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Abstract: Sensor management is a crucial research subject for multi-sensor multi-target tracking in
wireless sensor networks (WSNs) with limited resources. Bearings-only tracking produces further
challenges related to high nonlinearity and poor observability. Moreover, energy efficiency and
energy balancing should be considered for sensor management in WSNs, which involves networking
and transmission. This paper formulates the sensor management problem in the partially observ-
able Markov decision process (POMDP) framework and uses the cardinality-balanced multi-target
multi-Bernoulli (CBMeMBer) filter for tracking. A threshold control method is presented to reduce
the impact on tracking accuracy when using bearings-only measurements for sequential update.
Moreover, a Cauchy–Schwarz divergence center is defined to construct a new objective function
for efficiently finding the optimal sensor subset via swarm intelligence optimization. This is also
conducive to dynamic clustering for the energy efficiency and energy balancing of the network. The
simulation results illustrate that the proposed solution can achieve good tracking performance with
less energy, and especially that it can effectively balance network energy consumption and prolong
network lifetime.

Keywords: sensor management; multi-target tracking; random finite set; CBMeMBer; information
gain; swarm intelligence optimization

1. Introduction

Wireless sensor networks (WSNs) have attracted extensive attention in many fields,
such as battlefield surveillance, environmental monitoring, and industrial control [1–6].
Because of rapid deployment, self-organization, low cost, and wide perception range, target
tracking in WSNs has more unique application value and prominent superiority [7–10].
Sensor management is very necessary for efficient data fusion in large-scale WSNs due to
bandwidth and energy supply constraints. The task of sensor management is to select an
optimal subset of sensors to be activated at each time step, then transmit their measurement
data to the central processing center, so as to achieve better tracking performance with
lower communication consumption. Actually, this is also an equilibrium problem between
tracking accuracy and energy consumption.

Multi-target tracking brings great difficulties and challenges to sensor management.
Unlike single-target tracking, sensor management for multi-target tracking needs to con-
sider indistinguishable measurement data and resource competition of multiple targets.
In general, it comprises two underlying components: multi-target filtering and opti-
mal decision-making [11]. In recent years, multi-target Bayesian filtering based on ran-
dom finite set (RFS) theory within Mahler’s finite set statistics (FISST) framework has
been developed [12,13]. As one of the most popular types of FISST, the multi-target
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multi-Bernoulli (MeMBer) filter models the multi-target posterior density as multi-Bernoulli
RFSs, which can be more accurate and less computational than many other multi-target
tracking methods [14]. In order to solve the problem of the cardinality overestimation
of the MeMBer filter, the cardinality-balanced MeMBer (CBMeMBer) is proposed as a
modified filter and provided sequential Monte Carlo (SMC) and Gaussian mixture (GM)
implementations [15]. Following these studies, many advanced filtering methods such
as labeled multi-Bernoulli (LMB) filter [16], generalized LMB (GLMB) filter [17], and
multi-scan GLMB filter [18] have been developed. The above filters are widely used in
various applications for multi-target filtering and good tracking performance.

As mentioned before, decision-making is the other important component of sen-
sor management. Generally, an objective function is developed as the optimization
criterion for decision-making. At present, it mainly uses task-based and information-
based approaches. A task-based approach is used to formulate the objective function
as a cost function, which usually adopts performance metrics such as variance, cardi-
nality estimation, and other distribution-dependent measures [19–24]. Multi-objective
optimization can also be considered for sensor management to meet multiple task re-
quirements simultaneously [25–27]. The objective function in an information-based ap-
proach is formulated as a reward function that represents the information gain [28], such as
Kullback–Leibler (KL) divergence [29–31], Rényi divergence [32–34], and Cauchy–Schwarz
(CS) divergence [35–37]. Compared to task-based approaches, information-based ap-
proaches can solve or avoid problems such as poor performance for a single task or
challenges posed by multiple competing objectives [11,38].

Solving the objective function for sensor management is usually a complicated opti-
mization problem. As the most important type of optimization algorithm, swarm intel-
ligence is inspired by the collective behavior of social insects or animals, which has the
advantages of robustness, speed, autonomy, and parallelism. Various representative swarm
intelligence optimization algorithms have been put forward so far, such as the particle
swarm optimization (PSO) algorithm [39], artificial bee colony (ABC) algorithm [40], social
spider optimization (SSO) algorithm [41], firefly algorithm [42], and so on. These algo-
rithms are widely applied to improve objective task accuracy or efficiency in a variety
of fields, and they can achieve superior results compared to other optimization methods.
Each optimization algorithm provides different performance when dealing with different
problems, so an appropriate algorithm needs to be employed depending on the problem
and requirement.

In addition, there are two basic types of sensor management problems: single-sensor
control and multi-sensor control. For the former, there is only one single mobile sensor in
the tracking system, and the sensor state is changed by finding an optimal movement from
a set of sensor commands [43,44]. Accordingly, tracking performance and observability can
be achieved. In the latter, one or more sensors are selected to observe targets for achieving
tracking [45]. Although there are some studies on multi-sensor management for multi-
target tracking [46–49], tracking accuracy is still the main focus of algorithm performance,
but energy consumption and communication networking are rarely considered. However,
besides tracking accuracy, it is also important to take into account the energy efficiency and
information transmission of multiple sensors in WSNs, especially network lifetime.

This paper studies sensor management for bearings-only multi-target tracking in
WSNs. Bearings-only target tracking has been researched for many years due to its tremen-
dous importance in passive surveillance, which involves estimating the target state only by
fusing noisy bearing measurements from multiple different sensors [50]. More importantly,
the bearings-only tracking problem is much more complicated and difficult because of
the high nonlinearity of angular measurement and poor observability of the target state.
Furthermore, the resource consumption for multi-target tracking is commonly unbalanced,
because the sensors close to targets will usually be easy to activate and die faster than other
sensors due to exhaustion of energy. Meanwhile, sensors will consume excessive energy
for communication with the central data processing center. In order to tackle this problem,
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the routing schema in two-tier WSNs [51–57] is introduced that divides the activated sen-
sors into cluster member (CM) sensors and cluster head (CH) sensors at each time step.
This dynamic clustering strategy can conserve communication bandwidth and balance
energy consumption because of short intra-cluster communication and more efficient task
allocation, respectively.

Considering the information fusion in WSNs, optimal fusion is unfeasible because
of unknown correlations among sensors. In recent years, researchers have shown great
interest in suboptimal fusion methods, such as arithmetic mixture densities (AMD) [58,59]
and generalized covariance intersection (GCI) [60], which are also called weighted arith-
metic average (WAA) [61] and weighted geometric average (WGA) [62]. These methods are
designed to combine local multi-sensor estimation results for distributed multi-target track-
ing, for instance, probability hypothesis densities (PHD) or multi-Bernoulli (MB) densities.
On this basis, many fusion mechanisms have been developed and expanded to further
improve the estimation performance for various scenarios [63–66]. In this paper, sequential
update is used for multi-Bernoulli density fusion by the iterative correction method [11,13].
Although it has no rigorous mathematical derivation, it is easy to implement with low
computational complexity and has been widely used in actual applications [11]. However,
it is not only sensitive to the update sequence but also easily accumulates estimation errors,
especially for bearings-only tracking. This issue will be discussed in a later section.

The key contributions of this paper may be summarized as follows:

• A threshold control method is proposed to reduce the impact of defective bearings-only
sensors on multi-target tracking accuracy by SMC-CBMeMBer filtering.

• An information center is defined and formulated to represent an information level in
the surveillance area as the foundation of clustering implementation.

• A new objective function is constructed to find the optimal sensor subset around
the optimal information center and efficiently solved using the swarm intelligence
optimization algorithm.

• The dynamic clustering strategy is utilized to determine CH and CM sensors for
balancing energy consumption and prolonging the network lifetime.

The rest of this paper is organized as follows: In Section 2, the necessary background on
the multi-target Bayesian framework is introduced, the main steps of the SMC-CBMeMBer
filter are described, and the computation of the CS divergence is given. In Section 3, the
proposed sensor management solution is presented in detail, including the framework
for the optimal sensor subset selection, threshold control for bearings-only measurement,
objective function construction, swarm intelligence optimization, dynamic clustering strat-
egy, and the complete solution. Simulations and performance analysis are presented in
Section 4. The conclusion is given in Section 5.

2. Preliminaries

This section provides the necessary background on the multi-target Bayesian frame-
work using multi-Bernoulli RFS, the SMC-CBMeMBer filter, and CS divergence in order to
follow the solution presented throughout this paper.

2.1. Multi-Target Bayesian Framework Using Multi-Bernoulli RFS

RFS can be used to construct stochastic models for the multi-target state and multi-
target observation due to the uncertainty, such as time-varying target number, missing
detections, false alarms, or clutter. In the multi-target system, the posterior multi-target den-
sity can be represented as a multi-Bernoulli RFS, which contains not only the multi-target
state estimation but also the target number estimation as the cardinality of the RFS.

A multi-Bernoulli RFS is a union of M independent Bernoulli RFSs, and each Bernoulli
RFS can be characterized by existence probability r(i) and probability density p(i), i = 1, . . . , M.
Thus, a multi-Bernoulli RFS can be described by using the multi-Bernoulli parameter set

π =
{

r(i), p(i)
}M

i=1
.
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Suppose that at time k, there are N(k) target states denoted by xk,1, . . . , xk,N(k) and M(k)
measurements denoted by zk,1, . . . , zk,M(k), hence the multi-target state and the multi-target
observation at time k are represented, respectively, by

Xk =
{

xk,1, . . . , xk,N(k)

}
∈ F (X ) (1)

Zk =
{

zk,1, . . . , zk,M(k)

}
∈ F (Z) (2)

where X ⊆ Rnx is the state space, Z ⊆ Rnz is the observation space, F (X ) and F (Z) are
the finite subsets of X and Z , respectively.

The multi-target filtering problem can be posed in the Bayesian framework. If the
posterior multi-target density at time k is denoted by πk(Xk|Z1:k), then the multi-target
Bayes recursion propagates πk(Xk|Z1:k) containing two main steps, prediction and update,
which are as follows:

πk−1|k(Xk|Z1:k−1) =
∫

fk|k−1(Xk|X)πk−1(X|Z1:k−1 )δX (3)

πk(Xk|Z1:k) =
gk(Zk

∣∣∣Xk)πk−1|k(Xk|Z1:k−1)∫
gk(Zk

∣∣∣X)πk−1|k(X|Z1:k−1 )δX
(4)

where fk|k−1(·
∣∣∣·) is the multi-target transition density and gk(·|·) is the multi-target

likelihood. The multi-target transition implies the model of target motions, births, and
deaths. The multi-target likelihood involves the multi-target observation model, which is
formed by the union of target detections and false alarms or clutter. The expressions for
fk|k−1(Xk|Xk−1) and gk(Zk|Xk) can be derived from the multi-target system model using
FISST. In addition, the integrals in the above recursion are FISST integrals.

2.2. SMC-CBMeMBer Filter

As we know, the above Bayes recursion has no closed-form analytic solution in general.
In this paper, we consider using the SMC-CBMeMBer filter to achieve multi-target tracking,
which is the most popular implementation of the multi-target Bayesian filter. For the
sake of a clear description in the later section, the main steps and parameters of the
SMC-CBMeMBer filter are given below (for more details, see [15]).

(1) Prediction:

Suppose that at time k− 1 the posterior multi-Bernoulli multi-target density is given

by πk−1 =
{
(r(i)k−1, p(i)k−1)

}Mk−1

i=1
, where Mk−1 is the number of Bernoulli RFSs, each r(i)k−1 and

p(i)k−1 are existence probability and probability density of the ith Bernoulli RFS, respectively,

and p(i)k−1 is comprised of a set of weighted particle samples
{

w(i,j)
k−1, x(i,j)k−1

}L(i)
k−1

j=1
, which can

be written as

p(i)k−1 = ∑
L(i)

k−1
j=1 w(i,j)

k−1δ
x(i,j)k−1

(x) (5)

where L(i)
k−1 is the number of particle samples, and w(i,j)

k−1 is the weight of the jth particle
corresponding to the ith Bernoulli RFS. Then, the predicted multi-target density is also a
multi-Bernoulli form, written as

πk|k−1 =
{
(r(i)P,k|k−1, p(i)P,k|k−1)

}Mk−1

i=1
∪
{
(r(i)τ,k, p(i)τ,k)

}Mτ,k

i=1
(6)
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where
{
(r(i)P,k|k−1, p(i)P,k|k−1)

}Mk−1

i=1
and

{
(r(i)τ,k, p(i)τ,k)

}Mτ,k

i=1
are the multi-Bernoulli parameter

sets for the surviving targets and target births, respectively. Given the importance density
q(i)k (·

∣∣∣xk−1, Zk) and b(i)k (·|Zk ), then πk|k−1 can be computed as follows:

r(i)P,k|k−1 = r(i)k−1∑
L(i)

k−1
j=1 w(i,j)

k−1 ps,k(x(i,j)k−1) (7)

p(i)P,k|k−1(x) = ∑
L(i)

k−1
j=1

∼
w
(i,j)
P,k|k−1δ

x(i,j)P,k|k−1
(x)ps,k(x(i,j)k−1) (8)

r(i)τ,k = parameter given by birth model (9)

p(i)τ,k(x) = ∑
L(i)

τ,k
j=1
∼
w
(i,j)
τ,k δ

x(i,j)τ,k
(x) (10)

where ps,k(x) is the target survival probability at time k given previous state x, x(i,j)P,k|k−1 and

x(i,j)τ,k are the surviving target state and the birth target state, which are sampled according

to q(i)k

(
·
∣∣∣x(i,j)k−1, Zk

)
and b(i)k (·|Zk ), respectively,

w(i,j)
P,k|k−1 =

w(i,j)
k−1 fk|k−1(x(i,j)P,k|k−1

∣∣∣x(i,j)k−1)ps,k(x(i,j)k−1)

q(i)k (x(i,j)P,k|k−1

∣∣∣x(i,j)k−1, Zk)
(11)

∼
w
(i,j)
P,k|k−1 = w(i,j)

P,k|k−1/∑
L(i)

k−1
j=1 w(i,j)

P,k|k−1 (12)

w(i,j)
τ,k =

p(i)τ,k(x(i,j)τ,k )

b(i)k (x(i,j)τ,k

∣∣∣Zk)
(13)

∼
w
(i,j)
τ,k = w(i,j)

τ,k /∑
L(i)

τ,k
j=1 w(i,j)

τ,k (14)

(2) Update:

Suppose that at time k, the predicted multi-target density is denoted as πk|k−1 ={
(r(i)k|k−1, p(i)k|k−1)

}Mk|k−1

i=1
and each p(i)k|k−1 is comprised of a set of weighted particle samples{

w(i,j)
k|k−1, x(i,j)k|k−1

}L(i)
k|k−1

j=1
, which can be given by

p(i)k|k−1 = ∑
L(i)

k|k−1
j=1 w(i,j)

k|k−1δ
x(i,j)k|k−1

(x) (15)

Then, the posterior multi-Bernoulli multi-target density can be denoted by

πk =
{
(r(i)L,k, p(i)L,k)

}Mk|k−1

i=1
∪
{
(rU,k(z), pU,k(·; z))

}
z∈Zk

(16)

which is formed by the union of the multi-Bernoulli parameter sets for the legacy tracks

(
{
(r(i)L,k, p(i)L,k)

}Mk|k−1

i=1
) and measurement-updated tracks (

{
(rU,k(z), pU,k(·; z))

}
z∈Zk

), where

r(i)L,k = r(i)k|k−1

1− ρ
(i)
L,k

1− r(i)k|k−1ρ
(i)
L,k

(17)
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p(i)L,k(x) = ∑
L(i)

k|k−1
j=1

∼
w
(i,j)
L,k δ

x(i,j)k|k−1
(x) (18)

rU,k(z) =

∑
Mk|k−1
i=1

r(i)k|k−1(1−r(i)k|k−1)ρ
(i)
U,k(z)

(1−r(i)k|k−1ρ
(i)
L,k)

2

κk(z) + ∑
Mk|k−1
i=1

r(i)k|k−1ρ
(i)
U,k(z)

1−r(i)k|k−1ρ
(i)
L,k

(19)

pU,k(x; z) = ∑
Mk|k−1
i=1 ∑

L(i)
k|k−1

j=1
∼
w
∗(i,j)
U,k (z)δ

x(i,j)k|k−1
(x) (20)

where

ρ
(i)
L,k = ∑

L(i)
k|k−1

j=1 w(i,j)
k|k−1 pD,k(x(i,j)k|k−1) (21)

∼
w
(i,j)
L,k = w(i,j)

L,k /∑
L(i)

k|k−1
j=1 w(i,j)

L,k (22)

w(i,j)
L,k = w(i,j)

k|k−1(1− pD,k(x(i,j)k|k−1)) (23)

ρ
(i)
U,k(z) = ∑

L(i)
k|k−1

j=1 w(i,j)
k|k−1 ϕk,z(x(i,j)k|k−1) (24)

∼
w
∗(i,j)
U,k (z) = w∗(i,j)U,k (z)/∑

Mk|k−1
i=1 ∑

L(i)
k|k−1

j=1 w∗(i,j)U,k (z) (25)

w∗(i,j)U,k (z) = w(i,j)
k|k−1

r(i)k|k−1

1− r(i)k|k−1

ϕk,z(x(i,j)k|k−1) (26)

ϕk,z(x(i,j)k|k−1) = gk(z
∣∣∣x(i,j)k|k−1) pD,k(x(i,j)k|k−1) (27)

where pD,k(x) and gk(·|x ) are the target detection probability and the single target mea-
surement likelihood, respectively, at time k given current state x, and κk(z) is the intensity
of Poisson clutter at time k.

In order to reduce the degeneracy of the particle samples, a resampling step is used
for each hypothesized track after the update. Pruning is also performed to eliminate the
hypothesized tracks with low existence probabilities. More details are given in [15].

2.3. CS Divergence

CS divergence is commonly used as an information divergence measure because it is
more amenable to a closed-form analytical solution compared with Kullback–Leibler diver-
gence or Rényi divergence [38]. This paper adopts the CS divergence as the information
gain metric for sensor management. Here, the computation of the CS divergence is directly
given below [37].

In order to more clearly formulate the CS divergence, some variables explained before
are described again. As mentioned earlier, the predicted multi-Bernoulli multi-target density

is πk|k−1 =
{
(r(i)k|k−1, p(i)k|k−1)

}Mk|k−1

i=1
, and each p(i)k|k−1 is comprised of a set of weighted sam-

ples
{

w(i,j)
k|k−1, x(i,j)k|k−1

}L(i)
k|k−1

j=1
. The updated posterior multi-Bernoulli multi-target density is
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πk =
{
(r(i)L,k, p(i)L,k)

}Mk|k−1

i=1
∪
{
(rU,k(z), pU,k(·; z))

}
z∈Zk

, where each p(i)L,k and pU,k(·; z) can be

approximated by a set of weighted samples
{
∼
w
(i,j)
L,k , x(i,j)k|k−1

}L(i)
k|k−1

j=1
and

{
∼
w

*(i,j)
U,k (z), x(i,j)k|k−1

}L(i)
k|k−1

j=1
.

Then, the CS divergence between πk|k−1 and πk can be given by

DCS

(
πk|k−1, πk

)
= 1/2× K×

Mk|k−1

∑
i=1

L(i)
k|k−1

∑
j=1

[
r(i)L,k
∼
w
(i,j)
L,k + ∑

z∈Zk

r(i)U,k(z)
∼
w
∗(i,j)
U,k (z)− r(i)k|k−1w(i,j)

k|k−1

]2

(28)

where K is the unit of (hyper-volume) measurement in a single-target state. Here, note that the
particles do not change through the update in the SMC-CBMeMBer filter, but the number of the
Bernoulli components changes.

3. Sensor Management Solution
In this section, we briefly explain the framework of sensor management for bearings-only

multi-target tracking and discuss the issues to be addressed in the solution design. Then, a threshold
control method is proposed as an improvement of bearings-only sensor selection. Subsequently,
the objective function construction and optimization are given to achieve sensor selection. After
that, a dynamic clustering strategy is introduced for data transmission, and then multi-sensor
multi-Bernoulli density fusion is given to implement SMC-CBMeMber filtering. Finally, the complete
proposed sensor management solution is given.

3.1. Sensor Management for Bearings-Only Multi-Target Tracking
It is important to note that just one sensor’s measurement data are used to complete the update

steps in the general SMC-CBMeMBer filter. However, one sensor is not enough for bearings-only
multi-target tracking, which cannot obtain the only determination solution of target state estimation
without range information due to state non-observability. Therefore, we use sequential update with
multiple sensors to achieve tracking. The details of the sequential update will be given later.

This paper aims to design an energy-efficient sensor management solution that can provide
good tracking performance by selecting an optimal subset of bearings-only sensors to be activated. It
is formulated in the partially observable Markov decision process (POMDP) framework [67]. In the
POMDP framework, the sensor selection is perceived from the previous measurements. Hence, the
POMDP of sensor selection in this paper can be defined as

Ψ =
{

Xk,SC
k , fk|k−1(xk|xk−1), Z, hk(z|x; s), ϑ(SA

k , Xk)
}

(29)

where SC
k is a finite set of candidate sensors at time k, fk|k−1(xk|xk−1) is a transition model for the

single-target state, Z is a finite set of measurements, ϑ(SA
k , Xk) is an objective function that computes

a reward or a cost of selecting a sensor subset SA
k ,SA

k ⊆ SC
k , and hk(z|x; s) is an observation model

with sensor s ∈ SA
k .

The essential part of sensor selection is usually modeled as the optimization of an objective func-

tion. Accordingly, the purpose of the optimization is to find the optimal sensor subset SA
k

* to maximize
or minimize the statistical expectation of the objective function ϑ

(
SA

k , Xk
)

over all measurements:

SA
k
∗
= argmax

SA
k ⊆SC

k

/argmin
SA

k ⊆SC
k

{Ez[ϑ
(
SA

k , Xk

)
]} (30)

When the sensor subset SA
k is substituted in the objective function for optimization, its cor-

responding measurements are unknown. Therefore, a pseudo-measurement set is used instead of
unknown future measurements. To reduce computational complexity, the predicted ideal measure-
ment set (PIMS) is generated by the observation model; note that it is clutter-free and noise-free. The
diagram of sensor management within the POMDP framework in this paper is shown in Figure 1, in
which the number of candidate sensors is denoted as Nc.
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Figure 1. Sensor management for bearing-only multi-target tracking within the POMDP framework. 

Generally, the sensors with high information gain, such as CS divergence, can be se-
lected for possibly reachable tracking accuracy. However, it is not reasonable to only con-
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By comparison, it is significant that Sensor 1 is better than Sensor 2 for tracking accuracy. 

Figure 1. Sensor management for bearing-only multi-target tracking within the POMDP framework.

Generally, the sensors with high information gain, such as CS divergence, can be selected for
possibly reachable tracking accuracy. However, it is not reasonable to only consider tracking accuracy
for sensor selection, especially for bearings-only multi-target tracking in WSNs. There are two issues
that need to be addressed in this paper, as follows:

• Although multiple sensors are selected to meet the state observability, the quality of reserved
particle samples within the sequential update process will still be impacted because only
one sensor’s measurements can be used at a time. This might result in reduced tracking accuracy
and even loss of targets.

• The selected sensors will transmit their measurement data and consume enormous energy.
Meanwhile, the energy consumption is usually unbalanced due to the target motion path and
sensor deployment. This will speed up energy exhaustion and shorten the network lifetime.

3.2. Objective Function and Swarm Intelligence Optimization
3.2.1. Threshold Control for Bearings-Only Measurement

There is an intractable problem for bearings-only tracking using the SMC-CBMeMBer filter,
shown in Figure 2. In Figure 2, the sensor’s measurement data are the angles between the direction
of the target and the positive y-axis in a two-dimensional system. It can be observed that the
measurement difference between different target positions is very small for Sensor 2. This will easily
result in the failure of the target state estimate because similar measurements cannot distinguish
different target positions. When Sensor 2 is selected to calculate the measurement likelihood for the
update of SMC-CBMeMBer filtering, some wrong particle samples will have large weight and be
reserved after resampling. By comparison, it is significant that Sensor 1 is better than Sensor 2 for
tracking accuracy. However, it is quite possible that Sensor 2 will be selected because of its high CS
divergence. Therefore, it is necessary to reduce the impact of such sensors for sensor selection.
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As mentioned before, the CS divergence of each candidate sensor s is used for sensor selection,
which can be computed by

Ds
CS = 1/2× K×

Mk|k−1

∑
i=1

L(i)
k|k−1

∑
j=1

[
r(i)L,k
∼
w
(i,j)
L,k + ∑z∈

∼
Z

s

k

r(i)U,k(z)
∼
w
∗(i,j)
U,k (z)− r(i)k|k−1w(i,j)

k|k−1

]2
(31)

where
∼
Z

s

k is the PIMS of sensor s at time k, which can be obtained by the observation model with the
predicted multi-target state Xk|k−1 obtained from πk|k−1.

Here, two control variables are designed to tackle the above bearings-only problem. One is
the predicted ideal measurement difference threshold εz, and the other is the predicted ideal target
position difference threshold εx. The proposed threshold control method is as follows:

Compute the predicted ideal target state set PITSk using the state transition model with previous
posterior state estimation Xk−1|k−1. The number of target states in PITSk is denoted as Nk

PITS, then
the predicted target position difference can be computed by

xk
di f f (i, j) =

√
(PITSi

k(1)− PITSj
k(1))

2
+ (PITSi

k(2)− PITSj
k(2))

2
, i 6= j (32)

where i = 1, . . . , Nk
PITS, j = 1, . . . , Nk

PITS,
[

PITSi
k(1), PITSi

k(2)
]

and
[

PITSj
k(1), PITSj

k(2)
]

are the
two-dimensional positions of the ith and the jth predicted target states at time k, respectively.

For each candidate sensor s ∈ SC
k , the predicted ideal measurement set PIMSs

k can be computed
by the observation model with PITSk, and then the predicted ideal measurement difference can be
obtained by

zs,k
di f f (i, j) =

∣∣PIMSs
k(i)− PIMSs

k(j)
∣∣, i 6= j (33)

where PIMSs
k(i) and PIMSs

k(j) correspond to PITSi
k and PITSj

k, respectively.
For any (i, j) with both zs,k

di f f < εz and xk
di f f > εx being satisfied simultaneously, the CS

divergence of sensor s denoted by Ds
CS should be decreased to reduce its possibility of being selected.

The following formula is used to implement the threshold control:

Ds
CS = w ∗ Ds

CS (34)

where w ∈ [0, 1], and it is better to define it as a very small number. To simplify, w is set to 0 in
this paper.
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3.2.2. Objective Function Construction
In order to find the optimal sensor subset to meet the requirements of tracking accuracy

and communication consumption, the objective function of sensor selection needs to have a more
specific definition.

In the surveillance area, each position in the coordinate system is defined as an information
center, which can be also called a CS divergence center (CSC) because the CS divergence is used as
the information metric in this paper. Each CSC has a corresponding CS divergence level formulated
as follows:

levelDc
CS = sum(Ds

CS), s ∈ SA
k (c) (35)

where c represents the position of the CSC, SA
k (c) is the sensor set containing the specified number of

candidate sensors around the position c, s is the sensor that belongs to SA
k (c), sum(Ds

CS) represents
the sum of the CS divergences of all sensors in SA

k (c).
Assume that there are Na sensors that need to be selected and activated. Then, the sensor set

SA
k (c) is formed by the sensors with the shortest Na distance from position c. Suppose the initial

SA
k (c) is empty, then the sensor set SA

k (c) can be obtained by

repeat Na times

{
s = argmins∈{SC

k \SA
k (c)}

diss
c

SA
k (c) = SA

k (c) ∪ {s}
(36)

diss
c =

√
(c1 − xs)2 + (c2 − ys)2 (37)

where [c 1, c2] represents the position c in a two-dimensional coordinate system, c1 and c2 are the
positions of the x-axis and y-axis, respectively, and similarly [xs, ys] are the coordinates of the position
of the sensor s.

Then, we can define the objective function to be the CS divergence level levelDc
CS as

f (c) = levelDc
CS (38)

The optimization of the objective function is to find the maximum levelDc
CS with the optimal

position c*, which can be described by

c∗ = argmax f (c) = argmax levelDc
CS (39)

Now, the problem becomes how to efficiently find the optimal solution for this objective function.

3.2.3. Optimization
As one of the most common swarm intelligence algorithms, the PSO algorithm has the advan-

tages of easy implementation, high-quality solutions, computational efficiency, and convergence
speed to solve various optimization problems [68]. The details of the general PSO algorithm will not
be described again here, but it is important to make clear how to implement the PSO algorithm for
solving the optimization problem in this paper, which is briefly described as follows:

Step 0: Set the initial iteration l = 0. Randomly generate the initial population pop =[
X0

1 , X0
2 , . . . , X0

popsize

]T
, popsize is the population size, which is also the number of particles. Each

particle X0
i =

[
c0

i,1, c0
i,2, . . . , c0

i,D

]
, i = 1, 2, . . ., popsize represents its position vector in the surveillance

area, and D = 2 in the two-dimensional system.
Note that the particle in PSO is different from that in SMC-CBMeMBer. They are distinguished

by their meanings and representations. The former is an individual of the population in the swarm
intelligence optimization, the latter is a sample of a target state for multi-target filtering.

Here, each particle in PSO has its initial velocity v0
i,j = 0, i = 1, 2, . . ., popsize, j = 1, 2 . . ., D.

Then, set each particle’s history best position pbest0
i = X0

i , and set global best position gbest =

argmax f (X0
i ) = argmaxlevelDX0

i
CS.

Step 1: Update the iteration time l = l + 1.
Step 2: For each particle, update its velocity and position:

vl
i,j = ω·vl−1

i,j + ϕ1r1(pbestl−1
i − Xl−1

i ) + ϕ2r2(gbest− Xl−1
i ) (40)

cl
i,j = cl−1

i,j + vl
i,j (41)
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where ω is the inertia weight, ϕ1 and ϕ2 are the acceleration coefficients, r1 and r2 are two random
numbers uniformly distributed in [0, 1].

Step 3: Evaluate the updated population in terms of the fitness value, which can be written by
the objective function as

f (Xl
i )= levelDXl

i
CS (42)

Then, we can use Equations (35)–(37) to calculate the value of this function.
Step 4: Update each particle’s history best position pbestl

i . For each particle, if the f (Xl
i ) > pbestl

i ,
then pbestl

i = Xl
i .

Step 5: Update the global best position gbest as gbest = argmax f (pbestl
i).

Step 6: If the convergence criteria are satisfied, then terminate. Otherwise, go to Step 1.
After the above steps, we can obtain the optimal position c* = gbest, and the optimal sensor

subset SA
k

*.

3.3. Dynamic Clustering Strategy
The constructed objective function considers not only tracking accuracy by high CS divergence

level but also energy efficiency by clustering with the short-distance intra-cluster communication.
After the optimal sensor subset is determined, the selected sensors will be activated by the base
station (BS), and then they can observe multiple targets in the surveillance area and transmit their
measurement data. In order to save energy consumption and prolong the network lifetime, we adopt
a dynamic clustering strategy to complete the measurement data transmission. Figure 3 shows the
cluster structure and workflow used in this paper.
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At each time step, the activated sensors dynamically form a new cluster. The sensor with the
most remaining energy is the CH sensor, and the other sensors are CM sensors. The CM sensors send
their measurement data to the CH sensor, and then the CH sensor sends all data containing its own
and received data to the base station. This dynamic clustering strategy will benefit energy efficiency
and energy balance for two reasons. On the one hand, the selected sensors are close in distance
according to the above objective function model, so the intra-cluster communication will consume
less energy with the short distance. On the other hand, the CH sensor with the most remaining energy
will consume more energy due to its transmission to the base station, and the CM sensors can save
energy for balancing network energy consumption.

The complete dynamic clustering strategy is described as follows:

Step 1: The base station determines the CH and CM sensors by the remaining energy of each sensor

in SA
k

*, and then sends a message “Activate” and the CH/CM ID information to the selected sensors.
Step 2: The selected sensors receive the message “Activate” and the CH/CM ID information, and
then a new cluster is formed.
Step 3: All activated sensors sense targets and obtain their measurements with their own data
processing units. The CM sensors send their measurements to the CH sensor, then the CH sensor
sends all measurement data to the base station.
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Step 4: The base station runs the SMC-CBMeMBer filter using received measurement data to obtain
the multi-target state estimation. Then, it returns to sensor selection optimization for tracking at the
next time point.

3.4. Multi-Sensor Multi-Bernoulli Density Fusion with Sequential Update
The SMC-CBMeMBer filter uses sequential update for multi-sensor multi-Bernoulli density

fusion by the iterative correction method [13]. Using multiple sensors has the advantages of flexi-
bility, robustness, and fault tolerance, especially because it can meet the requirements of the state
observability for bearings-only tracking.

Assume that there are Na sensors activated to participate in tracking, the measurement of
sensor s is denoted by Zs

k = {zs
k,1, . . . , zs

k,Ms
k
}, where Ms

k is the number of measurements; hence, the

measurement set of all active sensors is denoted by Zk =
{

Z1
k , . . . , Zs

k, . . . , ZNa
k

}
.

The process of the multi-sensor multi-Bernoulli density fusion with sequential update is illus-
trated in Figure 4. For simplicity, the number of active sensors here is set to Na = 3. In the process of
multi-target density update by Zk, only one sensor’s measurements are used at a time. After one up-
date, the updated multi-target density can be taken as the predicted multi-target density for the next
update. Finally, the multi-Bernoulli multi-target density πk|k can be obtained by sequential update.
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In addition, the update sequence is very important for tracking performance [13]. Therefore, in
this paper, the measurement set Zk is ranked according to the CS divergence of the selected sensors.
The measurement of the sensor with the minimum CS divergence is used first for the update, and
the one with the maximum CS divergence is updated last. This can maximize the potential tracking
accuracy using CS divergence.
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3.5. The Complete Solution
The complete sensor management solution proposed in this paper is as follows (Algorithm 1):

Algorithm 1: The complete sensor management solution

Input: multi-target density πk−1 =
{
(r(i)k−1, p(i)k−1)

}Mk−1

i=1
, multi-target state estimate Xk−1|k−1,

candidate sensor set SC
k , and the remaining energy of each sensor s ∈ SC

k .
Solution:
1: Execute the prediction steps of SMC-CBMeMBer, then obtain the predicted multi-target density

πk|k−1 =
{
(r(i)k|k−1, p(i)k|k−1)

}Mk|k−1

i=1
;

2: For each Bernoulli RFS i, compute X(i)
k|k−1 by p(i)k|k−1, which is comprised of weighted samples{

w(i,j)
k|k−1, x(i,j)k|k−1

}L(i)
k|k−1

j=1
. For each sensor s ∈ SC

k , compute its corresponding PIMS
∼
Z

s

k by the

observation model with Xk|k−1. Then, update πk|k−1 by
∼
Z

s

k and then compute Ds
CS (using

Equation (31));
3: Threshold control: For two predicted target states PITSi

k and PITSj
k, compute xk

di f f (i, j) (using

Equation (32)) and zs,k
di f f (i, j) (using Equation (33)) for each sensor s ∈ SC

k . For any (i, j) with both

xk
di f f and zs,k

di f f being satisfied simultaneously, modify Ds
CS (using Equation (34));

4: Optimization: run the PSO algorithm for solving the objective function (calculated by

Equations (35)–(38)), then obtain the optimal sensor subset SA
k

*;
5: Use dynamic clustering strategy to determine CM and CH sensors by their remaining energy,
and then complete the measurement data transmission;

6: Rank sensors in SA
k

* from low CS divergence to high CS divergence, then perform
SMC-CBMeMBer filtering with sequential update in this sequence.
7: Update the remaining energy of all sensors in the network and then obtain the candidate sensos
set SC

k including all live sensors;
Output: multi-target density πk|k and multi-target state estimate Xk|k.

4. Simulations and Performance Analysis
In this section, we present the simulation results in a bearings-only multi-sensor multi-target

tracking scenario. Each activated sensor can obtain the measurement data of existing targets by the
bearings-only observation model as follows:

zs
k = arctan

px,k − xs

py,k − ys + vs
k (43)

where zs
k represents the noisy measurement of sensor s at time k, (px,k, py,k) and (xs, ys) denote the

target position and sensor position, respectively, vs
k ∼ N (·; 0, Rk) is the measurement noise with

Rk = σ2
R, and σR = (π/180)rad is the standard deviation of the bearing measurement noise.

Consider that the target moves with a constant velocity (CV) model in this scenario. One target

state at time k is denoted by xk =
[

px,k,
.
px,k, py,k,

.
py,k

]T
, where (px,k, py,k) and (

.
px,k,

.
py,k) are the

target position and velocity, respectively. The state transition model is given as

xk = Fkxk−1 + uk (44)

where Fk is the transition matrix and uk ∼ N (·; 0, Qk) is the process noise with the parameters

Fk =


1 t
0 1

0 0
0 0

0 0
0 0

1 t
0 1

, Qk = σ2
u


t4/4
t3/2

t3/2
t2

0
0

0
0

0
0

0
0

t4/4
t3/2

t3/2
t2


where t = 1s is the sampling period and σu = 5 m/s is the standard deviation of the process noise.

The birth process is a multi-Bernoulli RFS with density πτ =
{
(rτ , p(i)τ )

}4

i=1
where p(i)τ (x) =

(x; m(i)
τ , Pτ). Clutter in the surveillance region follows Poisson distribution with intensity λc. The
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parameters used in the SMC-CBMeMBer filter for multi-target tracking filtering are listed in Table 1.
More details are given in [15].

Table 1. SMC-CBMeMBer filter parameters.

Parameter Value

Target birth

Existence probability rτ 0.03
Birth state m(1)

τ [0, 0, 0, 0]T

Birth state m(2)
τ [400, 0,−600, 0]T

Birth state m(3)
τ [−800, 0,−200, 0]T

Birth state m(4)
τ [−200, 0, 800, 0]T

Covariance matrix Pτ diag([10, 10, 10, 10]T)
2

Survival probability ps,k 0.99

Detection probability pD,k 0.98

Clutter intensity λc 0.5× 10−7m−2

Pruning of
hypothesized tracks

Weight threshold P 10−3

Maximum of tracks Tmax 100

Number of particles per track Maximum of particles Lmax 1000
Minimum of particles Lmin 300

Here we consider that there are 100 sensors randomly distributed over a two-dimensional
surveillance region [−1000 m, 1000 m]2. A maximum of five targets appear in this surveillance region,
and the number of targets is time-varying. Target births and deaths occur at various times and
locations. The target trajectories and sensor distribution are shown in Figure 5. The start and stop
positions for each target are also marked in this figure.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 5. Target trajectories and sensor distribution in the x/y plane. Start/stop positions for each 
target are marked byｏ/Δ, and sensor positions are marked by ∗. 

In order to demonstrate the performance of our proposed solution, all the following 
solutions are performed for comparison and analysis: the CS divergence center with 
threshold control proposed in this paper, and sensors with optimal CS divergence and 
random selection, namely CSC-TC, CS, and RAND. As one of the compared methods, the 
CS solution can represent the implicit optimal tracking accuracy because it selects sensors 
with the highest information gain, but it does not consider any energy elements for sensor 
selection. Therefore, it can be used to verify the validity and significance of our proposed 
solution in terms of tracking accuracy and energy consumption. The other compared 
RAND solution is very simple to implement with low complexity, but its tracking accu-
racy is often considered inferior because of the randomness of sensor selection. However, 
it can provide specific evidence in support of sensor management. The above three solu-
tions are implemented over 100 Monte Carlo (MC) trials. At each trial, the same target 
trajectories and sensor distribution shown in Figure 5 are used but new measurement data 
are randomly generated. 

The number of active sensors selected at each time step is fixed to 𝑁 = 3. The two 
threshold control parameters in CSC-TC are 𝜀 = 0.1 rad and 𝜀 = 200 m. Because of the 
similar scenario in WSNs [69], the PSO parameters are determined as listed in Table 2 to 
find the optimal CS divergence center. It should be noted that the optimization perfor-
mance can be improved for better sensor selection results by optimized parameters or 
other optimization algorithms. Here, it is enough to verify the feasibility and effectiveness 
of the proposed solution using the parameters shown in Table 2. Figure 6 shows the target 
position estimate results for a single MC run. From this figure, it can be seen that all three 
solutions seem able to give acceptable tracking results. They can all identify target births, 
deaths, and crossings in a cluttered environment. However, the RAND solution has more 
individuals scattered outside the true track than others. By comparison, CSC-TC has the 
most accurate estimate fitting to the target trajectories. 

  

-1000 -500 0 500 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

x-coordinate (m)

y-
co

or
di

na
te

 (
m

)

Figure 5. Target trajectories and sensor distribution in the x/y plane. Start/stop positions for each
target are marked by

Electronics 2023, 12, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 5. Target trajectories and sensor distribution in the x/y plane. Start/stop positions for each 
target are marked byｏ/Δ, and sensor positions are marked by ∗. 

In order to demonstrate the performance of our proposed solution, all the following 
solutions are performed for comparison and analysis: the CS divergence center with 
threshold control proposed in this paper, and sensors with optimal CS divergence and 
random selection, namely CSC-TC, CS, and RAND. As one of the compared methods, the 
CS solution can represent the implicit optimal tracking accuracy because it selects sensors 
with the highest information gain, but it does not consider any energy elements for sensor 
selection. Therefore, it can be used to verify the validity and significance of our proposed 
solution in terms of tracking accuracy and energy consumption. The other compared 
RAND solution is very simple to implement with low complexity, but its tracking accu-
racy is often considered inferior because of the randomness of sensor selection. However, 
it can provide specific evidence in support of sensor management. The above three solu-
tions are implemented over 100 Monte Carlo (MC) trials. At each trial, the same target 
trajectories and sensor distribution shown in Figure 5 are used but new measurement data 
are randomly generated. 

The number of active sensors selected at each time step is fixed to 𝑁 = 3. The two 
threshold control parameters in CSC-TC are 𝜀 = 0.1 rad and 𝜀 = 200 m. Because of the 
similar scenario in WSNs [69], the PSO parameters are determined as listed in Table 2 to 
find the optimal CS divergence center. It should be noted that the optimization perfor-
mance can be improved for be er sensor selection results by optimized parameters or 
other optimization algorithms. Here, it is enough to verify the feasibility and effectiveness 
of the proposed solution using the parameters shown in Table 2. Figure 6 shows the target 
position estimate results for a single MC run. From this figure, it can be seen that all three 
solutions seem able to give acceptable tracking results. They can all identify target births, 
deaths, and crossings in a clu ered environment. However, the RAND solution has more 
individuals sca ered outside the true track than others. By comparison, CSC-TC has the 
most accurate estimate fi ing to the target trajectories. 

  

-1000 -500 0 500 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

x-coordinate (m)

y-
co

o
rd

in
at

e 
(m

)

/∆, and sensor positions are marked by *.

In order to demonstrate the performance of our proposed solution, all the following solutions
are performed for comparison and analysis: the CS divergence center with threshold control proposed
in this paper, and sensors with optimal CS divergence and random selection, namely CSC-TC, CS, and
RAND. As one of the compared methods, the CS solution can represent the implicit optimal tracking
accuracy because it selects sensors with the highest information gain, but it does not consider any
energy elements for sensor selection. Therefore, it can be used to verify the validity and significance
of our proposed solution in terms of tracking accuracy and energy consumption. The other compared
RAND solution is very simple to implement with low complexity, but its tracking accuracy is
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often considered inferior because of the randomness of sensor selection. However, it can provide
specific evidence in support of sensor management. The above three solutions are implemented over
100 Monte Carlo (MC) trials. At each trial, the same target trajectories and sensor distribution shown
in Figure 5 are used but new measurement data are randomly generated.

The number of active sensors selected at each time step is fixed to Na = 3. The two threshold
control parameters in CSC-TC are εz = 0.1 rad and εx = 200 m. Because of the similar scenario in
WSNs [69], the PSO parameters are determined as listed in Table 2 to find the optimal CS divergence
center. It should be noted that the optimization performance can be improved for better sensor
selection results by optimized parameters or other optimization algorithms. Here, it is enough to
verify the feasibility and effectiveness of the proposed solution using the parameters shown in Table 2.
Figure 6 shows the target position estimate results for a single MC run. From this figure, it can be seen
that all three solutions seem able to give acceptable tracking results. They can all identify target births,
deaths, and crossings in a cluttered environment. However, the RAND solution has more individuals
scattered outside the true track than others. By comparison, CSC-TC has the most accurate estimate
fitting to the target trajectories.

Table 2. PSO parameters.

Parameter Value

Population size popsize 20
Population initialization pop random generation in surveillance region

The velocity of particles v random generation between [−10, 10]
The inertia weight factor ω 0.5

The acceleration coefficient ϕ1 0.4
The acceleration coefficient ϕ2 0.6
Maximum iterations maxgen 30
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Figure 6. True track and target position estimate results.

Figure 7 shows the MC averages of the OSPA distance (with p = 1 and c = 300) versus time. It
can be seen that CSC-TC can achieve almost the same multi-target tracking performance as CS. There
are two implicit reasons for the good performance of CSC-TC: First, the sensor subset selected by
CSC-TC has a maximum sum of CS divergence as a sensor cluster, which means the sensors can be
expected to reach good tracking performance because of their high CS divergence level. Second, the
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threshold control in CSC-TC can effectively reduce the effect of the bearing-only sensors with high
CS divergence but cannot distinguish different target positions. The RAND solution as evidence of
sensor management has the biggest errors because the sensors are selected randomly with an equal
probability at each time step. It is unable to determine or control tracking accuracy because of the
high randomness. We can also observe that the CS divergence in the CSC-TC and CS solutions does
not show an advantage in OSPA distance at the beginning stage of the tracking. It is considered that
the initial particles in SMC-CBMeMBer are randomly generated in the surveillance region, and the
sensor selection by CS divergence cannot have a very positive effect in tracking accuracy because
of the particles scattered away from the true target position. In addition, the sensors selected by
clustering in CSC-TC are concentrated near each other. However, there are multiple targets that occur
at different positions in the beginning, and they are very far apart. The scattered sensors can perform
SMC-CBMeMBer filtering better, especially for bearings-only tracking. As time goes on, the sensor
selections by the CS divergence in CSC-TC and CS have more obvious advantages than RAND.
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Figure 7. OSPA distances for CSC-TC, CS, and RAND.

From the MC averages of the OSPA distance (Figure 7), we can also find that some large error
points appear in the CSC-TC and CS solutions. To explain this phenomenon more clearly, some
details of sensor selection in CSC-TC and CS are listed in Tables 3 and 4, respectively. The data given
in these tables are taken from the target tracking process for a single MC run, which can explain the
sudden decreases in tracking accuracy at some times. It can be seen that there are some selected
sensors that have little difference between measurements, but the corresponding targets are far apart.
For example, at time k = 9, 11, 41, 60, and 84 in Table 3 and time k = 10, 12, 41, 60, and 71 in
Table 4, these sensors and their measurements are shown in bold. They may result in incorrect
target state estimates because of the similar bearings-only measurements. The CS solution only
calculates the CS divergence for sensor selection but will not consider the bearings-only measurement
problem. Although the threshold control method in CSC-TC can reduce the impact to a certain extent
compared with the CS solution, some inappropriate sensors are still selected. The possible reasons
are as follows: First, the threshold control is implemented based on the predicted ideal measurement
and predicted ideal target position, but these are not the same as the real measurement and real
target position, respectively, so it cannot avoid selecting these inappropriate sensors completely.
Second, the threshold parameter setting has an effect on tracking performance, which is given with
experience in this paper. Increasing the threshold εz can exclude more sensors that have the possibility
of inaccurate tracking, but otherwise it may be more beneficial for selecting sensors with lower CS
divergence, which will reduce overall tracking accuracy. Furthermore, when multiple targets are close
together—for example, there are two close even cross-moving targets at time k = 41—the threshold
control will not be performed because the condition of the predicted ideal target position difference
is not satisfied.
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Table 3. Sensor selection details for CSC-TC.

Time Target Position Sensor Selection Sensor Position Measurements *

k = 9
T1: (−445, 710) S1: 31 S1: (−673.5399, −637.0967) S1: [0.1799 1.1491 0.0525]
T2: (420, −155) S2: 15 S2: (−676.6684, −554.8164) S2: [0.1952 1.2168 0.1240]

T3: (−665, −465) S3: 4 S3: (−678.5361, −473.1620) S3: [0.2155 1.2746 1.0528]

k = 11
T1: (−455, 690) S1: 81 S1: (−502.9808, 878.2477) S1: [2.8907 2.4469 3.2643]
T2: (380, −145) S2: 54 S2: (−343.0001, 935.0870) S2: [3.6034 2.5462 3.3676]

T3: (−635, −435) S3: 9 S3: (−530.8344, 754.1318) S3: [2.3021 2.3828 3.2264]

k = 41

T1: (−605, 390) S1: 36 S1: (−144.9029, 144.6242) S1: [5.1852 3.6387 3.4382 6.047]
T2: (−220, 5) S2: 1 S2: (−163.6571, −137.9836) S2: [5.5811 5.9062 6.1385 6.1043]
T3: (−185, 15)
T4: (−280, 680) S3: 53 S3: (−156.4971, 95.5383) S3: [5.3050 3.7520 3.4959 6.0728]

k = 60

T1: (−700, 200) S1: 90 S1: (930.5675, −341.4665) S1: [5.0168 5.3709 5.3832 3.6625]
T2: (100, 300) S2: 89 S2: (539.4818, −302.1271) S2: [5.1041 5.6608 5.6113 2.4422]
T3: (−90, 490)

T4: (780, −605) S3: 19 S3: (843.1165, −583.6014) S3: [5.1958 5.5955 5.5741 4.3671]

k = 84
T1: (460, 660) S1: 58 S1: (419.9635, 743.6434) S1: [2.6678 3.6083 3.2350]
T2: (150, 250) S2: 43 S2: (446.8321, 717.6404) S2: [2.9175 3.6913 3.2450]

T3: (300, −725) S3: 99 S3: (464.7387, 712.6752) S3: [3.2142 3.7250 3.2340]

* Measurements: no clutter and no missed detection.

Table 4. Sensor selection details for CS.

Time Target Position Sensor Selection Sensor Position Measurements *

k = 10
T1: (−450, 700) S1: 19 S1: (843.1165, −583.6014) S1: [5.4974 5.5089 4.7978]
T2: (400, −15) S2: 4 S2: (−678.5361, −473.1620) S2: [0.1944 1.2805 0.8721]

T3: (−650, −450) S3: 92 S3: (432.6182, −143.2534) S3: [5.4751 4.5264 4.4468]

k = 12
T1: (−460, 680) S1: 92 S1: (432.6182, −143.2534) S1: [5.4438 4.7506 4.4633]
T2: (360, −140) S2: 19 S2: (843.1165, −583.6014) S2: [5.4847 5.4496 4.8183]

T3: (−620, −420) S3: 55 S3: (−478.4727, −465.9557) S3: [6.2710 1.1885 5.0214]

k = 41

T1: (−605, 390) S1: 80 S1: (−411.8393, 205.5174) S1: [5.4884 2.3698 2.2687 0.2706]
T2: (−220, 5) S2: 53 S2: (−156.4971, 95.5383) S2: [5.3050 3.7520 3.4959 6.0728]
T3: (−185, 15)
T4: (−280, 680) S3: 1 S3: (−163.6571, −137.9836) S3: [5.5811 5.9062 6.1385 6.1043]

k = 60

T1: (−700, 200) S1: 18 S1: (10.3578, 408.7489) S1: [4.4338 2.4627 5.3945 2.4854]
T2: (100, 300) S2: 39 S2: (144.1419, 257.6447) S2: [4.6687 5.4718 5.4913 2.5241]
T3: (−90, 490)

T4: (780, −605) S3: 19 S3: (843.1165, −583.6014) S3: [5.1958 5.5955 5.5741 4.3671]

k = 71
T1: (265, 465) S1: 66 S1: (313.5009, 511.3323) S1: [3.9714 4.2779 2.9518]
T2: (20, 380) S2: 8 S2: (426.0601, −790.5447) S2: [6.1574 5.9508 0.7933]

T3: (560, −660) S3: 18 S3: (10.3578, 408.7489) S3: [1.3465 2.7801 2.6861]

* Measurements: no clutter and no missed detection.

The MC averages of cardinality estimates for all solutions versus time are also shown in Figure 8.
We can see that all solutions are able to achieve a very accurate estimate of the number of targets over
the MC simulation. The sparse clutter and occasional detection misses will not have a fatal influence
on the tracking performance in most cases.

To evaluate the performance in terms of energy consumption, the communication model for
WSNs [70,71] is used as follows:

Et = le·εelec + le·εamp·d4 (45)

Er = le·εelec (46)

where Et represents the energy to transmit le bits of data d meters, Er is the energy to receive le bits of
data, εelec is the energy per bit to run the electronics, and εamp is the energy per bit to run the power
amplifier. In this paper, εelec = 0.5× 10−7 J/bit, εamp = 1.3× 10−14 J/bit/m4, and le = 500 bits. The
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position of the base station is [0, 0]. In CS and RAND solutions, the selected sensors receive the
activated information from the base station and send their bearing measurement data to the base
station. In the CSC-TC solution, the CM sensors send their measurements to their CH sensor, and
then the CH sensor sends all measurement data to the base station.
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Figure 8. Cardinality estimates for CSC-TC, CS, and RAND. (The estimates for all solutions are
exactly the same and the points for RAND and CS are overlapped by CSC-TC in the figure).

It is also important to note that the computation is mainly performed by the base station,
containing the CS divergence calculation, the PSO operation, and SMC-CBMeMBer filtering within
one time step. Generally, the computing and processing power of the base station is considered to
be great and continuously improving, so the energy consumption is only considered in the sensors.
Meanwhile, the sensor load is not increased by the sensor management solution, which is still just
the basic function of data transmission and target observation.

Figures 9 and 10 show the energy consumption results for different sensor management solu-
tions. From Figure 9, it can be easily seen that CSC-TC consumes the least amount of energy, and
this is because the sensors selected by CSC-TC can save more energy by close clustering and shorter
intra-cluster communication distance. The sensors selected by CS are closer to the targets. According
to the target trajectories, the targets in this scenario appear relatively near the boundary and move
toward the center of the surveillance region. Therefore, the communication between sensors and
the base station in CS consumes less energy than in RAND because of the shorter communication
distance. RAND uses more sensors distant from the base station and consumes the most amount
of energy.
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Figure 9. The total energy consumption for each single MC run.
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Figure 10. The standard deviations of the remaining energy for all sensors in the network at each
single MC run.

Moreover, the standard deviations of the remaining energy for all sensors in the network at
each single MC run are shown in Figure 10. The CSC-TC solution has a prominent advantage in the
energy balance of the network. Its standard deviation of the remaining energy is much lower than
those of the other two solutions. This is mainly due to the cluster strategy that uses the sensor with
the largest remaining energy as cluster head to take on the communication task with the base station.
From Figure 10, we can also see that the CS solution has the biggest standard deviation because it
always selects sensors with the highest CS divergence. These sensors are selected repeatedly, and this
results in a serious energy imbalance in the entire network.

Table 5 gives the statistical averages of the comprehensive results. The first column gives the
average total energy consumption for all MC runs. CSC-TC has lower energy consumption than
the other two solutions. This is consistent with the result in Figure 9 and more directly reflects the
difference between the solutions. The second column shows the average of the standard deviation of
the remaining energy for all MC runs. It can further verify the necessity and the importance of the
dynamic clustering strategy in CSC-TC. This strategy can help CSC-TC achieve energy efficiency and
energy balancing with good tracking performance. The final column gives the average of the OSPA
distance for all the times, which clearly proves that CSC-TC has a tracking accuracy almost as good
as CS on the whole, though it does not select sensors with the highest CS divergence.

Table 5. Statistical averages of the comprehensive results.

Solution Total Energy
Consumption (J)

The Standard Deviation
of Remaining Energy OSPA Distance (m)

CSC-TC 42.9779 0.7146 12.3957
CS 59.3069 2.3454 12.3025

RAND 112.3411 1.5195 18.9313

In order to further demonstrate the effect of the clustering strategy, the sensor selection results
by three different solutions are shown in Figure 11. As we know, the cluster formed by CH and
CM sensors at each time step is activated for tracking in CSC-TC. Figure 11a shows all CH and CM
sensors, which are represented by red circles and blue circles, respectively. Figure 11b,c show all
selected sensors in the CS and RAND solutions, in both cases denoted by blue circles. For CSC-TC
and CS, it is easy to find that the selected sensors gather around the area in which the targets occur,
and the sensors near the boundary of the surveillance region are relatively rarely selected because
no target appears. This more strongly confirms that the energy consumption is unbalanced for
the network, which affects the network lifetime. In the RAND solution, all sensors have the same
probability of being selected (Figure 11c), but the random selection will result in lower accuracy and
more energy consumption.
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Figure 11. The comparison of sensor selection: (a) CSC-TC; (b) CS; and (c) RAND. Start/stop
positions for each target are marked by
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The details of sensor selection results at representative times are listed in Table 6 for easier
comparison. From these data, it can be found that the sensors selected by three solutions have
significantly different distributions. The clustering strategy in CSC-TC results in the selected sensors
being close together, and data collection is completed by intra-cluster transmission, thus prolonging
the lifetime of the sensors with less remaining energy. This is very important for CSC-TC to have
better performance in terms of energy balance and network lifetime. In the CS solution, the sensors
near targets tend to be selected because the CS divergence of these sensors is generally higher than
that of other sensors. The selected sensors have no regularity in the RAND solution. Here, note that
there is no known information about the target position when making decisions for sensor selection
at the initial time, so sensor selection is mainly based on the possible target birth at time k = 1.

Table 6. The details of sensor selection comparison at representative times.

Time Target Position Sensor Selection * Sensor Position

k = 1
T1: (−405, 790) CSC-TC: {29,76,69} CSC-TC: (181.4109, −104.5588), (−49.4442, 155.5188), (74.0502, 13.6267)
T2: (580, −195) CS: {53,47,69} CS: (−156.4971, 95.5383), (9.8250, 232.5366), (74.0502, 13.6267)

T3: (−785, −585) RAND: {41,38,57} RAND: (−52.9732, −896.1277), (−854.8679, −216.3499), (−874.8099, −854.2625)

k = 20
T1: (−500, 600) CSC-TC: {16,20,40} CSC-TC: (−380.7319, −154.5384), (−452.3069, −152.1786), (−512.0281, −265.9178)
T2: (200, −100) CS: {19,40,29} CS: (843.1165, −583.6014), (−512.0281, −265.9178), (181.4109, −104.5588)

T3: (−500, −300) RAND: {26,44,36} RAND: (473.6086, −580.2009), (−175.6236, 278.7173), (−144.9029, 144.6242)

k = 40

T1: (−600, 400) CSC-TC: {78,95,37} CSC-TC: (−727.9327, 382.1973), (−349.6038, 543.7587), (−506.9295, 421.9507)
T2: (−200, 0) CS: {9,37,19} CS: (−530.8344, 754.1318), (−506.9295, 421.9507), (843.1165, −583.6014)
T3: (−200, 0)

T4: (−290, 690) RAND: {19,7,93} RAND: (843.1165, −583.6014), (159.0102, 904.9361), (−95.4791, 248.1324)

k = 60

T1: (−700, 200) CSC-TC: {90,89,19} CSC-TC: (930.5675, −341.4665), (539.4818, −302.1271), (843.1165, −583.6014)
T2: (100, 300) CS: {18,39,19} CS: (10.3578, 408.7489), (144.1419, 257.6447), (843.1165, −583.6014)
T3: (−90, 490)

T4: (780, −605) RAND: {88,46,68} RAND: (5.0484, −230.3810), (−917.7173, −766.5895), (51.3831, −929.3055)

k = 80
T1: (400, 600)
T2: (110, 290)

T3: (380, −705)

CSC-TC: {66,18,39}
CS: {28,48,19}

RAND: {31,90,56}

CSC-TC: (313.5009, 511.3323), (10.3578, 408.7489), (144.1419, 257.6447)
CS: (282.6695, −642.0494), (369.0952, −782.5874), (843.1165, −583.6014)

RAND: (−673.5399, −637.0967), (930.5675, −341.4665), (748.6628, 440.7059)

k = 100
T1: (310, 90)

T2: (−20, −805)

CSC-TC: {96,41,73} CSC-TC: (56.6925, −704.5359), (−52.9732, −896.1277), (−100.4117, −735.8783)
CS: {73,52,19} CS: (−100.4117, −735.8783), (291.4503, −43.4087), (843.1165, −583.6014)

RAND: {75,13,73} RAND: (328.8144, −245.8045), (−283.2894, 975.5527), (−100.4117, −735.8783)

* Sensor selection: the selected sensors are listed in sequential update order. The sensor in bold is the CH sensor
for CSC-TC.

Additionally, we explore the network performance in terms of network lifetime. Lifetime is
usually evaluated based on the time when the first sensor dies. The different solutions for the same
trajectories as in Figure 5 are executed for 100 rounds by continuous running. The sensors will die



Electronics 2023, 12, 3397 21 of 24

with time because of exhausted energy. As we observed earlier, the sensors are selected with uneven
distribution due to the different locations of sensors.

Table 7 lists the time when the first sensor dies in CSC-TC, CS, and RAND. It can be seen that the
first sensor death time is the earliest in CS and latest in CSC-TC. As we know, the sensors with high CS
divergence will be activated often, and this will accelerate the death of these sensors. Therefore, the
first sensor dies at the 119th round, which is earlier than in the other two solutions. In Figure 12, the
number of live sensors versus the round of running algorithms is shown for further demonstration. It
can be clearly seen that the number of live sensors decreases with time, and CSC-TC always has more
live sensors than the other two solutions. For most of the times, the number of live sensors for RAND
is the lowest. This is because RAND consumes the most amount of energy for communication, which
is proved by the energy consumption data in Table 5. It is clear that CSC-TC has the longest network
lifetime, which is effectively prolonged by the clustering strategy, in contrast to CS.

Table 7. The comparison of the first sensor death time.

Solution CSC-TC CS RAND

First senor death time (s) 1533 119 319
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Figure 12. Network lifetime.

5. Conclusions
This paper studied the sensor management problem for bearings-only multi-target tracking in

WSNs. This study has identified the importance of sensor selection for tracking performance and
energy efficiency. It has also shown that the bearings-only measurement will have a non-ignorable
impact on the target state estimate by sequential update. The other important considerations in this
paper are the energy efficiency and energy balancing of the network. The proposed solution adopts a
threshold control method to further ensure bearings-only tracking accuracy, defines an information
center to select sensors by their information gain, constructs a new objective function using swarm
intelligence optimization, and balances the network energy consumption by a dynamic clustering
strategy. The simulation results prove the good performance of the proposed solution. Nevertheless,
there is ample scope for future research. The data fusion approaches for bearings-only measurements
still remain to be studied. We also need to deeply consider the equilibrium problem between tracking
accuracy and energy consumption. Finally, the effect of dense clutter on bearings-only tracking
should be considered for filtering.
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