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Abstract: Neural machine translation models are guided by loss function to select source sentence
features and generate results close to human annotation. When the data resources are abundant,
neural machine translation models can focus on the features used to produce high-quality translations.
These features include POS or other grammatical features. However, models cannot focus precisely
on these features when data resources are limited. The reason is that the lack of samples makes
the model overfit before considering these features. Previous works have enriched the features
by integrating source POS or multitask methods. However, these methods only utilize the source
POS or produce translations by introducing the generated target POS. We propose introducing POS
information based on multitask methods and reconstructors. We obtain the POS tags by the additional
encoder and decoder and compute the corresponding loss function. These loss functions are used
with the loss function of machine translation to optimize the parameters of the entire model, which
makes the model pay attention to POS features. The POS features focused on by models will guide
the translation process and alleviate the problem that models cannot focus on the POS features in the
case of low resources. Experiments on multiple translation tasks show that the method improves
0.4∼1 BLEU compared with the baseline model on different translation tasks.

Keywords: neural machine translation; part of speech; loss function; low resource translation;
reconstructor; multitask

1. Introduction

With the rapid development of neural networks, neural machine translation mod-
els [1–5] have achieved impressive results, which mainly employ an end-to-end framework
consisting of an encoder–decoder for translation. The encoder extracts the semantic fea-
tures of the source language sentences. The tokens of the target language are predicted
by the decoders based on the features proposed by the encoder. Therefore, the ability of
the encoder to extract linguistic information and the ability of the decoder to infer the
tokens of the current moment determines the translation model performance. The model
has relatively enough data for translation tasks with rich data resources to generate better
results. Therefore, language information extracted by the encoder and decoder is often
more comprehensive in training. However, for translation tasks with scarce data resources,
the model needs to generate results with limited data, which may cause the model to reduce
its attention to a part of the information, resulting in imperfect features extracted by the
model and poor robustness.

To enable the model to capture more information, some works attempt to integrate
syntactic information into the translation model. These works can be divided into three
categories. Refs. [6–16] These works enrich the features extracted by the encoder to improve
the performance of the translation model. These works show that fusing grammatical infor-
mation inside machine translation can effectively improve the performance of translation
models. Also, these approaches show that the encoder features must contain POS (part
of speech) information as long as the POS information is spliced to the source. However,
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based on other grammatical annotation tasks, such as POS [17–19], we believe sentences
already contain grammatical information, because the input to the lexical annotation task
is sentences. In addition, the features extracted by the pretrained model [20,21] are used for
various tasks, which also suggests that sentences contain various information. However,
we are not determining whether this direct addition of grammatical information to the
model will lead to an excessive focus on grammatical information. After all, the model
cannot extract the required features precisely because of the amount of data. Also, most of
these methods can only add the source grammatical information. And the grammatical
information of the target-side sentence may differ from that of the source-side sentence.
However, the inability to introduce the target’s grammatical information and the decoder’s
inability to extract the grammatical information accurately may lead to the negative impact
of this difference on the model. Refs. [22–24] used multitask learning to introduce language
knowledge into RNN-based machine translation models and improved the performance of
NMT (neural machine translation) by exploiting the prediction results. Multitasks are also
used for machine translation and other tasks [25–27]. Refs. [24,28] improve machine trans-
lation performance by exploiting the predicted target-side language information. These
multitasking methods also prove that sentences contain a variety of syntactic information.
Whether fully shared or semishared parameter multitasking methods [22], their inputs
are sentences. But their output can be a target-side sentence or a POS. We consider the
process of model training as the process of feature extraction and feature selection. The
fine-tuning of the pretrained model can be seen as selecting features for the task. Therefore,
the multitask approach is preferable to the previous one. And the composition of the loss
function is crucial to the multitask approach. We consider that the difference in features is
caused by the target sequences of different tasks (the target sequence of the POS tagging
task [17–19] is the POS tag, while the target sequence of the machine translation task is
the target end sentence). Therefore, the difference in the loss of the models leads to a
difference in the features that the models focus on because the information in the sentences
is too complex. The model can only extract the valuable features as comprehensively as
possible. However, when data resources are abundant, the model can extract features that
contain grammatical knowledge through the data, such as part of speech. Multitasking
approaches using parallel or shared decoders can alleviate these problems, but most cur-
rent multitasking approaches use syntactic features from only one end. Predictive and
syntactic features of sentences are used to help translation models. Although this approach
can use source- and target-side syntactic features, it increases the model inference time.
The grammatical features obtained by layer-by-layer prediction accumulate various errors
during propagation. Besides, data augmentation [29–31] and pretrain [20,21] model are
used to improve the performance of NMT.

In summary, we argue that NMT can extract grammatical features from a large number
of sentences. The loss of NMT is used to guide NMT to extract various features in the
sentence so that the model can use these features to obtain better results. We add a loss
function to optimize the model based on a multitask approach. However, methods that
share encoder and decoder parameters can interfere with the target translation results
when using source lexical information. This interference is not mitigated by weighting the
losses differently. Therefore, we added a reconstructor to the model. The reconstructor
approach [32] ensures that the translation result is consistent with the semantics of the
input text. Therefore, the introduced reconstructor can ensure that POS information is
included in the output of the features by the encoder and decoder. Further, it also can
determine that the POS information in these features is consistent with the POS sequence
information. Therefore, we make NMT pay attention to the POS features contained in
sentences by introducing a loss function of the POS. These POS features include the POS of
the current token and the parts of speech of adjacent characters. Because POS sequences
are the same as sentence sequences, the tags of POS should not be independent. The
parts-of-speech loss function is used to make models pay attention to the POS information
and gain the relationship between the tags of the POS. This method allows us to utilize the
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POS features at the source and target. Since the additional structure in the training process
is not used in prediction, the time for inferring sentences remains the same. Meanwhile, the
loss function in our approach consists of several components, so we can weigh the different
loss functions to ensure that the impact of the loss models differs for different tasks. The
overall diagram of the method is shown in Figure 1. Our contributions are as follows:

(1) We set different weights for different loss functions, which allows us to distinguish
the task’s levels according to the task requirements.

(2) We use a reconstructor approach to ensure consistency between text features and
lexical information.

(3) Our approach does not increase inference time when introducing multiterminated
lexical information.

Figure 1. The overall diagram of the method.

The remaining sections of this paper are organized as follows: In Section 2, related
work on low-resource machine translation and the introduction of grammatical information
into machine translation is reviewed. Our model is based on the transformer, so we briefly
describe its mechanism in Section 3. Section 4 describes our approach. The data and model
parameters used for the experiments, the experimental results, and the analysis are shown
in Section 5. We conclude with a summary in Section 6.

2. Related Work

To make NMT capture more information, a large body of work attempts to incorporate
syntactic information into NMT to enrich the information extracted by NMT [6,7]. The
method of integrating linguistic information into the source side enriches the features
extracted by the encoder to improve the performance of the translation model. Sennrich
and Haddow [8] used grammatical knowledge such as word roots, subword tags, mor-
phological feature information, POS tags, and dependency analysis tags to improve the
performance of translation models. They used word embedding layers to integrate dif-
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ferent grammatical knowledge and character features to enrich the encoding-extracted
features. Eriguchi et al. [6] proposed a tree-based encoder, which processes sentences from
the bottom up in the form of a tree to introduce the information of the dependency tree
and enriches the extracted features after combining with the original encoder to improve
the model performance. Chen et al. [9] proposed a bidirectional dependency tree encoder
based on Eriguchi, which processes source language sentences through bottom-up and
top-down approaches. Unlike the previous methods, Bastings et al. [10] extracted the
features of source language sentences by introducing syntactic graph convolution and used
this method to introduce the information of a syntactic dependency tree. Hashimoto and
Tsuruoka [11] let the model learn the graph structure hidden in the sequence by changing
the form of the input sequence. Li [12] integrates syntactic information by combining
tokens with syntactic tags through parallel, hierarchical, and hybrid methods. In [13],
the performance of translation models is improved by adding encoders and decoders to
encode source-side and model-target-side dependency information. Zhang et al. [14] used
the output of the encoder to predict the target-side syntactic information. They then con-
catenated it with the features of the target-side tokens to integrate the syntactic information.
Bugliarello and Okazaki et al. [15] proposed dependency-aware self-attention, which uses
Gaussian distribution to weigh the dependency information to weight the attention matrix
of tokens. Chakrabarty et al. [16] used language features or word embeddings of tokens
to weight language features and integrated self-attention and language features based on
token attention into the translation model. Ref. [33] proposes a neural network model that
combines source-side syntactic knowledge and multiheaded self-attention to make the
syntactic part more attentive. They produce a bias by an additional syntactic perceptron
and use that bias to correct the attention distribution. Meaningful semantic features in the
source sentences are also obtained through a random discard strategy. Ref. [34] applies a
combination of multiple dictionary-based data enhancement techniques to low-resource
machine translation. They introduce monolingual data to bilingual word embedding learn-
ing to reduce the out-of-vocabulary problem. To overcome the limitations of sentence
representation reasoning, proposes a deep fusion matching network that consists of a
coding layer, matching layer, dependency convolution layer, information aggregation layer,
and inference prediction layer. The matching layer is enhanced using a deep matching net-
work, and a heuristic matching algorithm simplifies the interactive fusion. The dependency
convolution layer utilizes a tree-type convolution network to extract sentence structure
information, improving the interpretability of the reasoning process. Experimental valida-
tion is conducted on multiple datasets to assess the performance of the proposed model.
A hybridized form of direct and rule-based language processing is used in [35] to present
a machine translation system from Sanskrit to Hindi. The divergence between Sanskrit
and Hindi is also discussed in this paper, along with a proposition for how to handle it.
Sanskrit–Hindi bilingual dictionaries, a grammatical Sanskrit corpus and a Sanskrit analy-
sis rule base have all been used in the projected system. The system processes the input
Sanskrit sentence using the parsing approach and the context-free grammar in standard
form for Sanskrit language processing. Ref. [36] focuses on integrating linguistic features
into a neural machine translation system, especially for low-resource languages such as
Thai and Burmese. The proposed approach is carried out by feeding grammatical features
into the decoder and text features after extracting the features through the encoder.

Niehues and Cho [22] used multitask learning to introduce language knowledge into
RNN-based NMT by jointly training several natural language processing (NLP) tasks in
one model to improve the performance of a single task. On this basis, Yin et al. [24] enriched
the feature vectors extracted by the encoder by introducing the predicted POS tags of the
source language sentence sequences and improved the translation model’s performance by
incorporating the predicted POS tags of the target-side sentences. In [24,28], machine translation
performance is improved by predicting target language information. Maimaiti’s [37] method is
equal to the previous ones, and they combine POS tags and data augmentation methods with
improving translation performance by obtaining a large amount of generated data.
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Ref. [38] designs a deep fusion matching network to solve the problem of insufficient
inference depth and interpretability in reasoning models. Ref. [39] proposes a multilayer
semantic-based sentence representation method using a bidirectional long- and short-term
memory network and a multiattention mechanism. Unlike the introduction of grammatical
information in text, ref. [40] enriches the information at the source end by incorporating
the extracted image features. They combine image and text features and then make a self-
attentive mechanism with text features. Ref. [41] extends the parent–child transfer learning
method using embedded repetitions between aligned subwords to improve low-resource
machine translation. Ref. [42] quantifies the data produced by back translation through
lexical diversity and syntactic diversity and improves the effectiveness of back translation
by enhancing the diversity of produced translations. Ref. [43] compares the effects of
syllables, graphemes, and characters as inputs on model performance. The model uses
regularization to syllabify some languages and hyphenation as a substitute for languages
that cannot be syllabified. Ref. [44] proposes a series of values that are particularly suitable
for low-resource environments, emphasizing that default or recommended values for high-
resource environments are suboptimal for low-resource environments. They argue that a
more aggressive regularization is necessary when resources are limited in proportion to
their scarcity. The authors explain their findings by considering the generalization ability
of sharp and flat basins in neural network loss landscapes.

3. Background

Since the model is built upon the Transformer [3], we introduce the architecture of
the Transformer in this section. We denote the source sentence as X = {x1, x2, x3, ..., xn}
and the target sentence as Y = {y1, y2, y3, ..., ym}, where n and m are the lengths of X and Y,
respectively. The Transformer network structure is shown in Figure 2.

Figure 2. The model structure of the Transformer [3].
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3.1. Encoder

The N encoder layers make up the encoder. The text sequence needs to pass through
the word embedding layer before it enters the encoder. Each encoder layer is composed of
two network structure: (1) the multihead attention network (MultiHead) and (2) the feed-
forward network (FFN). The information in the sequence is extracted from the sequence
by the multiheaded attention network through self-attention. Features are combined and
nonlinearly mapped as they pass through the feed-forward network. The output of layer k
is then fed to the layer k + 1 as the input as follows:

sk = EncoderLayer(sk−1) (1)

where sk is the output of k-th layer. Consequently, the encoder layer consists of multihead
attention and a feed-forward neural network:

EncoderLayer(sk−1) = FFN(MultiHead(sk−1)) (2)

Multihead and FFN are as follows:

FFN(sk) = max(0, skW1 + b1)W2 + b2 (3)

MultiHead(sk−1) = Concat(head1, head2, ...headh)Wm (4)

where each head is the output of a self-attention layer:

headi = Attention
(

sk−1Wk, sk−1Wq, sk−1Wv
)

(5)

Attention(k, q, v) = So f t max
(

qkT
√

dk

)
v (6)

We denote the output of N-th layer as s, which is the extracted feature of the sentences.
The whole process is simplified as follows:

s = Encoder(X) (7)

3.2. Decoder

The decoder architecture is similar to the encoder, which is also composed of N layers
with the same structure. The decoder layer has an additional multiheaded cross-attention
sublayer compared with the encoder layer. The process of the decoder is:

ck = DecoderLayer(ck−1, s) (8)

where ck is the output of the k-th layer and s is a feature of a source sentence extracted
by the encoder. Finally, the softmax layer is used to output the probability distribution
of target words, and the model is trained by the cross-entropy loss, which minimizes the
negative log-likelihood as

LNMT = −
m

∑
i=1

log p(yi|y<i, X) (9)

where yi is the i-th word in the target sentence Y, and y(<i) is the previous words in the
target sentence. In this paper, we denote the decoding process of the NMT model to

Y′ = Decoder(s) (10)

where Y′ is translation result of NMT.
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4. Methodology

Our model uses POS tags to guide translation. Specifically, the final output of the
translation model is guided by the source and target POS losses. Since the model can
utilize both the source-side and target-side POS tags, this paper introduces the method
from source-side- and target-side-guided translation.

For the guidance of source POS tags, we use an encoder and decoder to calculate
the loss of source POS tags; this loss make the model notice POS features during training.
The encoder and decoder structure of this method is shown in Figure 3. The sublayer
structure of pos_encoder and pos_decoder is the same as the structure of the encoder and
decoder in the Transformer. The difference is the number of sublayers. Considering that
the POS tagging task is simpler than the machine translation task, the number of layers of
pos_encoder and pos_decoder is lower than the number of layers in the encoder and decoder.

Figure 3. The structure of the encoder and decoder in our method.

The encoder in this structure is used to obtain the context vectors of the source sentence.
This process is the same as the encoder process in the original Transformer, and then s
will be input into the decoder and pos_encoder for translation tasks and POS tagging tasks.
The target-side sentence features obtained by decoder inference are input into pos_decoder
to predict the source-side POS tags. For pos_encoder, the context vector s output from
the encoder is processed by multihead attention to obtaining the features of the source
POS sequence:

cspos = Pos_encoder(s) (11)

s is the context feature vector extracted by the encoder; cs pos is the feature vector of the source
POS tag obtained by pos_encoder through s; and the processing flow of Pos_encoder() is

Pos_encoder(s) = FFN(MultiHead(s)) (12)

The feature is processed by a linear function and a softmax function to obtain the
probability of the source language POS tag:

p(xpos) ∝ exp(Linear(cspos)) (13)
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Pos_decoder will predict the remaining part of the source POS tags according to the partial
tags of the source-end POS and the target-end context information c inferred by the decoder:

cspos = Pos_decoder(xpos, c) (14)

where xpos is part of the source POS tag, c is the context feature of the target-side sentence
obtained by decoder inference, and cspos is the probability of the source-end POS tag
predicted by pos_decoder. The use of the target-side POS tag is the same as in the source-
side method. There is no pos_encoder to predict the target-side POS feature, and only a
pos_decoder is used to predict the target-side POS tag.

According to the model structure and the description, the objective function of the
model proposed in this paper consists of five parts: the lossLspos obtained by the probability
of the POS tag output by the encoder, which is obtained through the sentence sequence
contained in the semantically computed.

Lspos = −
n

∑
i

log p
(

xpos
i |x

)
(15)

Losses Lspos′ and Ltpos are computed from the output of pos_decoder. This partial loss
is computed jointly from the source and target sentence sequences and the known POS
sequences. To enable the model to learn the POS conversion between language pairs, Lspos′

is added on the decoder side.

Lspos′ = −
n

∑
i

log p
(

xpos
i |x, y, xpos

<i

)
(16)

Ltpos = −
m

∑
i

log p
(

ypos
i |x, y, ypos

<i

)
(17)

The loss Lword calculated by the output of the decoder:

Lword = −
m

∑
i

log p(yi|x, y<i) (18)

The KL divergence LKL is calculated by the source POS sequence probability obtained
by the pos_encoder and the source-end POS sequence probability output by pos_decoder.
SinceLspos and Lspos′ have different information, the difference between the POS features
extracted by the decoder and the encoder is determined by KL divergence.

LKL = ∑
xpos

i 6=x′ pos
i

Dkl

(
log p

(
xpos

i |x
)
|| log p

(
x′pos

i |x
pos
<i , x, y

))
(19)

5. Experiments
5.1. Dataset

The train set use in the Chinese–Uighur and Uighur–Chinese experiments have
170,000 sentences provided by the CCMT2019 (China Conference on Machine Transla-
tion) Uighur–Chinese machine translation task. The test sets and validation sets have
1000 sentences provided by CCMT2019. We use word segmentation tools and POS tagging
tools developed by Xinjiang Multilingual Information Technology Laboratory to process
the Uighur language. For Chinese, we use the open-source tool THULAC [45] of Tsinghua
University for word segmentation and POS tagging. We also use BPE [46] (Byte-Pair
Encoding) to process Chinese and Uighur with 8K iterations.

The data use in the Chinese–English and English–Chinese experiments have
230,000 sentences provided by IWSLT2017 (https://workshop2017.iwslt.org/index.php
(accessed on 9 March 2022)) (The International Conference on Spoken Language Trans-

https://workshop2017.iwslt.org/index.php
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lation). The validation set is IWSLT17.TED.dev2010 and the test set is IWSLT2017.TED-
.tst2015. We used THULAC (Tsinghua University Lexical Analyzer for Chinese) and NLTK
(https://www.nltk.org/ (accessed on 9 March 2022)) (Natural Language Toolkit) to per-
form word segmentation and POS tagging on Chinese and English data, respectively. The
English–Russian and Russian–English experiments are performed on 1.55 million sentences
provided by WMT14 (https://www.statmt.org/wmt14/translation-task.html (accessed on
9 April 2021)) (Workshop on Machine Translation), where the validation set is newstest2013,
and the test set is newstest2014. The word segmentation and POS tagging for English
and Russian uses NLTK. The data use in the German–English direction experiment is the
English–German data provided by WMT16 (https://www.statmt.org/wmt16/translation-
task.html (accessed on 9 April 2021)). The training dataset has 4.52 million sentences, and
the validation and test sets are newstest2015 and newstest2016. Spacy (https://spacy.io/
(accessed on 15 May 2022)) is used to perform word segmentation and POS tagging for
English and German. The above experimental data are all processed by BPE with 32K itera-
tion. The translation results are calculated using Moses’s (https://www.statmt.org/moses/
(accessed on 1 March 2019)) evaluation script multi-bleu.perl to obtain the BLEU [47] value.
Among them, the F1 value of the POS tagging tool (THULAC) can reach 92.9% on the stan-
dard dataset Chinese Treebank (CTB5) (https://www.cs.brandeis.edu/~clp/ctb/ (accessed
on 15 March 2022)); the accuracy rate of spacy in the current language reaches more than
95%. The specific information of the data is shown in Table 1. We used Chinese–Uighur
and Chinese–English as low-resource translation tasks and the other two as resourceful
translation tasks. In this paper, Chinese is represented as zh, and English, Uighur, and
Russian are denoted as en, uy, and ru, respectively.

Table 1. Experimental dataset, zh means Chinese.

Language Pair Source Train Data Size Valid Data Size Test Data Size

zh-uy CCMT2019 170,054 1000 1000
zh-en IWSLT2017 231,230 879 1000
en-ru WMT2014 1,558,847 3000 3000
de-en WMT2016 4,500,966 2169 2999

5.2. Hyperparameters and Systems

The base system is trained using the open-source system Fairseq (https://github.com/
pytorch/fairseq (accessed on 15 March 2020)), and other models are modified on Fareseq.
And the settings of the model hyperparameters are as follows:

• The head is 8 in multihead attention.
• Encoder and decoder layers are 6.
• The dimension of the word vector and model hidden state is 512.
• The dimension of the feed-forward network is 2048.
• The optimization function is Adam [48], where adam_beta1 is 0.9 and adam_beta2

is 0.998.
• Dropout [49] is 0.1.
• The warm up [50] is 4000.
• The learning rate is 0.0007.
• The label_smoothing is 0.1.

In the decoding stage, Beam Search [51] is used to search, the number of search
candidates is 24, and the length ratio of the translated target sentence to the source sentence
is 1.6.

Fairseq is used for training, and the following systems are used for experiments:

• base: The base system is based on the Transformer base parameter.
• Sennrich [8]: Since the experiments performed by Sennrich [8] are based on the RNN

machine translation model, we reproduce the method in the Transformer according to
the method proposed in Sennrich’s paper, and this system is used as Sennrich. This

https://www.nltk.org/
https://www.statmt.org/wmt14/translation-task.html
https://www.statmt.org/wmt16/translation-task.html
https://www.statmt.org/wmt16/translation-task.html
https://spacy.io/
https://www.statmt.org/moses/
https://www.cs.brandeis.edu/~clp/ctb/
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
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approach enriches the feature information of the encoder by splicing POS information
with word vector information.

• Niehues [22]: The methods proposed in [22] is implemented and experimented with
transformers, denoted as Niehues. This method adds POS tagging to the machine
translation task but uses only the POS labels at one end.

• Yin [24]: The methods proposed in [24] is implemented and experimented with
transformers, denoted as Yin. The method is similar to Niehues, except that the
decoder is assisted in generating the results by predicting the target point POS.

• Chakrabarty [16]: The methods proposed in [16] are implemented and experimented
with transformers, denoted as Chakrabarty. The method weights the features when
fusing the source-side POS to the encoder.

• joint: According to the previous experimental results and Sennrich’s method, we
define the text’s word vector and the word vector of the part of speech as 512 di-
mensions. After splicing into a 1024-dimensional feature, a linear layer converts the
1024-dimensional feature into a 512-dimensional feature (system joint).

• srcPOS: srcPOS is a part of the loss function in our proposed model (the loss function
is L = Ls pos + Ls pos′ + LK L + Lword)); the system only includes the loss of the
source-side POS information.

• tarPOS: tarPOS is a loss that only contains the target POS information.
• joint + tarPOS: joint + tarPOS is the fusion of the modified Sennrich method and

the tarPOS method.
• srcPOS + tarPOS: srcPOS + tarPOS is a fusion of corresponding system methods.

All results evaluate the translation by calculating BLEU using multi-bleu.perl after
averaging 10 models.

5.3. Low-Resource Translation Tasks

Table 2 shows the results of different systems on different translation tasks. Our
proposed method has a significant improvement compared with base and other systems.
The Sennrich and Niehues methods integrate various grammatical information into NMT,
while the methods implemented in this paper only use POS information. We believe that
the more syntactic information provided to NMT, the better the performance of NMT can
be. Here, we only verify the effectiveness of our method in terms of parts of speech. At the
same time, we find that the results of the joint system are significantly better than Sennrich.
We believe that the features of the output text of the word embedding layer and the features
of the POS tags contain some of the same information. It is difficult for NMT to utilize the
most beneficial information of each by just merging the text and POS embeddings. And
unlike the original Sennrich, which uses various grammatical information, here it only
uses POS tags, and the dimension of the POS tags is small, making NMT unable to obtain
enough grammatical information from this simple method.

Table 2. Experimental results on low-resource translation tasks.

System zh2uy uy2zh zh2en en2zh

base [3] 22.71 27.36 21.25 19.33
Sennrich [8] 22.87 26.92 21.26 19.23
Niehues [22] 23.34 27.86 21.7 19.73

Yin [24] 23.12 27.75 21.62 19.6
Chakrabarty [16] 23.34 26.96 21.67 19.45

joint 23.43 28.14 21.82 19.94
srcPOS 23.36 27.72 21.86 19.79
tarPOS 23.47 28.2 21.86 19.62

joint + tarPOS 23.7 28.39 23.00 20.26
srcPOS + tarPOS 23.88 28.37 22.27 20.46
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The best results on the low-source translation tasks are with the method that fuses
target and source parts of speech. These results show that the method proposed in this
paper to guide NMT to pay attention to the source and target POS information is beneficial
to improving the translation model’s performance. Our approach is quite different from
multitask approaches that parallel or even share decoders; our method indirectly affects
the NMT model by iterating the POS tagging task decoder. During inference, the model
parameters do not take advantage of the iterative decoder. Therefore, they do not incur
additional runtime. We found that the improvement of the model through the joint system
is more significant than that of the indirect use of the loss function to implicitly influence
the model, which may be related to the depth of the model, which reduces the influence of
the loss function. The method proposed in this paper also improves the translation model
to a certain extent for the translation task with rich resources.

We also experiment with source-side POS tags in a multitask approach. However,
when we take the source POS tagging task, the translation result is far from the ground-
truth value, and its BLEU value is even less than 1.0. Therefore, we did not add this method
to the results, and for this reason, we use the serial method for POS tagging tasks. We
believe that there is a big difference between the source-side POS tags and the target-side
sentences of machine translation. This difference makes NMT pay attention to the source-
side POS features and reduce the attention to the target-side sentences, resulting in poor
translation results. We address the problem of NMT overfocusing on POS information with
an additional two-layer encoder sublayer. The feature received by the decoder is still the
output of the result of the first part, and the new part will indirectly affect the output of the
first part through the objective function. It will not make the model pay too much attention
to POS information and reduce the model’s performance.

5.4. Rich-Resource Translation Tasks

Compared with the results on low resources, on the WMT14 German–English dataset,
the system with the best results is tarPOS, shown Table 3. The improvement brought by
other methods is not significant, which may be related to the decoder’s need for more
accurate information. To predict the outcome. If it is necessary to make the translation
results more in line with language rules, the target language knowledge may improve the
model more than the source language knowledge. After all, if you already know the POS
sequence of the target sentence or other language knowledge, it will be reduced to predict
a certain extent. And the rules of the POS information of the source language and the POS
information of the target language are quite different. In the English–Russian translation
task, our method has a certain improvement compared with some methods. In the Russian–
English translation task, compared with other methods, there is a 0.5 BLEU improvement.
Our method also has a certain improvement in the resource-rich task compared with the
base system.

Table 3. Experimental results on rich-resource translation tasks. The symbol—indicates that the loss
during training is too low to train the model.

System en2ru ru2en de2en

base [3] 29.65 30.17 35.47
Sennrich [8] 28.87 28.9 35.55
Niehues [22] 30.1 - 35.86

Yin [24] 29.01 28.95 35.58
Chakrabarty [16] 28.73 28.7 35.77

joint 22.68 - 35.53
srcPOS 29.86 29.7 35.45
tarPOS 29.78 29.44 35.87

srcPOS + tarPOS 30.21 30.82 35.66
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5.5. Discussions

Due to the insufficient ability of the model to obtain features under low resources, the
model’s performance is greatly improved with the integration of POS information. For rich
resources, since the model has more data to fit the natural distribution, the ability of the
model to acquire features is better than that in the case of low resources. Even if part-of-
speech information is added, the model will not improve with low resources. The degree
of improvement is significant. Therefore, as the number of data increases, the model can
acquire POS information or other language knowledge during training, which reduces the
model’s need for additional language knowledge. At the same time, if the POS information
is excessively added, the model will contain a large number of POS features, which will
reduce the features containing other information in the extracted features, thereby reducing
the model’s performance. We conducted related experiments for different data volumes
to further verify the appeal conjecture. The experimental data are intercepted from the
German–English translation task.

According to the experimental results in Table 4, the model accommodates POS
information differently in different language pairs, which may be related to the POS
and grammar between language pairs. The closer the language pairs are, the lower the
model’s ability to accommodate parts of speech. In this paper, different linear differences
are performed on the loss function in srcPOS + tarPOS, so that the model loss function
becomes line (L = 0.1×Lspos + 0.5×Lspos′ + 0.1×LKL + Lword + 0.3×Ltpos) and line2
(L = 0.2× Lspos + 0.2× Lspos′ + 0.1× LKL + Lword + 0.5× Ltpos). The results in Table 3
show that there is also some impact on the model by weighting the POS-related losses. This
effect further proves that the model has a specific limit to the demand for POS information.
The weights here are just randomly chosen. For optimal weights in different situations,
relevant experiments are not carried out here.

Table 4. Experimental results of adding different degrees of POS information with different data
volume.

System 0.2 m 0.5 m 1 m 4.5 m

base 18.07 21.71 25.1 35.47
joint 18.78 21.43 24.88 35.53

tarpos 18.35 22.46 24.95 35.87
srcpos + tarpos 18.82 22.33 24.92 35.66

line 19.4 22.26 25.3 35.76
line2 19.13 22.75 25.2 35.96

As mentioned earlier, POS information is already implicit in the text information. The
features in the POS information are not contained in shorter dimensional features. The
experimental results of the method proposed by Sennrich [8] are similar to the experimental
results obtained on srcPOS on most language pairs. To compare whether these two methods
are orthogonal, we merge the two methods and experiments on the English–Chinese
translation task. According to the experimental results shown in Table 5, the two methods
are orthogonal. It is also proved that the features fused utilizing loss function and direct
concatenation have the same effect. And the fusion of these two methods reduces the
results of the translation model, proving that there is a specific limit to the model’s demand
for POS features. At the same time, to compare when the integration of source data in the
model structure is more conducive to improving model performance, we conducted further
experiments on the srcPOS method.
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Table 5. Comparison of two methods of fusing source POS Tags.

System en2zh

base 19.33
joint 19.94

srcPOS 19.77
joint + srcPOS 19.47

In Table 6, the model loss function of the newly added srcPOS1 system is L = Lword +

Lspos; the model loss function of the srcPOS2 system is L = Lword + Lspos′ ; and the model
loss function of the srcPOS3 system is L = Lword + Lspos + Lspos′ . The experimental
results show that the two methods, srcPOS1 and srcPOS2, are beneficial to improve the
performance of the translation model, and the fusion of these two methods is also improved
compared with a single method. The results show that the two methods have different
roles in the model structure. According to the model structure, srcPOS1 is more inclined to
increase the attention of the translation model encoder to POS information. At the same
time, srcPOS2 is separated from the encoder by a decoder. Its main impact should be on
the decoder in the translation model. The simultaneous use of these two methods helps the
model encoder and decoder to pay attention to the source POS information at the same
time to improve the performance of the translation model.

Table 6. Comparison of methods for fusing POS tags at source.

System zh2en en2zh

base 21.25 19.33
srcPOS 21.86 19.79

srcPOS1 21.57 19.43
srcPOS2 21.73 19.44
srcPOS3 21.51 20.23

To better analyze the experimental results, we visualize the perplexity of the low-
source translation task of the validation set during training on the Chinese–English and
Chinese–Uighur translation task at different steps, as shown in Figure 4a–d. The perplexity
of our proposed method is consistently lower than other methods. This shows that our
method can generate more fluent sentences for NMT. Meanwhile, to show that our added
loss has an effect on the model, we show the change in loss for the low-source translation
task in Figure 5a–d. As can be seen from the figure, the translation loss of our method is
also the lowest among all methods, which indicates that we guide the translation model to
translate by adding POS loss, which is beneficial to reduce the loss of translation tasks and
improve the performance of the translation model.

Although our method has been somewhat improved, the method still has some
problems. For example, although the lexical annotation task is relatively simple compared
with the translation task, the lexical annotation task cannot ensure that valuable information
may be extracted accurately due to the sparse data. In addition, similar to the multitask
approach, the loss function of the model has loss functions composed of multiple tasks,
which leads to how the weights are defined before different loss functions. Although the
linear interpolation can assign the weights of different loss functions, this does not entirely
solve the problem, because reducing the influence of a particular loss function on the
model by a weighting method inevitably leads to the model paying less attention to certain
features. Therefore, setting the loss function for the primary and secondary relationship of
the task is a crucial issue. And this paper does not address this part.
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(a) (b) (c) (d)

Figure 4. The perplexity of the validation dataset on different tasks: (a) The perplexity on English to
Chinese translation task; (b) the perplexity on Chinese to English translation task; (c) the perplexity
on Chinese to English translation task; and (d) the perplexity on Chinese to English translation task.

(a) (b) (c) (d)

Figure 5. The loss of the validation dataset on different tasks: (a) The loss on English to Chinese
translation task; (b) the loss on Chinese to English translation task; (c) the loss on Chinese to English
translation task; and (d) the loss on Chinese to English translation task.

6. Conclusions

To better integrate POS information into the translation model, this paper proposes a
method for integrating POS tags by combining a multitask approach and a reconstruction
approach. The method achieves 23.88, 28.37, 23.00, and 20.46 for Chinese–Uighur and
Chinese–English, respectively. The model improves the results by more than 1 BLEU
compared with the baseline on these translation tasks. However, this paper only validates
the method’s performance with a limited number of translation tasks. The main validation
is on Chinese-centric translation tasks and, therefore, on low-resource translation tasks
that are also Chinese-centric. English, Chinese, and Uighur have their own linguistic and
grammatical characteristics. Therefore, they can represent a large part of languages, which
prevented us from extending the scope of the experiment. As for the translations between
English and Uighur, there was no way to conduct experiments, because we did not have
publicly available parallel data. Of course, there is still much room for improvement in
this paper; specifically, (1) whether the method can be extended to other grammatical
information and (2), since different grammatical information may contain some of the same
information, information redundancy will lead to the degradation of model performance.
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