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Abstract: As the global population grows and urbanization accelerates, the garbage that is generated
continues to increase. This waste causes serious pollution to the ecological environment, affecting
the stability of the global environmental balance. Garbage detection technology can quickly and
accurately identify, classify, and locate many kinds of garbage to realize the automatic disposal and
efficient recycling of waste, and it can also promote the development of a circular economy. However,
the existing garbage detection technology has some problems, such as low precision and a poor
detection effect in complex environments. Although YOLOv5 has achieved good results in garbage
detection, the detection results cannot meet the requirements in complex scenarios, so this paper
proposes a garbage detection model, YOLOv5-OCDS, based on an improved YOLOv5. Replacing the
partial convolution in the neck with Omni-Dimensional Dynamic Convolution (ODConv) improves
the expressiveness of the model. The C3DCN structure is constructed, and parts of the C3 structures in
the neck are replaced by C3DCN structures, allowing the model to better adapt to object deformation
and target scale change. The decoupled head is used for classification and regression tasks so that the
model can learn each class’s characteristics and positioning information more intently, and flexibility
and extensibility can be improved. The Soft Non-Maximum Suppression (Soft NMS) algorithm
can better retain the target’s information and effectively avoid the problem of repeated detection.
The self-built garbage classification dataset is used for related experiments, and the mAP@50 of the
YOLOv5-OCDS model is 5.3% higher than that of the YOLOv5s; the value of mAP@50:95 increases
by 12.3%. In the experimental environment of this study, the model’s Frames Per Second (FPS) was
61.7 f/s. In practical applications, when we use some old GPU, such as the GTX1060, it can still
reach 50.3 f/s, so that real-time detection can be achieved. Thus, the improved model suits garbage
detection tasks in complex environments.

Keywords: YOLOv5; ODConv; C3DCN; Soft-NMS; decoupled head

1. Introduction

Garbage refers to discarded materials that have no reuse value or are no longer
needed. This paper’s garbage research object is domestic garbage, which refers to the waste
generated in daily life, such as tea residue, daily paper, defiled plastic, glassware, metal, etc.
With the continuous improvement of industrialization and marketization, people’s lifestyles
and entertainment are diversifying. People’s consumption level is becoming higher and
higher, resulting in more and more garbage output. The traditional artificial garbage sorting
technology has a series of problems, such as a low sorting efficiency, long consumption time,
and large consumption of human and material resources, and the sorting environmental
sanitation conditions are not up to standard, among other issues. Therefore, how to detect
and classify garbage targets reasonably has become a practical problem that needs to be
solved urgently. At present, deep learning technology has developed rapidly, especially
in the fields of target detection [1] and image classification. Suppose that the relevant
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advanced technologies in deep learning can be effectively used to solve the problem of
garbage classification. In that case, the utilization of human resources will be greatly
improved, effectively improving the efficiency of garbage sorting and contributing to the
protection of the ecological environment.

The current object detection models are divided into two categories: traditional feature
extraction methods and deep learning methods. The traditional method consists of image
feature SIFT [2], HOG [3], SVM [4], and other classifiers. The traditional method has a
good detection effect for obvious objects and simple backgrounds. However, in the face of
complex situations such as irregular shape, large size variation range, serious occlusion,
and various types of garbage, the traditional target detection model has low performance
and poor robustness for the detection of interest targets and cannot meet the real-time
requirements due to excessive human intervention in extracting image features.

In recent years, with the rapid development of deep learning, scholars from vari-
ous countries have also carried out extensive research in the field of garbage detection.
Zeng et al. [5] proposed a Multi-Scale Convolutional Neural Network (MSCNN) to classify
hue–intensity–saturation (HIS) data pixels and generate binarized garbage segmentation
maps for the hyperspectral image garbage detection problem which has a good performance
in large-area garbage detection. Ma et al. [6] proposed an improved Faster R–CNN [7]
garbage target detection model, and the experimental results showed that the average
accuracy was improved by 8.26% compared with the traditional Faster R–CNN algorithm.
Mikami et al. [8] used the SSD algorithm to detect garbage bags, and the average accuracy
of garbage bag recognition was 62%. Liu et al. [9] proposed a garbage classification method
based on the YOLOv2 [10] model that serves as a lightweight version of the YOLOv2 model.
Still, the deficiencies are that the annotated garbage categories are not subdivided and could
not distinguish the garbage types. Xu et al. [11] proposed a lightweight garbage target de-
tection algorithm based on the YOLOv3 [12] algorithm, which can effectively detect garbage
targets. Zhang et al. [13] proposed a YOLO-WASTE model based on the YOLOv4 network,
using transfer learning for training, and achieved good results on self-built datasets.

The garbage detection model based on deep learning technology has significantly
improved accuracy, speed, and robustness. However, most of the garbage image datasets
used in the current research are single-target and few-target data or lack rich garbage cate-
gories, making them insufficient to meet the actual needs of different types and quantities
of garbage piled up in real life. For the partially obscured, changeable shapes and various
garbage targets in life, the existing models have some problems, such as false detection,
missed detection, and inaccurate positioning frame, which affect the detection effect.

Aiming at making up for the shortcomings of the existing technical solutions, this
study constructed a domestic garbage dataset including 38 categories with 17,057 images
and proposed a domestic garbage detection model based on YOLOv5-OCDS to meet the
needs of practical engineering applications.

The main application scenarios of the model are in places containing domestic garbage,
such as highways, streets, parks, etc. Compared with the original YOLOv5 model, the
detection effect of this model is better when dealing with complex situations such as objects
being displayed incompletely or small targets. After determining the usage scenario of
garbage, how to implement garbage detection is also crucial. Firstly, data collection is
required. It is necessary to collect image datasets containing different types of waste. Each
image must be annotated with corresponding bounding boxes and category information.
Then, a model is built by selecting a suitable deep learning model, such as YOLOv5, and
configuring it according to the number of categories and image size of the dataset. Then,
model training is performed, and model parameters are optimized. Finally, a model evalu-
ation is carried out. Test sets are used to evaluate the trained model, and the performance
of the model is assessed through indices such as mAP. When applying this model in real
life, it is necessary to export the trained weight file first and then load the exported model
file into the memory of the computing device for reasoning. The camera takes pictures
containing garbage, and the computing device uses the loaded model to reason the image
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to be detected, that is, to identify the target object in the image and its corresponding
position box. Finally, the detection results are visualized. For example, the model can be
deployed in scenic spots, and images can be obtained in real time on cameras or monitoring
equipment in scenic spots. The images can be input into the garbage detection model for
analysis and prediction. According to the model’s output results, the location and quantity
of garbage in the scenic spot can be marked, thus helping health workers optimize the
garbage cleaning plan and resource allocation.

There are four main contributions of this paper:

(1) Turned part of the convolution in the neck of YOLOv5 into ODConv, which can
dynamically convolve features at different scales to capture the feature representation
of the target at different scales.

(2) Built the C3DCN module and used it to replace part of the C3 module in the neck of
YOLOv5. The C3DCN module is a module with channel attention and deformable
convolution, which can enhance the model’s receptive field and representation power.
By replacing the C3 module with C3DCN, the feature extraction capability of the
model for the target in the garbage classification dataset will be enhanced, and the
model’s accuracy will be improved.

(3) Replaced the coupled head of the original YOLOv5 with a decoupled head. A de-
coupled head is an improved detection head structure that deals with the category
prediction and position prediction of targets separately by decoupling classification
and regression tasks. It can also better handle the differences between categories and
reduce the mutual interference between categories. It makes the model more focused
on learning the features and location information of each category and improves the
robustness of target detection.

(4) Replaced the NMS algorithm of the original YOLOv5 with the Soft-NMS algorithm.
The number of overlapping boxes can be reduced during object detection processing,
which helps to remove redundant detection results and improve the accuracy of object
detection. When dealing with small targets, the traditional NMS algorithm tends to
remove small targets in overlapping boxes, while Soft-NMS can retain these small
targets and improve the detection ability of small targets.

2. Related Work

In order to realize the reduction, reutilization, and harmless treatment of domestic
waste, it is the general trend to promote sorting automation based on artificial intelligence.
The premise of realizing sorting automation is to determine the location and identify the
types of garbage, so garbage detection technology is very important.

Currently, the traditional garbage detection methods based on machine learning and
image processing are mainly divided into three parts: region selection, feature extraction,
and image classification [14]. The garbage detection and sorting device proposed by
Salimi et al. [15] used the Haar cascade method to detect garbage on the ground for the
first time and then combined the grayscale co-occurrence matrix and directional gradient
histogram for a texture and shape analysis to obtain a set of features, which were input into
Support Vector Machine (SVM) for classification. The accuracy rate can reach 73.49%. This
kind of detection method needs to extract features manually and can obtain better detection
results by adopting specific methods under specific conditions. Hu et al. [16] proposed a
method of the infrared spectrum combined with machine learning, which realized the deep
sorting of high-value utilization of domestic garbage.

In recent years, many scholars have applied deep learning to garbage detection and
classification research. Ma et al. [17] proposed the enhanced SSD [18] algorithm L-SSD
and used ResNet-101 [19] as the backbone structure. Compared to the SSD algorithm,
it added a lightweight and efficient feature fusion module, strengthening the network
detection performance. Feng et al. [20] proposed a model to improve the performance of
Mask R-CNN [21] by using MobileNet as the backbone structure. The model had a small
number of parameters and thus could be applied to embedded devices. Liu et al. [22]
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proposed a cross-channel interactive attention mechanism ECA by improving the channel
attention mechanism SENet [23] module and introduced it into the residual unit of YOLOv3.
Compared with the original YOLOv3 model, the mAP@50 and mAP@50:95 of the improved
method increased by 0.72% and 1.07%, respectively.

Pan [24] proposed a target detection model YOLOv3++ for garbage classification. By
optimizing the backbone network and using transfer learning, the computational load
and parameter number were reduced, and the efficient detection of 10 kinds of recyclable
garbage was realized. Li et al. [25] proposed YOLOv3-2SMA, which removed the largest
target detection layer and generated the new anchor boxes, improving the detection speed
and making the accuracy as high as before. Iqbal et al. [26] used YOLOv4 with CSPDark-
Net_tiny as the backbone, trained it with images collected by themselves, and successfully
deployed it to TX2. Wang et al. [27] improved the YOLOv4 model by using the lightweight
EfficientNet backbone networks and the deep separable convolutional layers, reducing the
number of parameters in the network model. Patel et al. [28] compared classical models
such as Faster R-CNN and YOLOv5m, optimized the parameters of YOLOv5m, and finally
obtained the highest precision value of YOLOv5m. Yan et al. [29] proposed a garbage
classification detection method that integrates the pruning strategy into the YOLOv5 model.
This approach had somewhat alleviated the issues of time consumption and laborious
garbage classification, but the number of pictures in their experimental dataset was small.
In addition, the above studies all used self-built datasets, and the picture background was
relatively simple. Lin et al. [30] proposed a Soft YOLOX model to detect the dense garbage
in the manhole cover. By using the Soft-NMS algorithm to punish the detection box score,
the missing detection phenomenon was avoided. However, the dataset used in this work is
a specific garbage target in a particular scenario, so the categories are fewer. However, in
real life, there are many kinds of garbage, the garbage environment is complex, and there
are many small target pieces of garbage and garbage that is blocked, so this paper studies
multi-target garbage detection under the complex environment.

3. Methodology
3.1. YOLOv5

The network structure of YOLOv5 series models is composed of three parts: feature
extraction backbone, feature fusion neck, and detection head. The YOLOv5 model is
divided into YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x successively from
small to large. The model’s depth and the number of output channels at each layer are
controlled by the difference of depth_multiple and width_multiple parameters in the
program. This paper uses YOLOv5s as the basic model, and the YOLOv5s is shown in
Figure 1. The backbone consists of the CBS, C3, and SPFF modules. The CBS module first
carries out two-dimensional convolution (Conv2d), conducts normalization processing of
the BN layer secondly, and then passes the results to the SiLu part of the activation function,
enhancing the feature transfer and information flow. The C3 module is composed of a
series of convolutional layers and channel connection operations designed to improve the
model’s receptive field and strengthen the semantic expression ability of features. SPPF
is a pooling operation of the input features at multiple scales separately, and then the
pooling results at these scales are spliced together. In this way, the context information
of different scales can be captured, and the perception ability of the model for different
scales can be enhanced. The neck structure of YOLOv5 is used for feature extraction. It
is located between the backbone network and the detection head. The neck structure is
implemented by the Feature Pyramid Network (FPN) and Path Aggregation Network
(PAN). FPN enhances the perceptual capability of the model through multi-scale feature
fusion. PAN fuses feature between the upper and lower feature maps to promote the
transmission and integration of cross-scale information, helps the model better capture the
features of different scale targets, and improves the detection performance. The head is
used to detect the location and category of objects.
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Figure 1. YOLOv5 structure diagram.

3.2. ODConv

The convolution kernel of ordinary convolutional neural networks is static. The
existing dynamic convolution realizes the attention weighting of the convolution to the
input data through the linear combination of the convolution kernel weights, which can
significantly improve the accuracy while maintaining high-speed inference. The person
who proposed ODConv [31] believes that the existing dynamic convolutions (CondConv
and DyConv) only pay attention to the dynamics of the number of conv-kernels while
ignoring the spatial, input-channel, and output-channel dynamics.

The conventional convolution layer has a static convolution kernel, which is suitable
for all input samples. The dynamic convolution layer is different from the conventional
convolution layer. It uses the linear combination of n convolution kernels and the attention
mechanism for dynamic weighting, making the convolution operation dependent on the
input. The dynamic convolution operations can be defined as follows:

y = (αw1W1 + · · ·+ αwnWn) ∗ x (1)

where x is the input data expressed in (h, w, cin) format; y is the output data expressed
in (h, w, cout) format; Wi denotes the i-th convolution kernel (where the data format of Wi
is Wm

i ∈ Rk×k×cin , m = 1, . . . , cout;); and αwi ∈ R is the attention scalar weighted to Wi,
calculated by the attention function from the input data, with ∗ representing the convolution
operation.

ODConv’s definition of dynamic convolution is shown in Formula (2), where αwi
represents the attention to the convolution kernel, αsi represents the attention to the k × k
convolution kernel space, αci represents the attention to the input channel, and α f i rep-
resents the attention to the output channel. Moreover, � stands for multiplication along
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different dimensions of kernel space. Here, the implementation of each attention is slightly
different. As shown in Figure 2, multiplying different attentions along dimensions such
as space, channel, filter, and kernel will obtain a better performance to capture rich con-
textual information. Therefore, ODConv can capture the structure and features in the
image better. More importantly, ODConv, with fewer convolution kernels, can attain a
comparable or even superior performance compared to DyConv. In Figure 2, ∗ stands for
convolution operation.

y =
(

αw1 � α f 1 � αc1 � αs1 �W1 + · · ·+ αwn � α f n � αcn � αsn �Wn

)
∗ x (2)

Figure 2. (a) DyConv and (b) ODConv.

3.3. C3DCN Module

Deformable convolution v2 [32] is an improved convolution operation aimed at im-
proving the modeling ability of the convolutional neural network for target deformation
and pose variations. Deformable convolution v2 is an extension of the traditional fixed
convolution kernel. By introducing learnable migration parameters to adjust the posi-
tion of convolution sampling points, it can adapt to the targets’ spatial deformation and
attitude-pose changes.

Deformable convolution can learn the features of the deformed objects well, so that the
region of interest can be modeled more accurately. Moreover, it can adapt to object defor-
mation better than ordinary convolutional networks. Compared with the traditional fixed
convolutional kernel, the deformable convolutional network has stronger expressibility
and flexibility.

It can adjust the received input feature’s position and the input features’ amplitude
(importance). Through deformable offset and sampling, it can adjust the position and
deform the input features according to the learned parameters. By adjusting the deformable
offset’s value, the input feature’s position can be fine-tuned to align the target object or
feature of interest more precisely.

Given a convolution kernel with K sampling positions, wk and pk represent the
weight and preset offset of the kth location, respectively; for example, when K = 9 and
pk ∈ {(−1,−1), (−1, 0), . . . , (1, 1)} represents a 3 × 3 convolution kernel with a dilation
rate of 1, let x(p) and y(p) denote the features at position, p, in the input feature map,
x, and output feature graph, y, respectively. The deformable convolution can be defined
as follows:

y(p) =
K

∑
k=1

wk · x(p + pk + ∆pk) · ∆mk (3)

where p is the real pixel coordinate, ∆pk and ∆mk are learnable offset and regulation
parameters at the kth position, the regulation parameters are ∆ mk ∈ [0, 1], and ∆pk is any
value. Compared with the previous version of deformable convolution, the offset and the
weights of the sampling points are learned.
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The adjustable design of the RoI pooling layer is also similar. Given the region of
interest of the input, RoI pooling divides it into K spatial cells, such as 7 × 7. Within each
cell, the size of the sampling kernel can be set, such as 2 × 2, to obtain the output of each
cell. Similarly, let ∆pk and ∆mk be learnable offsets and weights at the kth position. The
output features can be calculated by using Formula (4).

y(k) =
nk

∑
j=1

x
(

pkj + ∆pk

)
· ∆mk/nk (4)

where pkj denotes the jth cell in the kth sampling region, and nk denotes the number of cells
in the sampling region.

3.4. Decoupled Head

The design idea of coupled head is to couple the classification of the target and the
regression task together, making both classification and regression prediction by sharing
features. The classification and regression branches in the coupled detection head are
interdependent, sharing the underlying feature representation and making predictions
through a joint network structure. This design can reduce the computation of the network
by sharing features and make better use of the relationship between classification and
regression tasks. Common designs of the coupled head include the use of multiple fully
connected layers or convolutional layers for classification and regression prediction at the
same time. Although the coupled head is more compact and can achieve efficient detection
with limited computing resources, it is not flexible enough for different types of targets and
task requirements.

The decoupled head [33] breaks down the object detection task into two independent
subtasks: classification and regression. As shown in Figure 3, in the decoupled head, after a
1× 1 convolution, independent classification and regression tasks are carried out, which are
responsible for predicting the category and location information of the target, respectively.
This design makes the model learn the target’s classification and location features more
flexibly to improve the detection performance. The decoupled head generally has more
flexibility and can better adapt to different target features and task requirements.

Figure 3. Comparison of coupled head and decoupled head.

3.5. Soft-NMS

In this paper, Soft-NMS [34] is selected as the postprocessing algorithm of the network
model. NMS is a common technique used to suppress redundant bounding boxes in target



Electronics 2023, 12, 3403 8 of 19

detection tasks, thereby improving the accuracy and stability of detection results. NMS
judges the similarity between bounding boxes by intersection over union (IoU) and selects
the bounding box with the highest score as the final detection result. In YOLOv5, the
traditional NMS algorithm is used for postprocessing by default, which can effectively
suppress bounding boxes with large overlaps, thus improving the recall rate and accuracy
of detection results. The rescoring function of the traditional NMS algorithm is shown in
Formula (5).

si =

{
si, iou(M, bi) < Nt
0, iou(M, bi) ≥ Nt

(5)

In Formula (5), si represents the score or confidence between the predicted bounding
box, M, and the real bounding box, bi; iou represents the intersection over union between
the predicted bounding box, M, and the real bounding box, bi; M represents the predicted
bounding box; bi represents the real bounding box; and Nt represents the threshold (usually
less than 0.5).

Soft-NMS is an improved algorithm of NMS, which retains some bounding boxes with
larger overlap to some extent by reducing the score of the bounding box when calculating
the overlap. Soft-NMS aims to solve the bounding-box missing problem, while traditional
NMS deals with highly overlapping objects. Soft-NMS usually shows better results in
scenes with dense targets or highly overlapping targets and can improve recall rates of test
results. The rescoring function of the Soft-NMS algorithm is shown in Formula (6).

si =

{
si , iou(M, bi) < Nt

si(1− iou(M, bi)) , iou(M, bi) ≥ Nt
(6)

si = sie−
iou(M,bi)

2

σ (7)

In Formula (7), σ represents the variance of the Gaussian function.

3.6. YOLOv5-OCDS

The YOLOv5-OCDS model in this paper uses ODConv to replace a part of ordinary
convolution in the neck and introduces adaptive adjustment to perceptual field and shape in
convolution operation, which makes the convolution operation more flexible and adaptable
and increases adaptability to small target objects and objects with large shape changes. The
deformable convolution and C3 are fused to form a new structure, the C3DCN structure,
which replaces a part of the C3 structure in the neck. Because the garbage classification
dataset usually contains objects of various shapes and sizes, this structure can help the
model better capture and identify these objects. Compared with the traditional convolution
operation, the structure introduces a deformable convolution kernel, which can adaptively
adjust the sampling points according to the object’s shape to capture the features of the
target better. In addition, C3DCN can also reduce the error of the target bounding box
and improve the accuracy of detection and positioning. In the face of this garbage data
containing 38 kinds, the original coupled head is replaced by the decoupled head, allowing
for the classification and regression branches to learn the category and location features of
the target freely, making the model more flexible and more suitable for complex targets.
Soft-NMS can reduce redundant detection boxes, enable the model to locate and identify
garbage more accurately, and reduce the false detection rate. Due to the different sizes
and types of daily household waste, there may be a complex identification environment.
ODConv can deal with small-target garbage more effectively, C3DCN can better adapt to
the change of the object shape, decoupled head is better for identifying complex objects,
and Soft-NMS can reduce redundant detection boxes when dealing with a large number of
overlapping targets. Figure 4 shows the YOLOv5-OCDS model’s structure.
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Figure 4. YOLOv5-OCDS structure diagram.

4. Experiment
4.1. Experimental Environment

All experiments were conducted on a computer equipped with AMD EPYC 7601,
32.0 GB RAM, NVIDIA GeForce GTX 3080TI (GPU) with 12GB video memory, and an
Ubuntu 20.04 operating system. The code written for this experiment used Python 3.8 as
the programming language and Jupyter Notebook as the development tool, with Pytorch
version 1.12.0, torchvision version 0.13.0, and Cuda version 11.3.

4.2. Experimental Dataset

This experiment used part of the “Huawei Garbage Classification Challenge Cup”
garbage image dataset and some self-made data to compose the experimental dataset. The
dataset contains 17,057 pictures, including 38 categories, such as book, bag, basin, metal,
daily paper, cardboard box, pot, ceramic utensil, shoe, fish bone, bubble, etc. The dataset is
divided into the training dataset, validation dataset, and test dataset according to the ratio
of 6:2:2. The training dataset has 10,233 images, the test dataset has 3412 images, and the
validation dataset has 3412 images.

This experiment was trained, validated, and tested under the same hyperparameters.
Where epochs are set to 500, the batch size is 32, momentum is 0.937, and the learning
rate is 0.001. Moreover, mAP@50, mAP@50:95, precision, recall, and FPS were used as the
evaluation indices of model performance.

4.3. YOLOv5-OCDS Model Training

Figure 5 shows the training process diagram of each model. The Soft-NMS method
is a data postprocessing method, so it cannot be shown in the training diagram. When
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using the YOLOv5-OC and C3DCN methods, the training automatically stops at 384 and
466 rounds because the mAP does not grow for more than 50 consecutive epochs. When
other parameters, such as epoch, learning rate, etc., are set the same, they can intuitively
provide important information about the entire training process. The figure shows that
when the IoU is 0.5, the model has a small improvement but a higher value. In contrast,
when the IoU increases, the model significantly improves but has a relatively low value.
recall and precision were also improved to varying degrees.

Figure 5. The training curves of the model.

4.4. Ablation Experiment

To verify the model’s effectiveness after combining ODConv, C3DCN, decoupled head,
and Soft-NMS, a set of ablation experiments were designed. The YOLOv5s was selected as
the benchmark model in the ablation experiment. The experimental results are shown in
Table 1. The PR curves of different models on the test dataset are shown in Figure 6, the PR
curves of different models on the validation dataset are shown in Figure 7, the comparison
of mAP@50 and mAP@50:95 values of different models are shown in Figure 8, and the
comparison of the precision and recall of different models is shown in Figure 9.

Table 1. Ablation experiment.

Methods mAP@50 mAP@50:95 P R FPS

YOLOv5s 72% 56.7% 76.7% 65.6% 80 f/s
YOLOv5s+ODConv 72.3% 56.7% 77.5% 66.2% 71.4 f/s

YOLOv5s+Decoupled Head 73.1% 59% 77.9% 65.9% 82.6 f/s
YOLOv5s+C3DCN 74.9% 63.4% 79.7% 68.8% 78.7 f/s

YOLOv5s+Soft-NMS 74.7% 61.9% 77% 65.6% 83.3 f/s
YOLOv5s-OC 75.2% 63.1% 77.1% 68.8% 72.4 f/s

YOLOv5s-OCD 75.3% 64.6% 78.3% 68.9% 68 f/s
YOLOv5s-OCDS 77.3% 69% 78% 69.4% 61.7 f/s
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Figure 6. PR curve for the YOLOv5s ablation experiment on the test dataset.

Figure 7. PR curve for the YOLOv5s ablation experiment on the validation dataset.
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Figure 8. Comparison of the values of mAP@50 and mAP@50:95 for different models.

Figure 9. Comparison of precision and recall of different models.

From Table 1 and Figures 6 and 8, it can be found that adding ODConv, C3DCN,
decoupled head, and Soft-NMS to YOLOv5s can improve mAP@50 and mAP@50: 95 to
various degrees. When ODConv is added, the detection effect of the model for small targets
is improved, and the sampling position and sampling weight of the convolution kernel
are adjusted, which increases mAP@50 by 0.3% and improves the precision and recall.
By adding OD-Conv and C3DCN, the convolution kernel can be dynamically adjusted to
adapt to the shapes of different targets. The mAP@50 and mAP@50:95 increase by 3.2%
and 6.4%, respectively, while the number of parameters in the model is reduced. When
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ODConv, C3DCN, and the decouple head are added, the model’s training efficiency and
generalization ability are improved, and the mAP@50 and mAP@50:95 improve by 3.3% and
7.9%, respectively; still, the parameter amount of the model is increased. When ODConv,
the decouple head, C3DCN, and Soft-NMS are added, repeated detections are effectively
reduced, making mAP@50 and mAP@50:95 increase by 5.3% and 12.3%, respectively.
However, for severely stacked targets, Soft-NMS may lead to some missing detections
because it will reduce the confidence score of targets with more overlap, and the model
may not achieve good results when dealing with such pictures.

4.5. Comparison Experiment

This study conducted a comparison experiment with various popular object detection
models to verify the superiority of the improved model compared with other models.
The results are shown in Table 2. First, it was compared with the classic two-stage Faster
R-CNN target model; then with the classic single-stage RetinaNet model; then with the
end-to-end DINO model; and finally with the YOLOv3, YOLOv4-tiny, YOLO-WASTE,
YOLOX YOLOv7-tiny, and YOLOv8 models.

Table 2. Comparison experiment of different models.

Models Backbone mAP@50 Parameters GFLOPs

Faster R-CNN ResNet50 64.9% 41.5 M 193.78
RetinaNet ResNet50 67.8% 36.9 M 220.73

DINO ResNet50 75.4% 46.6 M 279
YOLOv3 Darknet53 72.9% 61.7 M 155.2

YOLOv4-tiny CSPDarknet53 68.3% 6.0 M 16.3
YOLO-WASTE CSPDarknet53 72.5% 32.5 M 140.3

YOLOv5s CSPDarknet53 72% 7.1 M 16.1
YOLOX Darknet53 64.4% 8.95 M 26.84

YOLOv7-tiny CSPDarknet53 71.4% 6.1 M 13.3
YOLOv8s CSPDarknet53 76% 11.1 M 28.5

YOLOv5s-OCDS CSPDarknet53 77.3% 13.8 M 25.9

According to the data in Table 2 and Figures 10 and 11 in the comparison experiment,
among the models of the YOLO series mentioned in this paper, the mAP@50 of YOLOv5s-
OCDS is the highest, which is 4.8% higher than that of YOLO-WASTE, 12.9% higher than
YOLOX, 5.9% higher than YOLOv7-tiny, and 1.3% higher than YOLOv8, reaching 77.3%.
Compared with the classic Faster R-CNN and RetinaNet models, mAP@50 improves by
12.4% and 9.5%, respectively, while the parameters and GFLOPs are significantly reduced.
Compared with end-to-end DINO, mAP is also enhanced, while the parameter quantity
and GFLOPs are also lower. Although YOLOv5s-OCDS has slightly higher parameters and
GFLOPs than YOLOv5s, it has a considerable improvement on mAP@50. YOLOv5s-OCDS
replaces part of the convolution in the neck with ODConv to better capture the features
and boundary information of the target, and it replaces part of the C3 module in the neck
with C3DCN, which improves the accuracy of the model and can better identify small
garbage objects or objects with complex shapes. While the decoupled head usually shows a
better performance when dealing with complex targets such as garbage sorting, Soft-NMS
can effectively suppress the bounding boxes with larger overlap. Therefore, this model
achieves better results in garbage detection tasks.
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Figure 10. Comparison of mAP@50 between classical model and improved model.

Figure 11. Comparison of parameters and GFLOPs between classical model and improved model.

4.6. Visualization

In some complex scenarios, YOLOv5s may miss and error detect some targets, as
shown in Figure 12. In the figure, (a) is the ground truth, that is, our manual annotation;
(b) is the detection result of YOLOv5s; and (c) is the detection result of YOLOv5s-OCDS. It
can be seen that, compared with the ground truth, YOLOv5s mistakenly detected a metal at
the bottom, mistaking the branch for a piece of metal. In contrast, YOLOv5s-OCDS detected
the defiled plastic, which is in the ground truth, so the detection effect of YOLOv5s-OCDS
is better.

If some photos of the object are incomplete, there will be a case of missing detection.
As shown in Figure 13, compared with the ground truth, the detection result of YOLOv5s
is not the same as that of the ground truth, but the YOLOv5s-OCDS can detect the paper at
the lower right corner, although its accuracy is not high.

YOLOv5s is also prone to missing detection when facing images with smaller targets.
As shown in Figure 14, YOLOv5s does not recognize the defiled plastic on the right side
of the picture when facing small-target pieces of garbage, while YOLOv5s-OCDS can
recognize them as well as ground truth.
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Figure 12. Effect of complex scene detection.
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Figure 13. The detection effect when the object display is incomplete.
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Figure 14. The detection effect of a small target.
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5. Conclusions

This paper proposes a garbage detection model, YOLOv5-OCDS, based on improved
YOLOv5s to improve the accuracy in complex environments, objects displayed incom-
pletely, and small detected objects.

In the YOLOv5-OCDS model, ODConv is first used to replace partial convolution in
the neck, and the interaction and importance between channels can be adjusted adaptively
by learning weights to extract more distinguishing features; the C3DCN module is proposed
and used to replace part of the C3 structure in the neck so that the model can sample the
target more accurately and avoid information loss; the decoupled head is used to replace
the original coupled head so that the model can learn the fine-grained characteristics of the
target better, improve the recognition ability of different categories, help the model judge
the category of garbage more accurately, and reduce the misclassification; using Soft-NMS
instead of ordinary NMS reduces the confidence in the elimination process to retain the
detection boxes of smaller targets, which can help to keep the detection results of these
small targets and improve the accuracy of the model.

Compared with the original YOLOv5s, YOLOv5-OCDS improves mAP@50 by 5.3%
and mAP@50:95 by 12.3%. Compared with the Faster R-CNN, YOLOv5-OCDS increases
mAP@50 by 12.4%. YOLOv5-OCDS can locate and identify targets more accurately and
has a better detection ability and robustness. In the higher IoU threshold range, the model
can better adapt to changes in different target shapes and sizes. While the model improves
mAP, it also increases the number of parameters and GFLOPs. The introduction of Soft-
NMS reduces the confidence score of objects with a lot of overlap, there may be a case
of missing detection when detecting heavily stacked objects. In the following work, the
lightweight degree of the model should be improved as far as possible, without affecting
the model’s accuracy.
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