy, AUC, and EER, and
experimental protocols, making it hard to produce a fair comparison between studies.
As a result, it is necessary to introduce a uniform evaluation protocol in order to
advance the field further. Likewise, it is worth noting that face-swapping detectors
have already obtained AUC values near 100% for the first generation of benchmark
datasets, such as FaceForensics++ and UADFV [69]. However, most detectors have
shown a considerable performance degradation, with AUC values under 60%, for the
second-generation face-swapping datasets, particularly DFDC [63] and Celeb-DF [65].
As a result, novel ideas are required in the next generation of fake identification
techniques, for example, through large-scale challenges, like the recent DFDC.

• Facial re-enactment. To the best of our knowledge, the most well-known facial re-
enactment benchmark dataset is FaceForensics++, though such datasets are relatively
scarce compared to those for face-swapping manipulation [67]. The FaceForensics++
dataset contains observable artifacts that can be easily detected using DL models,
resulting in the highest AUC value of nearly 100% in various studies. Consequently,
there is a pressing need for researchers to develop and introduce a large-scale facial re-
enactment public dataset that includes highly realistic and high-quality images/videos.
Such a dataset would enable the more comprehensive evaluation and benchmarking
of facial re-enactment detection methods, fostering the advancement of this important
area of research.

10. Conclusions

The advances in face manipulation techniques and DL have led to the wide spread of
fake content, particularly deepfake, on the internet in recent decades. This review provides a
comprehensive overview of the topic, covering various aspects of digital face manipulation,
including types of manipulation, manipulation methods, benchmark datasets for research,
and state-of-the-art results for the detection of each manipulation type.

In general, it was found that existing manipulated images from most current bench-
mark datasets can be easily detected under controlled scenarios, where fake detection
models are tested under the same conditions as the training process. This holds true for
the majority of benchmark datasets discussed in this survey, where the detectors achieved
significantly low manipulation detection error rates. However, deploying these models
in real-life scenarios, where high-quality and realistic fake images and videos can spread
rapidly on social networks, poses a challenge. Factors such as noise, compression level, and
resizing further complicate the generalization of fake detection models to unseen attacks
and real-life circumstances.

To improve face manipulation detection performance and enhance the detectors’
adaptability to various conditions, feature fusion has emerged as a trending approach.
Recent manipulation detection systems have relied on fusing different feature types to
achieve better results. For example, Zhou et al. explored the fusion of pure deep features
with steganalysis features [143], while Trinh et al. analyzed spatial and temporal artifacts
for effective detection [148]. Exciting fusion methods, such as RGB and near infrared (NIR),
have also been studied to enhance manipulation detection.

Moreover, novel approaches are being encouraged to enhance the generalization and
robustness of face manipulation detectors. One such example is the study conducted
by [196,197], where the authors anticipated the difficulty of differentiating between real
and fake content in the future due to advances in deepfake technology. To address this, they
proposed a social-based manipulation verification system that used facial geometry across
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videos to efficiently identify manipulated videos. Such innovative strategies are essential
to stay ahead of the evolving landscape of face manipulation techniques and ensure the
security and trustworthiness of digital media in the future.
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