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Abstract: Oil refineries have high operating expenses and are often exposed to increased asset
integrity risks and functional failure. Real-time monitoring of their operations has always been critical
to ensuring safety and efficiency. We proposed a novel Industrial Internet of Things (IIoT) design
that employs a text-to-speech synthesizer (TTS) based on neural networks to build an intelligent
extension control system. We enhanced a TTS model to achieve high inference speed by employing
HiFi-GAN V3 vocoder in the acoustic model FastSpeech 2. We experimented with our system on
a low resources-embedded system in a real-time environment. Moreover, we customized the TTS
model to generate two target speakers (female and male) using a small dataset. We performed
an ablation analysis by conducting experiments to evaluate the performance of our design (IoT
connectivity, memory usage, inference speed, and output speech quality). The results demonstrated
that our system Real-Time Factor (RTF) is 6.4 (without deploying the cache mechanism, which is a
technique to call the previously synthesized speech sentences in our system memory). Using the cache
mechanism, our proposed model successfully runs on a low-resource computational device with
real-time speed (RTF equals 0.16, 0.19, and 0.29 when the memory has 250, 500, and 1000 WAV files,
respectively). Additionally, applying the cache mechanism has reduced memory usage percentage
from 16.3% (for synthesizing a sentence of ten seconds) to 6.3%. Furthermore, according to the
objective speech quality evaluation, our TTS model is superior to the baseline TTS model.

Keywords: industrial internet of things (IIoT); industry 4.0; speech synthesis; oil industry

1. Introduction

The development of the oil industry has witnessed a great leap and rapid shift from
traditional production to intelligent machines. The Industrial Internet of Things (IIoT)
size is rapidly growing in modern industrial processes. IIoT opens the door to a better
acquaintance of the manufacturing process, allowing for more efficient and sustainable
production [1]. The Fourth Industrial Revolution (Industry 4.0) presents digital technologies
that potentially convert the entire industrial process. Simultaneously, this revolution has
also influenced the oil industry [2]. These technologies would lower health, safety, and
environmental risks. Additionally, it increases productivity and reduces operational and
maintenance costs. Moreover, human-centered assistance systems help workers flexibly and
efficiently perform their responsibilities. However, to provide optimal support, the systems
must be context-sensitive regarding the present product condition and the information the
laborer requires. IIoT has dramatically improved the availability of machine-to-machine
interfaces allowing workers to gather, process, analyze, and visualize their IoT data [3].

The oil industry has grown in terms of the number of facilities and the complexity
of the processes. Nevertheless, human and material casualties continue due to accidents
involving human mistakes [4]. Oil refineries and petrochemical plants have a high rate
of catastrophic accidents at their facilities, whereas only petrochemical and oil refining
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plants accounted for 67% of all significant accidents in Republic of Korea between 2005 and
2021 [5]. Since 1992, the oil refining industry has experienced many fatal and catastrophic
incidents related to releasing highly hazardous chemicals in the U.S. [6]. The Chemical
Safety Board recorded 125 serious process safety incidents in U.S. oil refineries in 2012 [7].
Human mistake is the main reason for over 90% of accidents in the oil and gas industries [8].
Although it is widely acknowledged that human mistakes cause significant incidents, a few
primary hazard sites actively pursue possible human performance issues [9]. Furthermore,
the economic impact of incidents in the oil industry is also significant. For instance, the
financial losses from the oil refinery fire accident on Pulau Bukom island, Singapore,
in 2011 were estimated from $143–222 million for the fast initial recovery scenario to
$204–375 million for the slow initial recovery plan [10]. Therefore, building an efficient
smart alarm will reduce the risk of laborers’ mistakes at these sites.

Alarms are tools used to obtain crucial information in cognitively demanding cir-
cumstances. They have been used in hospitals and hazardous areas (oil industries) to
warn workers about critical conditions. They are either auditory or visual alarms (flashing
lights and bright colors). The acoustic method is superior to another approach because it
offers faster response times and is noticeable in out-of-sight locations [11,12]. The acoustic
structure of alarms is critical for their ability to communicate effectively. Notifications using
voice alerts showed significantly higher proportions of identification (98%) with consider-
ably more confidence and in a substantially shorter time than traditional state-of-the-art
device alarms (nonspeech) [13].

Smart sound alarms using Text-to-Speech Synthesis (TTS) in the industry can help
workers take faster action. It can be difficult for laborers to realize an alarm type for every
possible emergency variant. Therefore, assistive alarm systems with IoT accessibility, which
provide sound alarms, can support workers. Using TTS in the industrial process promises
many benefits, such as workers not having to lose focus on multitasking simultaneously
and allowing hands-free operation [14]. In an emergency, people often panic and block
themselves, forget the tasks they have practiced many times, and react poorly to the sounds
of different types of sirens. As a psychological impact, we can tell that human voices can
convey emotions and create a sense of urgency. Using a human voice for alarms with
direct guidance may help workers respond effectively to high-stress situations. These
benefits may be exceptionally valuable to those with less experience. Furthermore, voice
instructions can assist people with disorders such as cognitive impairments.

TTS aims to develop human-like speech signals from written text based on end-to-
end techniques. These techniques produce high-quality synthesized speech in terms of
naturalness and expressiveness. However, they usually fall under low-quality synthesized
speech when the used dataset is inadequate. To solve these issues, frequently speaker
adaptation is utilized. A pre-trained TTS model (trained on a large dataset) is adapted to
a target speaker’s smaller dataset. Similarly, we can customize our model to synthesize
speech for any target speaker using a small dataset of target speakers.

The main challenge in implementing TTS models in real-world applications is the
low inference speed of these models due to employing enormous neural networks with
millions of parameters. Moreover, computational resources are available occasionally.
Much research has been conducted on creating light TTS models with excellent synthe-
sis quality [15]. These studies have been summarized to enhance acoustic models [16]
(make acoustic representations from input text) and neural vocoders [17] (convert these
representations to waveforms). However, different optimizations of the two models limit
the execution of TTS systems [18]. Moreover, trade-offs exist for the computational cost,
inference speech, and synthesized speech quality [19]. One essential solution for optimizing
inference speed in low computational resources real-time is to use the cache mechanism,
which uses recorded prompts with “slot filling” of variable data [20]. It also uses the stored
synthesized sentences in memory to call when they are requested. Therefore, a TTS model
can synthesize high-intelligibility speech at a sufficient speed.
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Following our previous study [21], we built an intelligent alarm model using a modi-
fied TTS of an acoustic model (FastSpeech 2) with a neural vocoder (HiFi-GAN V3). We
compared our TTS model inference speech speed with a baseline TTS model (FastSpeech
2 and MelGAN vocoder). In addition, we utilized speaker adaptation to customize the
target speaker’s speech using a small dataset of target speakers. We adapted pre-trained
FastSpeech 2 to two target speakers (one female and one male). The TTS models were
integrated into a single-board computer (Raspberry Pi). We performed a latency evaluation
(real-time factor (RTF)) to measure system performance in a real-time environment. Our
model targets the oil and gas industries, such as oil refineries. We demonstrated our system
using data from industries such as gas sensors. Moreover, it can be extended to collect data
such as temperature, pressure, flow rate, etc. The main contributions of this study can be
summarized as follows:

1. We built a novel extension intelligent control system utilizing IIoT and a text-to-speech
model for industrial purposes (particularly oil refineries).

2. We successfully designed a TTS model that can run on low computational resources:
Raspberry Pi 4 (RPi).

3. Speaker adaptation was used to customize the synthesized speech for the two target
speakers (male and female) using only a small adaptation dataset.

4. We proposed a real-time end-to-end TTS model using the cache mechanism technique
to increase the efficiency of our design inspired by [20]. Our results reveal that TTS is
no longer an issue in real-time applications.

The remainder of this paper is organized as follows. Section 2 outlines related studies
on speaker adaptation, speech processing in Industry 4.0, and using IIoT in the oil and gas
industry. After that, Section 3 describes the methods used to construct the system. Section 4
provides an overview of the findings of this paper. Finally, we present the conclusions of
the study.

2. Related Studies
2.1. IIoT in Oil and Gas Industry

Supervisory control and data acquisition (SCADA) systems have been used in the oil
industry to monitor processes over the last few decades [22]. However, SCADA systems
have many drawbacks, such as the interoperability of the hardware and software and
low-density time and space. Moreover, it shows high-cost maintenance and difficulties
in updating communication protocols [23,24]. Furthermore, wireless sensor networks
(WSN) have been employed in the oil industry for monitoring and data collection [25].
Nevertheless, they are not uniform systems and frequently require more collaborative
communication [22].

Consequently, IoT has addressed the constraints of SCADA and conventional
WSNs [26]. IoT solution makes quicker and more accurate decisions using the data gathered
by IoT sensors because it reduces latency and improves information access [27]. The oil
industry uses the IIoT to improve mainly resource performance and reduce environmental,
health, and safety threats. Many researchers have investigated IIoT in oil industry ser-
vices, such as monitoring tank liquid levels [28], corrosion [29], pipelines [30], and leakage
detection [31]. Data collected by sensors-based IoT can be used to make a maintenance
prediction where data are stored in the cloud for analysis by algorithms. IoT technology
in industries has many advantages, including decreased test time and calibration, lower
warranty expenses, reduced production shutdown, predictive maintenance efficiency, and
improved supply chain performance [32]. Table 1 lists a few of the most related works in
IIoT of the oil and gas industry.
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Table 1. The most related work in IIoT of the oil and gas industry.

Ref. Contribution Techniques Results

[33] Enhance oil industry
business interactions

- Computing-aided software-defined
networking (SDN)

- Emergent configuration (EC)

EC and SDN-based IIoT
improve the oil extraction procedures

[34] Reducing fire accidents
by using IIoT

The copula theory to
integrate the sensors

It surpasses two baseline
methods in fire detection

[35] Data management for
IIoT systems. Machine learning techniques

IIoT is used for tracking
the oil and gas industry

operations flow

[31] Leak detection in oil
pipelines utilizing IIoT

- 2D CNN
- LSTM AE

Efficient wireless sensor
system for leakage

detection in the metallic pipeline

[36] Leak detection in oil
pipelines utilizing IIoT

Hybrid localization and
distributed leakage

detection techniques

- Eliminates single point of failure
- Increase sensitivity to leakage detection

[37]
Risk oil pipelines

evaluation without
failure data

- Information fusion theory
- Fuzzy set theory

Control risks and avoid
leakage consequences

[38]
Spilled oil diffusion
underwater distance

prediction

- Computational fluid dynamics
- Volume-of-fluid technique

Provide an emergency
treatment plan for offshore

oil spill accidents

In conclusion, the oil and gas industry-based IIoT research papers mainly collect, ana-
lyze, and manage data and have not been studied to incorporate a smart alarm. Therefore,
creating an extended intelligent IIoT system that uses a TTS model-based neural network
to notify staff in oil refineries’ control rooms during emergencies is essential. It will utilize
the IIoT benefits of covering a wide area, reducing latency, and improving information
access to reduce workers’ health risks in the hazardous fields of oil refineries.

2.2. Converging Speech Processing in Industry 4.0

Speech-based interactions between humans and machines are becoming increasingly
prevalent in 5G IoT scenarios. Many industries (IoT, security, healthcare, and computer
control) use speech control commands rather than written instructions [39]. Speech assis-
tance technology should have low latency, noise tolerance, high accuracy scalability, and
reliability to deliver practical solutions [39].

An assistive system-based TTS model for generating spoken instructions was designed
to assist workers in manufacturing [14]. The study demonstrated that all employees
finished assembling tasks after listening to synthesized spoken commands faster than
reading written documents. Emo-VITS, a VITS-based emotional speech synthesis model,
has been developed to suit the IoT sufficiently [40]. The subjective and objective evaluations
demonstrate that the Emo-VITS model provides significant outcomes in representing
emotions.

A safety method based on voice command-based Automatic Speech Recognition (ASR)
and Q-learning algorithm was proposed for small planets robots [41]. The workers’ voice
commands were sent to the plant control room as an emergency signal. Furthermore, the
model was tested on an S7-1200 Siemens programmable logic controller (PLC) [41]. To help
operators in the manufacturing industry control robots without requiring advanced skills,
robots were integrated with a depth camera (Microsoft Kinect version 2) and an inertial
measurement unit to capture both operators’ gestures and speech commands [42]. This
technique saves operators from having to devote ample training time to master these robots.
Table 2 summarizes a few papers on using speech in industry and shows their limitations.
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Table 2. A summary of some related work papers on using speech in Industry 4.0.

Ref. Techniques Contribution Limitation

[14] TTS model Using a TTS model to help workers
in the assembly industries. It did not customize the target speakers.

[40] TTS model Developed Emo-VITS It was not tested in a real IoT application.

[41] ASR model A safety method to stop small
plants working in emergencies.

It has yet to benefit from IoT
to extend the coverage.

[42] ASR model Control robots with a user’s voice It needs to address incorrect
human instructions.

[43] ASR model Using ASR in the underground
mining industry

The average accuracy of form
completion was 70–80% which

may be insufficient for the
critical tasks.

[44] ASR model ASR & gestures recognizer
to control an industrial robot

Environmental constraints:
noise, lighting conditions,

and moving objects.

[45] TTS model

Digital-twin human-machine
interface sensors enable the control

of digital devices using gestures.
Speech synthesis feedback expresses

the operational requirements of
inconvenient work.

Validations of real-world
scenarios were excluded.

[46] ASR model
It mixed reality and speech

interactions to improve
aircraft maintenance.

System latency and response
time were overlooked.

Overall, TTS models need to be investigated further in Industry 4.0 based on IIoT. It
has been used in many industrial fields, such as healthcare [47], education [48], and enter-
tainment [49], but it has yet to be invested in the oil industry. Therefore, we implemented
state-of-the-art text-to-speech synthesis in our proposed design.

2.3. Speaker Adaptation

Speaker adaptation (sometimes called speaker cloning or customizing) is the process
of adaptation of a TTS model to synthesize the speech of a target speaker in a small dataset.
It is usually done by training a TTS model on a large dataset (occasionally of a multi-speaker
dataset) and then fine-tuning it to a small target speaker’s dataset. Neural end-to-end TTS
models need to train on at least ten hours of a high-quality dataset to mimic the speaker
characteristics (acoustic features and prosody) [50]. It might be an optimal solution for
the languages with a few datasets (e.g., Arabic or Bengali), i.e., training a TTS model on a
large English dataset and adapting it to Arabic. This process is called a cross-lingual TTS
adaptation. Correspondingly, speaker adaptation reduces the cost and time by creating a
dataset for some languages. It offers adequate network parameters for training the model
in a low computational resources CPU.

In recent decades, speaker adaptation has been a widely studied subject. Mainly,
the research focuses on reducing the target speaker’s dataset, increasing the similarity to
the target speaker, enhancing the synthetic speech quality (intelligibility and naturalness),
and improving expressive speech. Investigations showed that the continuous vocoder is
reliable for synthesizing target individuals’ speech when used with an RNN (recurrent
neural network)-DNN (deep neural network)-based TTS system [51,52]. Zero-shot attempts
to customize target speech from an unseen target speaker’s speech by extracting a speaker
embedding from the original target speaker’s dataset without using parameters. Inves-
tigations indicate improved speaker similarity and demonstrate that the neural all-pass
warp (APW) using Tacotron2 (encoder–decoder architecture) raises the generalizability of
a multi-speaker model with a zero-shot speaker adaptation [53]. However, the zero-shot
method usually suffers from inadequate speaker similarity.
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With only a few shots of data, a suggested light Transformer-based postfilter archi-
tecture enhanced speech quality and effectively adapted to new target speakers [54]. This
study investigated and adapted many postfilter architectures with minimal data. Using the
TTS model (Tacotron2), it was found that five minutes of the target speaker’s adaptation
data with a low training time of checkpoint 900 (an iteration point in the training process)
is enough to have a reasonable synthesized speech quality [55]. Moreover, a meta-learning
algorithm was applied to the speaker adaptation method to increase the target speaker
similarity and decrease the adaptation data [56].

In conclusion, we considered speaker adaptation in our TTS model to overcome the
issues above (dataset availability and costs). We adapted our TTS model to two English
target speakers.

3. Methods

The overall system structure is depicted in Figure 1. The sensors send measured data
value signals (e.g., liquid temperature, pressure, flow, level, gas percentage, etc.) to the
RPi in each industry field. Then, RPi executes these data. After that, it carries these data
to the cloud for central control. There are two alarm devices in our system design. Local
alarm in the field and the second alarm in the main control room. The TTS models have
been implemented in RPi. We adapted our TTS model to two target speakers (female and
male). After that, we experimented with the cache mechanism. The following sections will
explain the hardware design, IoT structure, and TTS model.

Figure 1. The overall system structure.

3.1. Hardware and IoT System Design

The hardware and IoT setup are explained in Figure 2. The sensors are used to measure
the data, and a microcontroller collects the data from these sensors. For example, we used
a gas sensor (MQ-2) to detect a spectrum of gas (such as propane, hydrogen, and liquefied
petroleum gas (LPG)) in the air. After that, the microcontroller sends the data to XBee. RPi
receives the data and processes it. Later, RPi uses the MQTT (Message Queuing Telemetry
Transport) to publish it in the MQTT broker. In the following subsection, we will explain
the process of this structure in detail.
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3.1.1. XBee

XBee is a radio frequency (RF) module providing wireless connectivity to the system
design. It utilizes the ZigBee protocol, a wireless communication technology [57]. ZigBee
protocol allows XBee to connect with other devices in the network using low power. It has
flexibility for the developers of IoT applications and industrial automation. XBee module
has many versions, such as S1, S2, etc.

Sometimes XBee modules can be embedded in the data-gathering circuit without
combining them with an external microcontroller. The XBee module can collect data
directly from sensors through analog and digital input pins. This method has benefits in
reducing power consumption, saving board space, cost savings, and reducing the board’s
weight. The independent applications of the XBee model face some limitations in more
complicated projects. It lacks analog and pulse width modulation (PWM) outputs needed
to operate a wide range of devices. Moreover, a restricted number of output and input pins
are available in the XBee module [58].

Figure 2. The hardware structure.

In our paper, S1 has been used to manage data transfer between sensor nodes dis-
tributed in different places and the Raspberry Pi. We configured the XBee module that
connected sensors as End Devices. The End Device XBee module receives the data from
a sensor through a microcontroller (Arduino) by a serial interface. After that, it sends
these data wirelessly to another XBee module called Coordinator XBee. Coordinator XBee
receives the data from all the End Device XBee modules simultaneously and sends the data
to the RPi through a serial interface. In oil refineries, most sensor nodes are deployed over
large areas. In our paper, we adopted XBee instead of Bluetooth, WiFi, WiMAX, and mobile
communication because XBee has features that make it compatible with oil refineries. XBee
provides easy-to-implement solutions [59], low power consumption and cost [33], and
transfers data for long distances compared to Bluetooth [60]. Table 3 compares ZigBee to
other communication technologies regarding power consumption and cost.
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Table 3. A comparison of ZigBee to the communication technologies regarding power consumption
and cost [33].

Communication
Technology

Transmission
Range

Power
Consumption Cost

ZigBee 10–100 m Low Low
Bluetooth 8–10 m Low Low

WiFi 20–100 m High High
WiMAX Less than 50 Km Medium High

Mobile Communication Entire Cellular Region Medium Medium

We configured XBee module functions (Coordinator or End Device) using XCTU
software. We set Coordinator Enable (CE) in this manner:

CE: Coordinator Enable (to be a coordinator module)
CE: End Devices (to be an end device module)

Regarding the measured data, we used the MQ2 gas sensor to demonstrate our
proposed system work. The sensitivity of the MQ2 gas sensor depends on the gas types
and their concentrations. We set the sensor calibration range to 1000 ppm for LPG and
iso-butane, as recommended in the MQ2 datasheet. Arduino microcontroller reads analog
data from the MQ2 gas sensor connected to pin A0. After that, the Arduino’s analog-to-
digital converter (10-bit resolution) represents these values by digital readings (0–1023).
The microcontroller converts the raw sensor value to the corresponding voltage (with a 5 V
reference that the Arduino board uses). In our paper, we set the threshold to a value of 1
and then compared it to the readings from the gas sensor.

3.1.2. Raspberry Pi

The RPi Foundation created a series of compact, single-board computers known
as RPi. The original RPi was introduced in 2012, and the series has since expanded to
encompass other models and variations. The RPi is designed to be a relatively low-cost,
credit-card-sized computer that can be used for various purposes, including education
and commercial applications. Some common uses for RPi include building media centers,
home automation systems, retro gaming consoles, and even robotics projects. It runs on a
Linux-based operating system and can be programmed using a variety of programming
languages, including Python, C, and Java.

In this paper, RPi receives data from sensor nodes via Coordinator XBee. RPi compares
the received data to a threshold value (that was previously set). The sound alarm runs using
the TTS model or the cache mechanism if the data weight exceeds or equals the threshold.
At the same time, the RPi forwards the data, which achieves the threshold condition, to
another RPi in the central control via MQTT protocol using the HiveMQ broker. The alarm
message will be converted to a sound alarm by the RPi there.

3.1.3. MQTT and HiveMQ

MQTT (Message Queuing Telemetry Transport) is a popular messaging protocol in
the IoT industry due to its efficiency and low bandwidth usage [61,62]. It is an effective
protocol for small, inexpensive, low-power, and limited-memory devices [33]. It utilizes
a broker (such as HiveMQ) to control the transmission between machines, where trans-
mitting machines publish messages on a particular topic. Other devices can subscribe
to that topic to obtain these messages. HiveMQ is a leading MQTT broker that offers a
scalable and robust solution for connecting devices and applications in real time. This
broker is designed to handle millions of concurrent connections while providing high
availability and reliability [63]. HiveMQ MQTT over WebSockets, MQTT over SSL/TLS,
and MQTT 5.0 specification support set it apart from other brokers. Moreover, the HiveMQ
plug-in and integration capabilities further enhance its functionality. For example, the
dashboard is a web-based visualization tool that provides real-time monitoring and visual-
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ization of data traffic. The plug-in SDK also enables developers to customize and extend
HiveMQ’s capabilities.

It is essential to ensure proper security measures to protect the data and ensure the
integrity of communication. The Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
protocol is implemented in our design on top of MQTT for transport encryption (encoding
data) to secure client and broker connections. SSL/TLS is a cryptographic protocol that
guarantees data transfer between applications on the Internet [64]. SSL/TLS is suitable for
IoT and is designed to work with TCP. However, the SSL/TLS protocol has disadvantages
such as high energy consumption, system complexity, and overhead [64]. Moreover,
the MQTT protocol provides a client identifier and username/password credentials to
authenticate devices at the application level.

The development in hardware technologies has made IoT services rapidly grow
due to the extreme increase in IoT nodes that led to making the scalability of IoT more
difficult. This paper uses the HiveMQ MQTT Platform to solve this issue, which can achieve
200 million concurrent connections [65]. HiveMQ is executed in Java and is now obtainable
as professional, community, and enterprise editions in addition to an IoT cloud platform
alternative with hourly subscription costs. The HiveMQ DNS detection plug-in uses DNS
service discovery to remove or add broker cases to the cluster at runtime [66].

For all these reasons, HiveMQ broker and MQTT protocol have been used in our
proposed system to transfer data between the field and central control (the supervisor side).
When the connection is secured on the field side, the data will be sent to the supervisor via
the MQTT protocol. Otherwise, the data will not be transmitted to the central control in the
case of failed authentication or if the data are less than the threshold values. The received
data in central control will be processed by the TTS model or the cache mechanism and
passed to the alarm.

3.2. Text-to-Speech Model Architecture

We applied the two TTS models on the Raspberry Pi. The modified TTS model consists
of the acoustic model FastSpeech 2 and neural vocoder HiFi-GAN V3. Conversely, the
baseline TTS model has FastSpeech 2 and neural vocoder MelGAN.

3.2.1. End-to-End TTS: FastSpeech 2

FastSpeech 2 is a TTS model that converts the input text to mel-spectrograms [67].
Unlike the old version FastSpeech which uses the simplified output from the teacher, it is
trained on the ground-truth target. Moreover, it offers many speech variations (such as
pitch, energy, and duration) to solve the one-to-many mapping issue (one input text and
many output speech differences). Moreover, it solves the slowness of the autoregressive
models (e.g., Tacotron2), which sequentially generate each acoustic frame for a speech
waveform. This parallelism technique enhances both training and inference speech at the
same time. Nevertheless, FastSpeech 2 remains large (27 M parameters), resulting in high
memory consumption and inference latency when implemented on limited computing
resources devices [16].

FastSpeech 2 structure consists of an encoder, variance adaptor, and decoder.
The encoder converts phoneme embedding to a hidden sequence. After that, the variance
adaptor adds speech variations (pitch, duration, and energy) to this hidden sequence. Finally,
the decoder transforms this adapted sequence with speech variations to mel-spectrogram.

We used the same FastSpeech 2 structure, which has four feed-forward Transformer
blocks in the encoder and decoder [67]. Also, we employed two attention heads and
kernel sizes of 9 and 1. The output mel-spectrograms of the encoder are 80-dimension.
The dropout rate of the encoder and decoder is 0.5. Conversely, the variance predictor filter
size is 256, the kernel size: is 3 and the dropout rate: is 0.5.

According to the ablation analysis of [16], the encoder and decoder consume the ma-
jority (11.56 M parameters) of the model size and inference time. The predictors (duration
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predictor: 0.40 M, pitch predictor: 1.64 M, and energy predictor: 1.64 M parameters) account
for roughly one third of the total size and inference time.

3.2.2. Neural Vocoders: HiFi-GAN and MelGAN

HiFi-GAN converts the output mel-spectrogram produced by FastSpeech 2 to a wave-
form [68]. This vocoder is based on a generative adversarial network. Our paper used
HiFi-GAN because it performs more elevated speech quality and computational efficiency
than other autoregressive vocoders (e.g., WaveNet and WaveGlow) [68].

HiFi-GAN has one generator and two discriminators (see Figure 1 in [68]).
The generator is a fully convolutional neural network. It upsamples the input mel-
spectrogram by transposed convolutions to match the length of raw waveforms. After each
transposed convolution, the multi-receptive field fusion (MRF) produces the total of all
residual block outcomes. The residual block has diverse kernel sizes and dilation rates to
deliver different receptive field types. On the other side, the discriminator is a classifier
that attempts to determine actual audio signals from the data synthesized by the generator.

We can adjust some parameters in the transposed convolutions and MRF modules of
the HiFi-GAN generator to have a trade-off between synthesis efficiency and sample quality.
For instance, we can set the transposed convolutions’ hidden dimensions and kernel sizes.
In the same way, kernel sizes, and dilation rates are controllable in MRF modules.

In our paper, we accomplished experiments on the two types of generators, V1 and V3,
while keeping the same discriminator configuration. HiFi-GAN V1 has 13.92 M parameters,
and HiFi-GAN V3 needs 1.46 M parameters. Table 4 shows the hyperparameters for the
two generator variants suggested by [68]. Compared to V1, V3 has a significantly lower
number of layers.

Table 4. The hyperparameters for the two generator versions (V1 and V3).

Model Hidden
Dimension

Transposed Convolutions
Kernel Sizes Kernel Sizes Dilation Rates

V1 512 [16, 16, 4, 4] [3, 7, 11] [[1, 1], [3, 1], [5, 1]] × 3
V3 256 [16, 16, 8] [3, 5, 7] [[1], [2]], [[2], [6]], [[3], [12]]

On the other hand, MelGAN is also a non-autoregressive generative model that uses
GANs for speech synthesis [69]. Also, it is a feed-forward convolutional architecture
that consists of a generator and a multi-scale architecture discriminator. To upsample
the input mel-spectrogram, a stack of transposed convolutional layers is used. A stack
of residual blocks with dilated convolutions is on the top of transposed convolutional
layers. Three discriminators have similar network architecture while operating on various
audio scales. We used it to convert the input mel-spectrograms from FastSpeech 2 to the
waveform. Moreover, it has parameters (4.26 million) more than HiFi-GAN V3 neural
vocoder (1.46 million).

3.3. Speech Corpora

We trained the acoustic model (FastSpeech 2) on the TTS LJSpeech dataset [70].
Additionally, we used the pre-trained neural vocoders HiFi-GAN and MelGAN on the
same dataset. This dataset has 13,100 pairs of text and audio (a single-channel 16-bit
PCM WAV). The entire duration of the speech is 24 h. The clips’ length is between one to
ten seconds, with a sample rate of 22,050 Hz. Additionally, we utilized Hi-Fi multi-speaker
English TTS dataset [71]. It has a speech of 292 h sampled at 44.1 kHz in WAV format. Later,
we resampled it to 22,050 Hz. A group of ten speakers, six of them females, participated
in making the speech of this dataset. We determined two target speakers (Tony Oliva and
Helen Taylor) for the speaker adaptation process. We aligned the phonemes to the texts
for the Hi-Fi dataset using the Montreal Forced Aligner (MFA) trained with English US
ARPA [72]. According to [67], MFA enhances the alignment accuracy and decreases the
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information gap between the model input and output. Also, MFA provides a more accurate
duration than the teacher model of FastSpeech.

3.4. Training Topology and Speaker Adaptation

We trained FastSpeech 2 using NVidia Titan X GPU on the LJSpeech dataset.
The following hyperparameters were used in training: batch size: 16 sentences, Adam
optimizer, β1 = 0.9, β2 = 0.98, total step: 900 k. We used 96% of the data for the training set
and the rest for validation.

After that, we adapted FastSpeech 2 with two English target speakers (female and
male). For the female target speaker, 580 sentences totaling 32 min were randomly selected.
On the other hand, 840 sentences (47 min) were chosen for the male speaker. We used the
same training hyperparameter to train FastSpeech 2 on the large dataset. Moreover, we
used 118.5 k steps and divided the data by 90%, and the remaining data were used for the
validation set.

3.5. Cache Mechanism Implementation

The decisive contribution of this paper is the cache mechanism. Real-time is vital
in IoT to make the best decision about a specific event. Here comes the role of the cache
mechanism. In our proposed design, the data are collected from the sensors and passed
through for comparison with the threshold values. If it is more significant or equal, it is
passed to the TTS model and passed to the sound alarm. The most time-consuming part
of our design is the speech synthesis model because current neural speech synthesizers
provide high naturalness but at a high computational cost. Therefore, we used the cache
mechanism to reduce the time spent in the speech synthesis by storing the data from the
initial reading in a temporary stack. The input data are compared to previous data stored
in a temporary stack. If it equals the stored data, the sound alarm is turned on depending
on the previously stored data without passing the new data through the TTS model. If we
read new data not in the temporary stack, it will be passed to the TTS model and kept in the
temporary stack. This process is used only once with new data. By cache mechanism, we
reduce the time needed for each further reading, making our IoT project compatible with
running in real time. Figure 3 shows the sequence of the cache mechanism in our study.

Figure 3. The cache mechanism sequence in our design.
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We summarize the general operations of the proposed system in Algorithms 1 and 2.
The abbreviations are used in Algorithms 1 and 2 explained before references:

Algorithm 1 Field-Side
INPUT: X = {x1, . . . , xn}; S = {s1, . . . , sn}; T; TTS; A; U; P; Hs; Mt; R; Hi; Mp;

1: Begin
2: while xi 6= 0 do // waiting for input data
3: if xi ≥ T // Compare input data to the threshold (T)
4: Generate “Text message” // assign text message for this sensor condition
5: for “Text message” in S do
6: if “Text message” = si then go to Continue: // Use the cache mechanism
7: else
8: TTS← “Text message” // Initialize the TTS model
9: si ← TTS // Store the new synthesized speech in the stack
10: end if
11: end for
12: else
13: No abnormal detected
14: end if
15: end while
16: Continue:
17: A←si // Speak the alarm message
18: if (U, P, Hs) = Hi then // Secured MQTT connection
19: Mp←(xi, Mt, U, P, Hs, R)
20: else
21: No connection to the MQTT protocol // Authentication fail
22: end if
23: End

Algorithm 2 Supervisor Side
INPUT: D = {d1, . . . , dn}; S = {s1, . . . , sn}; TTS; A; U; P; Hs; Mt; R; Hi; Mp;

1: Begin
2: if (U, P, Hs) = Hi then // Secured MQTT connection
3: Mp←(xi, Mt, U, P, Hs, R)
4: else
5: No connection to the MQTT protocol // Authentication fail
6: end if
7: while di 6= 0 do // waiting for input data
8: Generate “Text message” // assign text message for this sensor condition
9: for “Text message” in S do
10: if “Text message” = si then go to Continue: // Use the cache mechanism
11: else
12: TTS← “Text message” // Initialize the TTS model
13: si ← TTS // Store the new synthesized speech in the stack
14: end if
15: end for
16: end while
17: Continue:
18: A←si // Speak the alarm message
19: End

Algorithm 1 represents the field side where the RPi reads the data (X) from the sensors.
After that, it compares the input data to the threshold value (T). RPi sends X to the central
control when X exceeds or equals T. Moreover, it uses either the TTS model or the cache
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mechanism to play the sound alarm (A). Authentication is required on both sides to
initialize the MQTT protocol communication.

In the proposed smart control system for the oil industry, the agents in Algorithm 1
are initialized with specific variable values to ensure efficient and safe monitoring of oil
refineries. As explained in the paper, the initialization process involves setting the values
of various parameters, including X, S, T, TTS, A, U, P, Hs, Mt, Hi, Mp, and R. For instance,
X is initialized to 0, which represents the initial input data of the system. S is also set to 0,
indicating that no data have been stored in the cache memory yet. T is initialized to 1, which
is the threshold value used to compare input data. TTS is set to FastSpeech2 and HiFi-GAN
V3, which are the TTS synthesis models used in the proposed system. A is initialized to
“No alarm message”, which is the default message displayed when no alarm is triggered.
Also, the system requires authentication for accessing the MQTT account, which is achieved
by setting the values of U, P, Hs, Mt and Hi. Mp is set to MQTT protocol, which is used for
communication between the system and the MQTT broker. Finally, R is set to 1883, which
is the default port number for MQTT communication.

Overall, initializing the agents in Algorithm 1 is a crucial step in ensuring the proper
functioning of the smart control system for the oil industry. The system can monitor and
control oil refineries in real time by setting the appropriate variable values, ensuring safety
and efficiency.

On the other side, Algorithm 2 manages the central control. First, the connection
should be secured. After that, RPi checks for the coming data value (D) from the side,
which is greater or equal to the threshold value. Similarly, it creates the sound alarm by the
TTS model or the cache mechanism. Furthermore, we initialized the agents in Algorithm 2
as follows: D = 0; S = 0; TTS = FastSpeech 2 and HiFi-GAN V3; (U; P; Hs; Mt; Hi) = MQTT
account authentications; Mp = MQTT protocol; R = 1883.

4. Results

We conducted ablation analysis by accomplishing many experiments to evaluate the
performance of our design (IoT connectivity, inference speed, complexity analysis, memory
usage, and output speech quality). In our experiment evaluation, we collected data from
the gas sensor. Subsequently, we evaluated the naturalness of the synthesized speech by
measuring several objective metrics.

4.1. IoT System Design Efficiency

One of the essential aspects that must be taken into account in our IIoT design is to
secure communication between the sensor nodes that are distributed in the oil field and the
central control to guarantee error-free data transmission. In the experiment, real data were
read from the gas sensor node (MQ-2) on the oil field side and transferred to the control
room via the MQTT protocol. The experimental result shows that our system needs almost
18 s to receive the data from the field, compare it to the threshold, and synthesize one word
using the TTS model, shown in Figure 4. These data represent a value greater or equal to
the threshold value of the gas level in the oil field (which means an emergency condition
has occurred). In Figure 4, the measured data (gas level) are either 1 or 2, achieving our
threshold condition. In the experiment, we prove the connectivity between both sides is
stable by testing real real-time data gathered from the gas sensor.

4.2. Real-Time System Evaluation and Runtime Analysis

Using the two TTS models, we measured the Real-Time Factor (RTF) of the inference
speed on the RPi. Several waveform lengths have been employed to assess the compu-
tational performance of the TTS models. The utterances have been generated without
batching. We calculate RTF by dividing the time required for synthesizing a sentence by the
total duration of the same original sentence. The test set contains ten utterances (samples)
with waveform lengths ranging from 1.0 to 10.0 s. For each sentence, we repeated the
examination three times (R1, R2, and R3) and obtained the average running time of three
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attempts. Table 5 shows the RTF of the modified TTS model versus the baseline TTS model.
Our proposed modified TTS model has a faster inference speech speed than the baseline
TTS model by receiving RTF 6.4, while the baseline model obtained 7.5. A pairwise t-test
was used to assess the statistical significance between the averages of the two systems.
With p > 0.05, the two systems were significantly different. Moreover, it outperforms our
earlier study results on RPi with the TTS model of FastSpeech 2 and HiFi-GAN V1, which
obtained RTF 8.93 [21].

Figure 4. The IoT connectivity test.

Table 5. The RTF of the two TTS models.

Sentence
Duration

FastSpeech 2 + HiFi-GAN V3 FastSpeech 2 + MelGAN

R1 R2 R3 Avg.
sec RTF R1 R2 R3 Avg.

sec RTF

1 20.2 20.3 20.4 20.3

6.4

23.0 22.8 23.4 23.1

7.5

2 21.2 21.9 21.3 21.4 25.5 27.1 25.5 26.0
3 21.7 21.7 21.7 21.7 24.8 25.4 25.6 25.2
4 22.6 22.5 22.8 22.7 25.6 26.1 26.5 26.1
5 22.1 22.0 22.0 22.0 25.4 26.8 25.1 25.8
6 22.9 23.1 22.9 23.0 26.4 27.5 28.1 27.3
7 23.9 23.7 23.8 23.8 28.6 29.8 28.3 28.9
8 24.4 24.3 24.3 24.3 31.6 31.5 28.2 30.4
9 24.9 24.9 25.1 25.0 31.3 30.2 29.2 30.2
10 25.2 24.8 24.9 24.9 33.8 29.8 39.9 34.5

After that, we tested the cache mechanism in the system with the same ten sentences.
We stored 250, 500, and 1000 sentences in the temporary stack (memory) to test the speed
at different memory sizes. Our system compares the input data with the data stored in the
stack. If they are identical, then it plays the sound alarm. We repeated the experiment three
times (R1, R2, and R3) for each memory size. Table 6 shows the results of our investigation.
The RTF of the system was 0.16, 0.19, and 0.29 when the memory had 250, 500, and 1000
stored audio files, respectively.

Table 6. The system RTF after applying the cache mechanism.

No. of Stored Samples
in the Memory

R1
sec

R2
sec

R3
sec

Average Time
sec RTF

250 0.58 0.62 0.65 0.62 0.16
500 0.71 0.76 0.85 0.77 0.19
1000 0.89 1.04 1.08 1.00 0.29
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4.3. Complexity Analysis

Algorithm analysis predicts the resources an algorithm will require, such as memory,
communication bandwidth, or computer hardware. It estimates the algorithms’ perfor-
mance and efficiency features [73]. The complexity calculation of Algorithm 1:

• INPUT: X = {x1, . . . , xn}; S = {s1, . . . , sn}; TTS; A; U; P; Hs; Mt; R; Hi; Mp: O(1)
• While the reading data from the sensor node (X) is not null, go to the next step: O(1)
• If input data (xi) ≥ the threshold (T), then go to the next step: O(1)
• Check if “Text message” exists in the list of previously stored values: O(1)
• If “Text message” is equal to saved synthesized speech (S), then go to the alarm step:

O(1)
• Synthesize the input text using the TTS model: O(n)
• Store the data in the stack: O(1)
• Alarm step: O(1)
• MQTT step: secured MQTT connection: O(1)
• Send data to HiveMQ: O(1)

From this analysis, the computational complexity of Algorithm 1 is O(n) without using the
cache mechanism, and it is O(1) using the cache mechanism. The complexity calculation of
Algorithm 2 is explained below:

• INPUT: D = {d1, . . . , dn}; S = {s1, . . . , sn}; TTS; A; U; P; Hs; Mt; R; Hi; Mp: O(1)
• Secured MQTT connection: O(1)
• Check if “Text message” exists in the list of previously stored values: O(1)
• If “Text message” = saved synthesized speech (S), then go to the alarm step: O(1)
• Synthesize the input text using the TTS model: O(n)
• Store the data in the stack: O(1)
• Alarm step: O(1)

Similarly, the computational complexity of Algorithm 2 is also linear O(n) without
using the cache mechanism. In contrast, it is constant O(1) using the cache mechanism.

4.4. Memory Experiment

Inherent power and memory size limitations in the IoT domain restrict its function-
ality in safely transmitting sensitive data [74]. In this paper, a cache mechanism has been
utilized to reduce RPi memory usage. The synthesized speech sentence is stored once in
the memory and will be used next time without storing it. On the other hand, we measured
the RPi random access memory (RAM) consumption in three cases. The first case has
been measured without processing or waiting for new data. The second scenario uses the
cache mechanism in the model to produce ten sentences (from one second to ten seconds).
The last experiment was measured using the TTS model to synthesize the same ten sen-
tences. The experimental result shows that RAM usage is 5.3% of the total memory in the
first case (waiting for new data), as shown in sample 0 (no produced sentence) in Figure 5.
In our model, 6.3% of the RAM was used to create ten sentences in a row utilizing the cache
mechanism. Finally, 11.7–16.3% was the RAM percentage deployed to synthesize the ten
sentences without the cache mechanism.

4.5. Loss Measurement

To analyze the speaker adaptation training process, we plot the total loss and mel-
spectrogram loss curves of FastSpeech 2 on the training and validation set of the male
target speaker (Figures 6 and 7). The total variant loss was 4.269/4.555 at the training
initialization and degraded to 0.739/0.738 on step 1.85 M for training and validation,
respectively. Furthermore, the Mel Loss variant was 1.004/1.094 and 0.349/0.364 for
training and validation, respectively. The gap between each loss training and validation
loss curve indicates an improved generalization.
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Figure 5. The memory experiment results using the TTS model and cache mechanism.

Figure 6. The total loss of training and validation curves for FastSpeech 2 during the adaptation training.

Figure 7. Mel Loss of the training and validation curves for FastSpeech 2 during the adaptation training.

4.6. Synthesized Speech Objective Evaluation

We utilized objective metrics evaluations to test the quality of the synthesized speech
of the two target speakers. We compared all the results obtained by our modified TTS
model to the baseline TTS model. We used Mel-Cepstral Distortion (MCD) and Frequency
Weighted Segmental SNR (fwSNRseg).

1. MCD (dB):

The MCD indicates how closed the synthesized sentences are to the ground-truth sen-
tences. It estimates the difference between the mel cepstra series (Equation (1)). As much as
the MCD value is small, it means the synthesized sentences are close to the original sentences.

MCD =
1
N

N

∑
j=1

√√√√ K

∑
i=1

(
xi,j − yi,j

)2 (1)
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x and y are the i th cepstral coefficients of the ground truth and synthesized speech signals.
j represents the index of the frames.

2. FwSNRseg (dB):

It assesses the similarity between two characteristic sequences. Higher FWSEG implies
a more satisfactory speech rate. It is an extension of the Segmental SNR (signal-to-noise
ratio). It is computed using Equation (2).

fwSNRseg =
10
M

M−1

∑
m=0

∑K
j=1 W(j, m) log10

X(j,m)2

(X(j,m)−X̂(j,m))2

∑K
j=1 W(j, m)

(2)

M is the total number of segments; K is frequency bands; X(j, m) is the Discrete Fourier
Transform (DFT) coefficient magnitude; X̂(j, m) is the corresponding spectral magnitude of
the synthesized speech signal in the same band; m is the original speech signal; m is the
original speech signal; W(j, m) is the frequency weighting factor.

Table 7 shows each target speaker’s average MCD and FWSEG of ten synthesized
sentences. The results show the superiority of the modified TTS model to the baseline TTS
model in terms of synthesized speech quality.

Table 7. Objective metrics.

Speaker Modified TTS Model Baseline TTS Model
MCD FwSNRseg MCD FwSNRseg

F 5.17 1.0 5.76 0.8
M 6.0 0.67 7.13 0.18

5. Discussion

Our target study is the possibility of creating IoT talk for industrial solutions by
building an intelligent control system extension. The main challenge in creating such
a system is the high computational requirements of the TTS models. Providing high
computing resource devices is also an expensive solution for industries. To this end, we
hypothesized using the cache mechanism to solve this issue because state-of-the-art TTS
models currently do not offer appropriate real-time running times. Consequently, urgent
requests or notifications are no longer valuable.

The results reveal that even when using FastSpeech 2 and HiFi-GAN V3, the output
system sound alarm production is slow (RTF = 6.4, 20.3–24.9 s, as shown in Table 5). There-
fore, this outcome fails to meet real-time needs. However, adding the cache mechanism to
our system algorithms optimized the production of sound alarm speed to RTF = 0.29 as a
maximum (Table 6). Moreover, studying the RAM efficiency in RPi has proven that using
the cache mechanism enhances the performance of the embedding device (by reducing its
usage by 61.35% when producing 10 s sentence). The computational complexity of the two
algorithms exhibits a linear performance O(n) without using the cache mechanism, which
increases with the input text length for each circumstance. On the other hand, the cache
mechanism optimizes the complexity of our algorithm to O(1). Eventually, customizing the
synthesized speech for the two target speakers successfully used small datasets.

To the best of our knowledge, this is the first study to consider employing a TTS model-
based neural network with IoT for industrial purposes. Meanwhile, results may not be in
real-life study settings because it was accomplished in a highly controlled environment.
Therefore, this study will benefit from a case study in oil refineries and studying its impacts
on real-life scenarios. Moreover, the data collected was obtained from only one sensor to
demonstrate the effectiveness of the system. Accordingly, studying system behavior with
different data types under various operational conditions should be considered. Regardless,
the system method is the same for different sensed data types (by comparing the input data
to the thresholds).
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Recent advances in oil refineries have resulted in the complex monitoring of opera-
tional conditions and emergencies. For example, an abnormal condition causes a notifica-
tion indicating a fire or operation problem (such as high temperature, level, and pressure
in a drum). The priority response varies depending on these conditions. Furthermore,
each alarm unit has a standardized set of simple tone alarms. On the other hand, modern
control refinery panels are complicated because they are linked to numerous instruments,
sensors, drums, and pumps. Typically, each device sounds an alarm without prioritization,
coordination with others, or providing a guide. As a result, critical alarms may be lost in
the noise and distraction of trivial ones, resulting in a cacophony. These levels of noise
and distraction can have negative consequences. To solve this problem, our system can
issue an emergency sound alarm (spoken). This sound alarm may also contain additional
information regarding the situation, such as its location and possible solutions. For exam-
ple, if the system detects a gas leak, it can generate a human-like voice alarm that warns
operators about potential dangers and provides instructions for evacuating the area or
shutting down specific equipment. Overall, the speech alarm messages generated by our
proposed intelligent extension control system can play a critical role in ensuring the safety
and efficiency of oil refineries. This system can prevent accidents and minimize downtime
by providing operators with real-time alerts and instructions.

The development of new technologies raises ethical questions from several directions.
On the one hand, from the point of view of research ethics—what kind of research can
be allowed, and whether the freedom of research can be restricted on any basis. On the
other hand, from the point of view of result implementation—the question is how we can
“correctly” apply the new scientific results [75]. It is beyond the scope of this article to deal
in more detail with the moral and ethical dilemmas surrounding technical development,
robotics, and the rise of artificial intelligence. Researchers must know the limit regarding
the research serving the community’s interests. In our case, it is an ethical and social
question of whether it poses a danger or what feelings it may evoke if an employee’s voice
is used as a model for the operation of the system. The uncanny valley phenomenon [76]
can be a social dilemma when we send messages through our tested system as a real-time
warning in direct response to a given situation.

It also has ethical implications, such as privacy concerns. Human-like speech-based
alarm systems can potentially record and store audio data, therefore raising privacy con-
cerns for workers. Appropriate safeguards should be implemented to protect the privacy
of individuals and ensure that the collected data are used solely for safety purposes. The
possibility of misuse must be ruled out, and internal regulation based on the national
legal system must be created to determine how and in what way the voice samples used
for training the system must be stored, who can access them, and how they can be used.
It is essential to define the use framework and ensure appropriate legal protection for
the person providing the sample. In this regard, European regulations are particularly
strict. General Data Protection Regulation (GDPR), the data protection regulation of the
European Union that entered into force in 2018 [77], specifically places great emphasis on
protecting individuals against the state and companies. However, the law is simply unable
to keep up with technical progress; therefore, in many cases, it is difficult to comply with
inflexible rules.

6. Conclusions and Future Work

We built an intelligent extension IIoT design-based TTS for the control systems of
oil refineries. We improved a TTS model (FastSpeech 2 and HiFi-GAN V3) to synthesize
speech faster with better speech quality. We customized the TTS model using a small
adaptation dataset to generate two target speakers (female and male). We compared our
modified TTS model with a baseline model using RTF and objective speech quality metrics.
We invested a cache mechanism method in our proposed design to maintain the generating
uttered alarm inference suitable for real-time. We tested our system on a low resources-
embedded system (Raspberry Pi 4) in a real-time environment using data from a remote
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gas sensor. The results illustrate that our system Real-Time Factor (RTF) is 6.4 (without
the cache mechanism). Using the cache mechanism, our proposed model successfully
solves the real-time TTS issue and runs on a low-resource computational device at real-time
speed (RTF = 0.16, 0.19, and 0.29 when the memory contains 250, 500, and 1000 WAV files,
respectively). Furthermore, the cache mechanism lowered memory usage in the embedded
device from 16.3% (for producing a ten-second sentence) to 6.3%. Moreover, our TTS model
outperformed the baseline TTS model in terms of objective speech quality evaluation. Our
proposed system shows improved efficiency, real-time capabilities, and speech quality by
utilizing advancements in IIoT and TTS technologies. The perspective of this study is to
enhance operators’ decision-making in emergencies with an effective and fast response in
plant control rooms at industrial facilities (such as oil refineries).

A limitation of this study was that it was conducted in a controlled environment.
Moreover, only one sensor (gas sensor) was used. Therefore, extending this work to real-
life scenarios such as refinery oil should be considered with different input data types.
Cybersecurity is a critical aspect to be addressed as an IIoT system. SSL/TLS protocol used
in our approach should be reconsidered because of its drawbacks [64] for limited-resource
devices such as IoT. Moreover, the performance depends on the accuracy of the abnormal
condition detection (in our case, the threshold comparison). There remains the possibility
of false alarms triggered by various factors, such as noisy data, unexpected environmental
conditions, or minor fluctuations that may not pose significant risks. Therefore, other
abnormal detection methods should be investigated.

In our future work, we will leverage the performance of FastSpeech 2 in hardware
with low computational resources by reducing its parameters. Furthermore, loading the
TTS model to the memory from the disk requires a long time. One solution is that the
TTS model is continuously running and keeping it in the memory, and if there is a new
request, the synthesis speed will be faster. We will change the TTS model architecture to
run consistently in the memory. In addition, we will consider Autovocoder [78] in our TTS
model. Autovocoder produces waveforms from a frame-based representation of equivalent
size to the mel-spectrogram, and it is faster than other neural vocoders. Furthermore, we
will utilize the zero-shot adaptation method to generalize our system to many languages
(especially languages with insufficient resources). Subsequently, we extend it to other
languages, such as Arabic and Hungarian. Finally, we will investigate our proposed system
in a real-world oil refinery. This investigation includes economic analysis, evaluation of the
system effect, and commercialization.
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Abbreviations

X Data from the sensor node
S Saved synthesized speech
Si The stored value element in the memory
T Threshold value
TTS Text-to-Speech model
U HiveMQ user ID
P HiveMQ password
Hs HiveMQ hostname
R connection port
Hi HiveMQ cluster credentials
A The Alarm
Mt MQTT topic
Mp MQTT protocol
D Data received via MQTT
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