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Abstract: From general systems to mission-critical systems at financial and government institutions,
the application scope of cloud computing services is continuously expanding. Therefore, there is a
need for better methods to ensure the stability and security of the cloud data and services. Monitoring
the abnormal behavior of virtual machines (VMs) is one of the most-important means to identify the
causes of security incidents related to the cloud. However, current traditional abnormal-behavior-
detection methods for VMs on cloud platforms face multiple challenges such as privacy protection
and the semantic gap. Virtualization technology plays a key role in cloud computing. Meanwhile,
virtualization security is the core issue of cloud computing security as well. To address these
issues, this paper proposes a feature-fusion-based abnormal-behavior-detection method (FFABD) in a
virtualization environment. This method acquires the hardware features and syscalls of the VM at the
physical machine level and the virtualization level, respectively. Therefore, this method is not limited
by the operating system running on the VM. This makes our method more efficient and universally
applicable compared to traditional abnormal-VM-detectionmethods. The ensemble learning model
performs the best among all the models, achieving an Accuracy of 99.7%.

Keywords: virtual machine; virtualization environment; feature fusion; abnormal behavior detection;
hardware features; syscalls; ensemble learning

1. Introduction

Cloud computing offers advantages such as rapid deployment, low cost, low mainte-
nance, large storage capacity, and high scalability [1]. As a result, it can provide enterprises
and individuals with abundant computing resources and data storage services. Further-
more, the scope of cloud computing development and usage has expanded to financial and
information technology systems utilized by government agencies [2,3].

Once these critical infrastructures are maliciously attacked, they become highly vul-
nerable to significant security incidents such as data loss or theft [4]. Constantly evolving
variants of malicious software have become one of the primary causes of anomalies in
the cloud environment. Malicious software encompasses a wide range of types, predom-
inantly including Trojans, worms, spyware, and rootkits [5]. Moreover, infected virtual
machines (VMs) resulting from malicious software are also a major factor contributing
to the overall abnormal operation of the cloud infrastructure [6]. Therefore, developing
efficient and robust security architectures/methods to detect abnormal VMs is crucial in
the cloud environment.

Researchers have proposed various malicious-behavior-detection methods to ensure
the normal operation of tenant virtual machines (TVMs) in the cloud. These methods can
be classified into software-based and hardware-based malware-detection methods based
on the types of VM characteristics they acquire. Software-based detection methods can

Electronics 2023, 12, 3386. https://doi.org/10.3390/electronics12163386 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163386
https://doi.org/10.3390/electronics12163386
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12163386
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163386?type=check_update&version=1


Electronics 2023, 12, 3386 2 of 17

be broadly categorized into two types: signature-matching or rule-based methods and
behavior-modeling methods [7,8]. Signature-matching methods primarily rely on static
analysis, exhibiting high Accuracy, but they are complex and time-consuming. Moreover,
recent malicious software can alter its signature, rendering it undetectable. Behavior-
modeling methods, on the other hand, mainly employ dynamic analysis, the tracking
feature, and the response of the monitored system, flagging any inconsistency with expected
behavior as an anomaly [9]. Traditional dynamic analysis can also be used to detect attacks
in the cloud [10,11]. However, these methods run and employ pattern-matching algorithms
within the monitored VM, making it easy for attackers to evade detection [6].

The aforementioned detection methods require acquiring VM-related data for analysis.
Based on the way the data are obtained, we classify data-acquisition methods into In-VM and
Out-VM. The In-VM approach is defined as methods that involve directly obtaining advanced
semantic information from within the VM, such as process information, system calls, and user
system file data. Most security methods in the cloud are designed based on the deployment
scheme using the In-VM technique [6]. For example, a lightweight proxy [12] can be set up
between the VM and the virtual machine monitor (VMM) (or hypervisor) to extract advanced
semantic information from within the VM for external analysis.

In the cloud, most Out-VM-based methods also rely on the virtual machine introspection
(VMI) technique [13,14] to acquire user-level semantic information for analysis. Compared to
the In-VM method, the Out-VM approach provides more-reliable data, but it requires bridging
the semantic gap and incurs higher performance overhead. Additionally, due to increasing
concerns about privacy protection in society, all the methods mentioned above for acquiring
user-level semantic information also face issues such as user privacy leakage.

Hardware-based methods involve collecting the hardware features of thew computer
system (such as instruction execution count, cache hit rate, memory access latency, etc.) by
accessing hardware performance counters (HPC) [15–19]. HPCs exhibit strong resilience
against the polymorphism and obfuscation technique employed by malicious software,
enabling monitoring system behavior effectively. Compared to software-based detection
methods, these approaches offer advantages such as low performance overhead, strong
interference resistance, and high Accuracy. However, hardware-based malware-detection
methods are primarily tested in physical bare-metal environments [16,19,20] or development
boards [15,17,18].

Hardware performance counters exist in the CPU of the physical machine while the
virtual hardware performance counters (vHPCs) of VMs exist within the virtual CPU
(vCPU) virtualized by the hypervisor, so obtaining reliable vHPC data may be challenging.
There is a limited literature that addresses the analysis of the vHPCs of VMs in the cloud
environment.

Virtualization technology is a key component of cloud computing, and virtualization
security is a crucial issue in cloud security. To address the aforementioned challenges, this
paper proposes a feature-fusion-based abnormal-behavior-detection method (FFABD) in a
virtualization environment. FFABD is an Out-VM-based approach that acquires both the
hardware features and syscalls of VMs at the physical machine level (or physical host level)
and the virtualization level, respectively. Compared to mainstream detection methods
for VMs [21,22], the proposed method captures low-level hardware features [23] without
the need to bridge the semantic gap and acquire user-level semantic information, thus
reducing the performance overhead of the detection method and safeguarding VM data
privacy. Hence, the operating system running on the VM does not impose any limitations
on this method. This characteristic enhances the efficiency and universal applicability of our
approach in comparison to conventional abnormal-VM-detectionmethods. Furthermore,
the resilience of hardware features against the polymorphism and obfuscation technique
employed by malicious software enhances the method’s resistance to interference. To
minimize the influence of external factors, this experiment runs only a single VM on the
virtualization platform, without considering multi-tenancy or multiple VMs. The main
contributions of this paper are as follows:
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• This paper presents a feature-fusion-based abnormal-behavior-detection method in
a virtualization environment. The method combines hardware features (e.g., HPCs
and vHPCs) and software features (e.g., syscalls) from both the physical machine
level and the virtualization level, enhancing the reliability of the acquired data in the
virtualization environment and enriching the diversity of the features.

• The proposed anomaly-detection method in this article is based on the Out-VM. This
approach does not require the modification or installation of and internal agent within
the VM to obtain advanced semantic information. This greatly improves user privacy
and security.

• This method does not depend on a specific VM system version, greatly enhancing the
transparency, universality, and robustness of the monitoring system. Furthermore,
This method does not require reverse engineering such as semantic reconstruction,
which significantly reduces the overhead and improves the detection efficiency. Lastly,
this article provides an explanation of the experimental results based on the contribu-
tion of the features.

2. Related Work
2.1. Hypervisor-Based Detection Method

Virtualization technology is a key component of cloud computing, and an increasing
number of critical cloud infrastructures leverage virtualization technology to enhance
security measures [24]. A VM anomaly in the cloud infrastructure is one of the main
causes of anomalies in the cloud environment. Therefore, detecting the internal state of
the VMs is of paramount importance. Traditional In-VM detection methods primarily rely
on security tools installed within the VM. However, such methods are prone to evasion
by malicious software. For instance, rootkit malware running with operating-system-level
privileges can utilize these privileges to conceal its existence, evading detection by OS-based
rootkit-detection tools.

In order to improve the detection effectiveness of malicious software, researchers have
started to observe VMs from the virtual machine monitor (VMM) level. One of the earliest
proposal was made by Klemperer [25]. It was suggested that placing the detection system
out of the VM would not be affected by any tampering or manipulation from inside the
VM. Since the VMM operates at a higher privilege level, it provides an isolated vantage
point from which the presence of malicious software in the VM can be examined [24]. Their
approach was named virtual machine introspection (VMI), and several suggestions were
put forward [26–28] with the aim of monitoring VMs from the VMM level.

Hypervisor-based methods allow for the acquisition of various software features from
inside the VM at the VM’s external level. For example, the method needs to understand
the version and type of the virtual machine to perform appropriate operations during
introspection based on different virtual machine types. It needs to obtain the virtual
machine’s memory mapping information, including the memory page distribution and
access permission, to achieve the memory-level introspection operation. Obtaining the
virtual machine’s CPU information, such as the CPU type, quantity, and register status, is
necessary for monitoring and adjusting the virtual machine’s CPU behavior. Therefore,
these features obtained by hypervisor-based methods include VM memory [29–31], internal
process system calls, application programming interface (API) characteristics [30–34], and
others. Most of these methods require crossing the semantic gap to achieve their goals.
While these methods exhibit high detection rates, they also come with significant perfor-
mance overhead, susceptibility to TVM system influence, and challenges with respect to
user privacy protection.

2.2. Hardware-Feature-Based Detection Method

Hardware-based malware-detection methods utilize low-level hardware events gener-
ated by HPC monitoring programs to obtain hardware features. These methods have been
extensively studied and proven to be accurate and effective [35–39]. HPC-based malware-
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detection methods are capable of combating the polymorphism and obfuscation technique
employed by malicious software, as they capture malicious behavior at the microarchitec-
tural level, making the collected data less prone to tampering. HPC values can be securely
collected and processed by applications running in the ARM TrustZone and Intel Security
Enclaves. Lightweight HPC-based malware-detection methods offer advantages such as low
performance overhead, strong resilience to interference, and high Accuracy.

However, due to the fact that virtual HPCs (vHPCs) within VMs are not physically
present, but rather emulated by hardware simulation modules (such as QEMU), the reli-
ability of the data obtained from vHPCs is subject to debate. Currently, hardware-based
malware-detection methods are primarily applied in scenarios that involve physical bare-
metal machines and development boards.

To address the aforementioned issues, the proposed abnormal-behavior-detection method
in this paper not only acquires data from the vHPC, but also collects data from the HPC corre-
sponding to the processes of the VM on the physical host. This approach not only enhances
the reliability of the data features, but improves the Accuracy of the detection method. The
specific methodology will be elaborated in detail in the following section.

2.3. Syscall-Based Detection Method

The syscall-based detection method is a common dynamic analysis approach used to
detect malicious software. This method typically involves collecting all the calls (sometimes
referred to as system calls or API calls) made by a binary file to the operating system
(OS) [40]. The experimental environment for this method mainly includes sandboxes [40,41],
VMs with VMI technology support [33,34,42], and containers [43].

Sandbox-based detection techniques can be deployed on different operating systems
without being limited by the operating system itself. However, some advanced malware can
detect whether it is running in a sandbox environment and utilize vulnerabilities or specific
attack techniques to evade detection. The VMI-based detection technique can provide
deeper malware detection and analysis capability. However, VMI technology operates
within the kernel of the OS inside the VM, making the VMI monitoring environment itself a
potential target for attacks. Malware can exploit vulnerabilities or specific attack techniques
to bypass or disrupt VMI-based detection methods.

Container technology has lower performance overhead compared to traditional VMs
and enables rapid deployment. However, containers share the kernel with the host operat-
ing system. If there is a vulnerability in the application or component within the container,
an attacker may be able to perform container escape attacks and gain access to the host
operating system or other containers, posing a threat to the overall system security.

To address the aforementioned issues, the method used in this experiment to obtain
syscalls from the VM involves directly capturing the syscalls of the VM process at the
physical machine level. This approach does not rely on the VMM and does not require
running any additional programs within the VM kernel. The strong isolation provided by
virtualization technology ensures high reliability of the obtained data. The details of this
method will be described in the next section.

3. Feature Extraction
3.1. FFABD Framework

The FFABD architecture is shown in Figure 1, where this paper collects data features
from the guest virtual machine (GVM) at both the virtualization level (dashed lines) and
the physical machine level (solid lines). QEMU Guest Agent (QGA) module is a component
that facilitates communication between the physical host and the GVM through the VMM.
Its purpose is to enable the GVM to automatically run a specified program. The physical
host runs a Linux system, and PID represents the process ID of the GVM on the physical
host. The perf module is a built-in Linux software that allows running specific commands to
obtain features from both the virtualization level and the physical host level corresponding
to the GVM. The feature fusion module performs parallel fusion of the obtained features.
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The feature preprocessing module standardizes and normalizes the features. The main
steps are as follows: Step 1 involves running the target program inside the GVM using
the QEMU Guest Agent (QGA) module. Step 2 utilizes the perf tool to obtain hardware
features from the vHPC within the GVM at the VMM layer (virtualization level). In Step 3,
the PID of the VM is identified on the physical machine (or physical host), and the perf tool
is used to capture the feature generated by the VM process at the physical machine level.
Then, in Step 4, feature fusion is performed by combining the two sets of features to form a
new dataset. Finally, in Steps 5 to 7, feature engineering is applied to the fused feature data,
followed by machine learning classification.

Hardware

Linux

KVM Hypervisor 

QEMU

Guest VM

Perf

QGA

vHPCs

User

Target Program  

Feature 

preprocessing

Normal/

Abnormal

HPCs

Hardware Features(G) 

Hardware Features    

& Syscalls

Feature 

Fusion

Machine Learning 

Classifiers

PID

Figure 1. The overview of the FFABD detection system.

3.2. Hardware-Feature-Acquisition Method

Next, we will provide a detailed description of how to obtain the hardware feature
of the GVM at both the virtualization level and the physical machine level. The structure
of the KVM virtualization environment we built is shown in Figure 2. The process of
obtaining the vHPC data features of the GVM at the virtualization level is illustrated in
Steps 1 and 2 of Figure 2. The hardware components, including the vCPU, inside the
GVM, are virtualized by the underlying physical machine through the VMM and QEMU.
Therefore, when the GVM runs an application, the perf tool can interact with the VMM or
KVM kernel to obtain the feature data of the vCPU.

Obtaining the HPC hardware features of the GVM at the physical machine level is
depicted in Steps a–c of Figure 2. At the physical machine level, the GVM as a whole can
be regarded as a process running on the physical machine. After the GVM runs its process,
it needs to request resources from the physical machine through the interaction with the
VMM. In the context of the physical machine level, this process can be seen as the GVM
process acquiring hardware and network resources from the physical machine. When the
GVM requests resources from the physical machine (Step a), the HPC feature data of the
GVM at the physical machine level can be obtained by using the GVM’s PID to identify
the process on the physical machine (Steps b and c). The hardware features obtained by
FFABD at the virtualization level and the physical machine level are summarized in Table 1.
From the user’s perspective, the selected features mentioned above do not contain any
information related to user privacy, such as application data, disk files, etc. Additionally,
these features are reflective of the internal behaviors or states of the virtual machine to a
certain extent, making them widely used in the field of anomaly detection.
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Figure 2. Process of acquiring hardware features. 1: The hardware components inside GVM
(including vCPU) are virtualized by KVM kernel module (VMM) and QEMU. So VMM monitors all
events generated by vHPC; 2: Perf event kernel module can make VMM monitor specified vHPC
events by interacting with VMM. (a) The whole GVM exists as a process in the physical host, and the
number of its PID in the physical host can be easily found; (b,c) Perf can obtain the specific events of
GVM in HPC at the physical host through the corresponding function and the PID.

Table 1. The hardware performance counter events acquired at the virtualization and physical
machine levels.

ID Feature Name Description Type

1 L1-dcache-stores Number of stores to the L1 data cache. Hardware cache event
2 LLC-loads Number of loads from the last-level cache (LLC). Hardware cache event

3 L1-icache-load-misses Number of instruction cache load misses in the L1
cache. Hardware cache event

4 cache-references Total cache references (both hits and misses). Hardware event

5 dTLB-store-misses Number of data translation lookaside buffer
(dTLB) store misses. Hardware event

6 L1-dcache-loads Number of loads from the L1 data cache. Hardware cache event
7 LLC-stores Number of stores to the LLC. Hardware cache event
8 branch-instructions Total number of branch instructions executed. Hardware event
9 branch-misses Number of branch mispredictions. Hardware event

10 iTLB-load-misses Number of instruction translation lookaside buffer
(iTLB) load misses. Hardware event

11 dTLB-load-misses Number of data translation lookaside buffer
(dTLB) load misses. Hardware event

12 cpu-cycles Number of CPU cycles elapsed. Hardware event
13 L1-dcache-load-misses Number of load misses in the L1 data cache. Hardware cache event

14 dTLB-stores Number of stores to the data translation lookaside
buffer (dTLB). Hardware event

15 instructions Total number of instructions executed. Hardware event

16 dTLB-loads Number of loads from the data translation
lookaside buffer (dTLB). Hardware event

17 cache-misses Number of cache misses. Hardware event
18 branch-load-misses Number of branch load misses. Hardware event

19 iTLB-loads Number of loads from the instruction translation
lookaside buffer (iTLB). Hardware event

20 LLC-misses Number of LLC cache misses. Hardware event
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3.3. Syscall Acquisition Method

Next, we will provide a detailed explanation of how to obtain the syscalls of the GVM
process. Since we are interested in capturing the syscalls of the GVM process rather than
a specific process within the GVM, there is no need to monitor or install agent software
inside the GVM. This approach not only improves the efficiency of data acquisition, but
also ensures the reliability of the obtained data.

The interaction between the GVM and physical machine is illustrated in Figure 3.
When the application running inside the GVM needs to perform privileged instructions
(such as file system access, network requests, etc.), it triggers a VM exit system call. This
causes the VM to temporarily exit execution and relinquish control to the VMM (KVM
hypervisor). The VMM interacts with the Linux kernel through the KVM module. Upon
receiving a VM exit, the VMM may need to handle the event by performing specific oper-
ations or passing relevant information to the Linux kernel. If the VMM needs to interact
with physical hardware (e.g., accessing the network, disk, or performing input/output
operations), it triggers related operations through KVM exits, such as hypercalls (requests
made by the VMM to the kernel) or device emulation (emulating the behavior of a virtual
device). These operations involve the handling of the Linux kernel to facilitate the interac-
tion between the VMM and physical hardware. In this way, the GVM can run programs
on the KVM platform and interact with the VMM and Linux kernel through system calls.
FFABD obtains low-level interaction system call information between the GVM and Linux
operating system kernel using the perf module, as shown in Table 2. Due to the fact that cer-
tain system call features can either adversely affect the experimental outcomes or have no
impact (e.g., when their corresponding values are 0), such as syscalls:sys_enter_open and
syscalls:sys_enter_close, certain system calls with a minor influence on the experimental
results were not incorporated into the experimental analysis presented in this paper.

KVM Exit 

VM Exit 

Guest VM

OS Kernel

Application Process

Guest VM

OS Kernel

Application Process

Linux 

KVM Hypervisor

Linux  Kernel

Perf module

Linux 

KVM Hypervisor

Linux  Kernel

Perf module

HardwareHardware

KVM Exit 

VM Exit 

Guest VM

OS Kernel

Application Process

Linux 

KVM Hypervisor

Linux  Kernel

Perf module

Hardware

Figure 3. Process of acquiring syscalls.

Table 2. The list of acquired syscall events.

ID Feature Name Description

1 raw_syscalls:sys_enter Events triggered before the process
executes a system call

2 syscalls:sys_enter_read Monitor the number of read system calls
3 syscalls:sys_enter_write Monitor the number of write system calls
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4. Methods
4.1. Cross-Validation Technique

Cross-validation is a technique used to evaluate the performance of machine learning
models. It involves dividing the dataset into training and validation sets, repeatedly
training the model on the training set, and evaluating its performance on the validation
set. Based on the evaluation results, the model’s parameters or structure can be adjusted
to improve its performance. One advantage of this method is that it assesses the model’s
ability to generalize, i.e., its performance on new data. Compared to training the model
multiple times on the training set, cross-validation provides a more-accurate assessment
of the model’s performance and helps researchers determine the optimal parameters and
structure for the model.

This paper applied the cross-validation technique to tune and optimize the machine
learning model such as XGBoost, ExtraTree, and RandomForest. By using this method,
we can find the optimal model parameters and structure to improve the performance of
the model. Below is an example of the parameter-tuning process for one of the models
(XGBoost).

Extreme gradient boosting (XGBoost) is an ensemble learning algorithm that consists
of a collection of decision trees (DTs) trained using the boosting technique. XGBoost has
several commonly used parameters. For example, eta (learning rate) controls the step size
for updating weights in each iteration. A smaller learning rate can make the model more
stable, but it may require more iterations to converge. max_depth limits the maximum
depth of the trees and is used to control the complexity of the model. A larger depth
allows the model to learn more-complex relationships, but it may also lead to overfitting.
N_estimators refers to the number of weak learners (i.e., decision trees) and is also known as
the iteration count. Increasing the number of iterations can make the model more accurate,
but it may also increase the computational cost.

The parameter num_trees represents the number of iterations or the count of trees in
the XGBoost algorithm’s training process. During the training process of XGBoost, multiple
decision trees are generated, and each tree serves as a weak classifier. num_trees specifies
the number of decision trees to be generated, indicating how many rounds of iteration the
algorithm will undergo in training. A larger number of iterations may lead to higher model
complexity and fitting ability, but also bring the risk of overfitting. There are also other
parameters such as reg_alpha (L1 regularization term) and reg_lambda (L2 regularization
term) that can be used to reduce model complexity and prevent overfitting.

The training process of the XGBoost algorithm (as shown in Algorithm 1) involves
several steps. In Step 1, the training dataset is input along with parameters such as
num_trees, max_depth, and learning_rate. In Step 2, the initial prediction is initialized
to a constant value, such as 0, as the starting point of the model. The training process
continues in Step 3, where iterations are performed. In each iteration, the gradient g(t) and
second-order derivative h(t) of the loss function are computed and regularization terms
are applied. The parameter t represents the number of iterations or training rounds of
the XGBoost algorithm, indicating how many times the model will be updated during the
training process. Increasing the value of t allows the model to learn more from the data
and can potentially improve the model’s performance. However, setting t to a very large
value may lead to overfitting. g(t) represents the gradient of the loss function, which is
the first derivative of the loss function with respect to the predicted values. The gradient
is used to update the model parameters in each iteration. A larger gradient indicates a
steeper slope in the loss function, which means the model is far from the optimal solution.
The algorithm will make larger updates to the model parameters to move closer to the
optimal solution. h(t) represents the second derivative of the loss function, also known
as the Hessian matrix. It is used to further optimize the model parameters during the
training process. The Hessian matrix provides information about the curvature of the loss
function, and it helps the algorithm make more-precise updates to the model parameters.
In Step 4, weak classifiers (DT) are fit by constructing decision trees and fitting the negative
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gradient of the residual. In Step 5, the model is updated by adjusting the prediction based
on the outputs of the weak classifiers, and the predictions of multiple weak classifiers are
aggregated with the weights. This aggregated prediction is represented as F(t), as shown
in Equation (1). F(t) represents the predicted values of the XGBoost model. It is the final
prediction obtained by combining the outputs of multiple weak classifiers in a weighted
manner through the iterative process. The weights assigned to each weak classifier depend
on their performance and contribution to the overall prediction. By repeating the iteration
through Steps 3 to 5, the process continues until the specified number of iterations or
stopping criteria are reached. Finally, the trained XGBoost model is returned. In this paper,
the XGBoost model’s hyperparameter values are adjusted by performing three rounds of
10-fold cross-validation on the training set to obtain an XGBoost training model that best
fits the current dataset.

Algorithm 1 XGBoost algorithm

Input: Training dataset(D), num_trees, max_depth, learning_rate
Output: Adjusted XGBoost model

1: Initialization: F(0) = 0
2: Iterative Training:
3: for t in range (num_trees) do
4: g(t) = compute_gradient(D, F(t))
5: h(t) = compute_hessian(D, F(t))
6: Fit Weak Learner(DT): h(t) = fit_weak_learner(D, g, h, max_depth)
7: Update Model : F(t)= F(t) + learning_rate * h(t)
8: Return XGBoost model

F(t) = Ft−1 +
N

∑
i=1

wti · ht(xi) (1)

4.2. Ensemble Learning Method
4.2.1. AdaBoost Model

AdaBoost is a machine learning algorithm that combines multiple weak classifiers
into a strong classifier. The principle of AdaBoost is as follows: Firstly, each sample in
the training data is assigned an initial weight that is equal for all samples, and the weight
vector D is formed by these weights. Then, weak classifiers are trained using the training
set, and the error rate is calculated for each sample in the dataset. Error rate er refers to the
probability that the prediction made by the classifier Cj on an instance xi after training does
not match the actual value yi. The specific formula is shown as follows:

er = P
(
Cj(xi) 6= yi

)
(2)

The weight of each sample in the dataset will be adjusted based on the error rate of
the classifier. Correctly classified samples have their weights decreased, while incorrectly
classified samples have their weights increased. The total sum of these weights always
remains equal to 1. The importance of each classifier a is determined by the error rate of
each classifier, as shown in the following equation:

a = (1/2)log((1− er)/er) (3)

Finally, the classifier is trained again using the same dataset until the error rate becomes
zero or the number of weak classifiers reaches a user-defined value, at which point training
stops.
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4.2.2. Voting Combination Strategy

Different types of features are used in this experiment, and a single classifier may
not satisfy all features. However, the combination of multiple weak classifiers can com-
pensate for the shortcomings of a single weak classifier and achieve the best classifi-
cation performance. We assumed that there are T primitive learners hi combined into
the ensemble learning model. The classifier hi predicts a tag from the class tag sets
c1, c2, . . . , cN . We represent the predicted output of hi on sample x as an N-dimensional
vector, (h1

i (x); h2
i (x); . . . ; hN

i (x)), which represents the output of hi on the class Cj. The
weighted voting equation used in this paper is as follows:

H(x) = c
argmax ∑T

i=1 wih
j
i(x)

(4)

The weight of hi is wi, generally wi ≥ 0, ∑T
i=1 wi = 1. In the voting combination

strategy, the classifier with high classification Accuracy has a great impact on the final
result. This method can reduce the probability of poor generalization due to classifier
misclassification, reduce the possibility of classifiers falling into local optimal, and expand
the hypothesis space of the algorithm.

4.3. Algorithm Modeling

This paper proposes an ensemble learning method based on multi-level features. The
approach follows a progressive strategy to achieve the best matching of features for each
classifier. Firstly, we add a feature to the classifier and use it to select the base classifier with
the best classification performance. Secondly, we gradually add the remaining classifiers
using weighted voting. This process is repeated iteratively until all features are added to
the feature set. The final AdaBoost ensemble classifier consists of the previously identified
best base classifiers. The experimental architecture is illustrated in Figure 4.
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Figure 4. The overview of ensemble learning method based on multi-level features.

5. Experiments
5.1. Experimental Environment

The software and hardware configuration of the system used in this experiment is
as follows: The system was deployed on the hardware environment of a GeForce Titan
XP GPU (with 12 GB video memory), an Intel Xeon E5-2600 CPU, 64 GB of RAM, and a
4 TB HDD. The physical machine system ran on the Ubuntu 20.04 64-bit operating system.
We utilized the KVM platform to create a virtualization environment that simulated the
cloud environment. The VM operated on a vanilla installation of Windows 7 with 4 GB
virtual memory, two dual-core virtual CPUs, and a 60 GB virtual hard disk. We chose 64-bit
Windows 7 because it has extensive support in terms of official documentation and other
resources for our experimental samples. Additionally, since the most-common type of
malware samples found in the wild are 32-bit [44], this allowed for relatively easy detection.
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We believe that this choice did not compromise the effectiveness of our result or their
applicability to a newer version of Windows, as all 64-bit systems are backward compatible
with 32-bit binary files [41]. For obtaining the hardware features of the VM, we employed
Version 5.9 of the perf tool.

5.2. Experimental Dataset

We collected 220 normal executable software programs, including popular web
browsers, video players, image browsers, PDF readers, word processing software, and
so on. When running in a VM, these executable software programs do not result in any
system anomalies or abnormal behaviors. Additionally, we collected 440 software programs
from VirusShare, including viruses, Trojans, worms, adware, and other software that can
lead to abnormal system behavior. Running these programs in a VM can lead to system
slowdown, a blue screen, crashes, and other abnormal behavior, putting the VM in an
abnormal operational state.

During the execution of the normal program, we performed additional operations,
such as opening a normal web page with a web browser, opening a PDF file with a PDF
reader, playing a video with a video player, and so on.

To enhance the resilience of the abnormal-behavior-detection method against inter-
ference, we introduced a strategy of simultaneously executing a normal program while
running the abnormal program. After each normal or abnormal program was launched,
we conducted sampling at specific time intervals to collect five samples for each case. This
approach allowed us to capture the underlying hardware behavior of both the normal and
abnormal programs and obtain a diverse set of samples for analysis.

5.3. Experimental Design

In this study, our goal was to obtain the feature data of the GVM at both the virtu-
alization level and the physical machine level. After creating a GVM, a snapshot of the
VM should be taken and saved. Before running the next program, the snapshot should be
restored to ensure that each program runs in the same environment.

The main steps to obtain hardware features at the virtualization level are as follows:
After a program was executed in the GVM, we sampled the GVM at specific time intervals,
with a total of 5 samples taken. The time interval between each sample was the same,
during which 4 hardware features were captured. The sampling command utilized the
KVM-related commands in the perf event to retrieve information from the GVM. Each
program was executed repeatedly, and a total of 20 hardware features were collected in
5 batches. Finally, these features were consolidated into a feature dataset called F1, which
contained 1100 normal hardware feature samples and 2200 abnormal hardware feature
samples. Each sample in this dataset consisted of 20 hardware features. The reason for
monitoring only 4 hardware features at a time was to avoid the impact of time-division
multiplexing on the experiment. Since typical CPUs usually have 4–6 HPCs and some
advanced CPUs may have even more, the number of monitored events should not exceed
the number of HPCs.

The main steps to obtain hardware features at the physical machine level were similar
to those at the virtualization level, including the sampling time intervals and other external
factors. The steps were as follows: After a program was executed in the GVM, the PID of
the GVM was identified at the physical machine level. The sampling command utilized
the perf event-related commands to directly sample the PID of the GVM. The PID of the
GVM was sampled 5 times at the same time intervals as the virtualization level method,
and a total of 20 hardware feature data points were collected in 5 batches. Finally, these
features were consolidated into a feature dataset called F2, which contained 1100 normal
hardware feature samples and 2200 abnormal hardware feature samples. Each sample in
the F2 dataset consisted of 20 hardware features.

The method of obtaining syscalls was similar to obtaining the hardware features at the
physical machine level. Since the obtained syscalls were considered as software events in
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a strict sense, the three syscalls were collected separately in one batch. Finally, a feature
dataset called F3 was obtained, which contained 1100 normal software feature samples
and 2200 abnormal software feature samples. Each sample in the F3 dataset consisted of
3 syscalls.

Finally, we combined the feature sets F1, F2, and F3 using the feature fusion technique.
Detailed information about the feature datasets is shown in Table 3.

Table 3. All experimental feature datasets.

Dataset Normal Samples Abnormal Samples Number of Features

F1 1100 2200 20
F2 1100 2200 20
F3 1100 2200 3

F1+F2 1100 2200 40
F1+F2+F3 1100 2200 43

6. Results and Evaluation

We used Accuracy, the True Positive Rate (TPR), and the False Positive Rate (FPR) to
evaluate the classification performance of the classifier. Accuracy was also used to assess
the classification performance. In this paper, we adopted 10-fold cross-validation to test the
Accuracy of the algorithm. The test method divided the dataset into ten parts. We split the
dataset into a training set and a test set at a ratio of 9:1. Each test yielded corresponding
evaluation results. Finally, the average of the ten accuracies was used as an estimation of
the algorithm’s Accuracy. We adjusted each classifier through cross-validation techniques.
After multiple experiments, the final results are shown in Figure 5.
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Figure 5. Experimental result of each feature dataset with different classifiers.

Figure 5 shows that the XGBoost model achieved the highest Accuracy on the F1, F2,
F1 + F2, and F1 + F2 + F3 datasets, with Accuracies of 99.24%, 96.67%, 99.39%, and 99.55%,
respectively. This experiment demonstrated that the Accuracy of the data features obtained
at the virtualization level was higher than that obtained at the physical machine level. As
the features were progressively fused, the Accuracy increased.

Furthermore, the classifiers ExtraTree and RandomForest also exhibited excellent
classification performance on the aforementioned datasets, closely following the XGBoost
model. Therefore, this paper selected the top-performing classifiers, namely XGBoost,
ExtraTree, and RandomForest, for ensemble learning. By combining them using a voting
ensemble strategy, the final result is shown in Figure 6.

Figure 6 displays the Accuracy, Precision, Recall, and F1-Score obtained by the pro-
posed ensemble learning method based on multi-level features among all datasets. The
Accuracy of each dataset was 99.39%, 96.97%, 99.55%, and 99.70%, respectively. The result
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obtained by ensemble learning outperformed the other machine learning models on all
datasets.

 

Figure 6. Experimental result of each feature dataset in the integrated learning classifier.

7. Discussion

In this section, we will provide explainable insight into the experimental results
mentioned above. The first conclusion drawn from Figure 5 is that the Accuracy of the
feature data obtained in the virtualization environment was higher than that obtained in the
physical machine. The main reason behind this was that, in the virtualization environment,
perf captured the feature data of the guest virtual machine (GVM) with finer granularity
through KVM-related commands. This was because the vHPC of the GVM was virtualized
by QEMU, and the data obtained at the virtualization level directly monitored the events of
the vHPC. However, in the physical machine environment, the monitoring was performed
on the overall hardware events of the GVM process running on the physical machine.
Therefore, the events monitored at the virtualization level were more detailed and accurate.

To provide a better explanation of the experimental results, this paper takes a feature-
centric approach and explains results based on the ranking of feature importance. The
top-ranked features contributing to high Accuracy in each dataset are shown in Table 4.
The feature importance ranking for the F1+F2+F3 dataset is illustrated in Figure 7.

From Table 4, it can be observed that the performance of the guest virtual machine
(GVM) differed between the physical machine level and the virtualization level. In the
native environment, when the physical machine performs memory accesses, the processor
searches the translation lookaside buffer (TLB) to find the corresponding physical address.
If the search fails (TLB miss), the processor retrieves the page table entry (PTE) from the
CPU cache, which had multiple levels. If the search is successful, the processor can directly
access the memory.

Table 4. Top feature importance for each dataset.

Dataset Features

F1 iTLB-load-misses (G), LLC-misses (G), LLC-loads (G), branch-load-misses (G),
dTLB-load-misses (G), iTLB-loads (G)

F2 LLC-stores, cache-misses, LLC-misses, dTLB-loads, branch-instructions,
L1-icache-load-misses

F1+F2 iTLB-load-misses (G), LLC-stores, LLC-loads (G), dTLB-loads, LLC-misses (G),
cache-misses, branch-load-misses (G), LLC-misses
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Figure 7. F1+F2+F3 dataset feature importance ranking.

However, in the virtualization environment, two-level address translation is required.
Firstly, the virtual address of VM is translated into the VM physical address, and then,
the VM’s physical address is translated into the host physical address. Compared to the
physical machine, the virtualization environment incurs higher address translation over-
head because the TLB entries need to be fully flushed. In the scenario involving two-level
address translation, the number of TLB misses, including data translation lookaside buffer
(DTLB) misses and instruction translation lookaside buffer (iTLB) misses, significantly
increase. Abnormal system behavior due to an abnormal program is more likely to trigger
complete flushing of all TLBs compared to regular software, because the address it accesses
is not easily predictable and often not present in the current TLB.

During walking through the page table, the last level cache (LLC) caches recently
accessed page table entries (PTEs) within the local host. As the traversal goes through two
layers of page tables, the number of LLC misses increases. A virtualization system with two
layers of PTEs requires refreshing all PTEs from the LLC, resulting in a higher LLC load. As
the number of address translation increases, the number of LLC misses and the associated
load also increase. Unexpected address accesses may potentially reveal malicious behavior
through these features.

In summary, the virtualization environment incurs greater overhead in address trans-
lation compared to the physical host due to complete flushing of TLB entries. This presents
an opportunity for the abnormal behavior of a VM to more easily trigger full TLB flushes.
Furthermore, as the traversal of two-level page tables occurs, increased LLC misses and
load indicate unexpected address accesses that may expose abnormal behavior.

Therefore, there is a difference in feature importance between the physical host
level and virtualization level. It is precisely for this reason that higher Accuracy can be
achieved by combining features obtained from different dimensions. Based on Table 4 and
Figures 5–7, it can be concluded that, as the number of features from different dimensions
increases, Accuracy also improves.
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8. Conclusions and Future Work

This paper presents FFABD for abnormal behavior detection. The method captures
hardware features and syscalls at different levels and achieves high Accuracy through
the ensemble learning algorithm. Additionally, the experimental result was explained for
interpretability. The proposed method offers advantages such as low performance overhead
and high Accuracy and bridges the semantic gap compared to traditional VMM-based
detection methods.

8.1. Limitation

However, the method also has certain limitations. In order to reduce the interference
of external factors, an experiment was conducted with only one VM running on the KVM
platform. In the real cloud environment, multiple VMs are typically present. In such a real
cloud environment, when multiple VMs run on a single platform, the vCPUs of multiple
VMs may correspond to the CPUs of the same physical host, leading to time-sharing
multiplexing of the physical host CPU. This will impact the Accuracy and reliability of the
vHPC data obtained at the virtualization level, which presents an important challenge that
we need to address.

8.2. Future Work

In future work, we will focus more on deploying the method in a complex cloud
environment with multiple VMs and tenants. However, as the number of VMs increases,
noise generated by other VMs may affect the feature data obtained at the physical machine
level and the virtualization level. Overcoming these challenges will be a key focus of our
future research. Additionally, we will further expand the available features for abnormal
behavior in the virtualization environment and explore better methods and classification
models for abnormal behavior detection.

Author Contributions: Methodology, L.Z. and J.Z.; writing—original draft, L.Z.; writing—review
and editing, J.Z., F.L. and X.W.; supervision, J.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2022YFB3103202),
the Tianjin Key R&D Program (20YFZCGX00680), and the 2019 Tianjin New Generation AI Technology
Key Project (19ZXZNGX00090).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: We would like to thank all of the team members and those who helped with
this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Montazerolghaem, A.; Yaghmaee, M.H.; Leon-Garcia, A. Green cloud multimedia networking: NFV/SDN based energy-efficient

resource allocation. IEEE Trans. Green Commun. Netw. 2020, 4, 873–889. [CrossRef]
2. Choi, S.H.; Park, K.W. Cloud-BlackBox: Toward practical recording and tracking of VM swarms for multifaceted cloud inspection.

Future Gener. Comput. Syst. 2022, 137, 219–233. [CrossRef]
3. Yan, Q.; Yu, F.R.; Gong, Q.; Li, J. Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud

computing environments: A survey, some research issues, and challenges. IEEE Commun. Surv. Tutor. 2015, 18, 602–622.
[CrossRef]

4. Rosenberg, H. Banking and Financial Services: Cyber Threat Landscape Report; Technical Report; Intsights: New York, NY, USA, 2019.
5. Ye, Y.; Li, T.; Adjeroh, D.; Iyengar, S.S. A survey on malware detection using data mining techniques. ACM Comput. Surv. (CSUR)

2017, 50, 1–40. [CrossRef]

http://doi.org/10.1109/TGCN.2020.2982821
http://dx.doi.org/10.1016/j.future.2022.07.002
http://dx.doi.org/10.1109/COMST.2015.2487361
http://dx.doi.org/10.1145/3073559


Electronics 2023, 12, 3386 16 of 17

6. Mishra, P.; Gupta, A.; Aggarwal, P.; Pilli, E.S. vServiceInspector: Introspection-assisted evolutionary bag-of-ngram approach to
detect malware in cloud servers. Ad Hoc Netw. 2022, 131, 102836. [CrossRef]

7. Di Pietro, R.; Mancini, L.V. Intrusion Detection Systems; Springer Science & Business Media: Abingdon, UK, 2008; Volume 38.
8. Vieira, K.; Schulter, A.; Westphall, C.; Westphall, C. Intrusion detection for grid and cloud computing. It Prof. 2009, 12, 38–43.

[CrossRef]
9. Patel, A.; Taghavi, M.; Bakhtiyari, K.; Júnior, J.C. An intrusion detection and prevention system in cloud computing: A systematic

review. J. Netw. Comput. Appl. 2013, 36, 25–41. [CrossRef]
10. Gupta, S.; Kumar, P. An immediate system call sequence based approach for detecting malicious program executions in cloud

environment. Wirel. Pers. Commun. 2015, 81, 405–425. [CrossRef]
11. Benninger, C.; Neville, S.W.; Yazir, Y.O.; Matthews, C.; Coady, Y. Maitland: Lighter-weight vm introspection to support cyber-

security in the cloud. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA,
24–29 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 471–478.

12. Patil, R.; Dudeja, H.; Modi, C. Designing in-VM-assisted lightweight agent-based malware detection framework for securing
virtual machines in cloud computing. Int. J. Inf. Secur. 2020, 19, 147–162. [CrossRef]

13. Mishra, P.; Varadharajan, V.; Pilli, E.S.; Tupakula, U. VMGuard: A VMI-based security architecture for intrusion detection in
cloud environment. IEEE Trans. Cloud Comput. 2018, 8, 957–971. [CrossRef]

14. Borisaniya, B.; Patel, D. Towards virtual machine introspection based security framework for cloud. Sādhanā 2019, 44, 1–15.
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