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Abstract: Retinal vessel segmentation is an important task in medical image analysis that can aid
doctors in diagnosing various eye diseases. However, due to the complexity and blurred boundaries
of retinal vessel structures, existing methods face many challenges in practical applications. To
overcome these challenges, this paper proposes a retina vessel segmentation algorithm based on
an attention mechanism, called CAS-UNet. Firstly, the Cross-Fusion Channel Attention mechanism
is introduced, and the Structured Convolutional Attention block is used to replace the original
convolutional block of U-Net to achieve channel enhancement for retinal blood vessels. Secondly,
an Additive Attention Gate is added to the skip-connection layer of the network to achieve spatial
enhancement for retinal blood vessels. Finally, the SoftPool pooling method is used to reduce
information loss. Experimental results using the CHASEDB1 and DRIVE datasets show that the
proposed algorithm achieves an accuracy of 96.68% and 95.86%, and a sensitivity of 83.21% and
83.75%, respectively. The proposed CAS-UNet thus outperforms the existing U-Net-based classic
algorithms.

Keywords: deep learning; image segmentation; U-Net; mechanism of attention; retinal vessel
segmentation

1. Introduction

The retinal vasculature plays a crucial role in the body’s blood circulation. Its shape
and distribution can reflect the health status of human organs and tissues. The observation
of retinal vasculature can help doctors track and diagnose diseases of the fundus, such as
diabetic retinopathy (DR) [1]. Therefore, being able to visually observe the distribution and
detailed information of retinal vasculature is essential for doctors’ diagnoses. However, the
structure of retinal vasculature is highly complex, with high curvature and diverse shapes,
and the difference in vessel area and background is not obvious. In addition, fundus images
are also easily affected by an uneven pipeline and noise. Due to these reasons, the retinal
vessel segmentation task faces enormous challenges.

With the continuous development of computer technology, the intelligent segmenta-
tion of retinal vessels and assisted diagnosis and decision-making of ophthalmic diseases
have become a research hotspot for scholars at home and abroad. Deep learning has gained
great attention in the field of image processing due to its super high prediction accuracy
in recognition applications. This paper proposes a CAS-UNet retinal vessel segmentation
algorithm based on an attention mechanism (adding a cross-fusion attention module, an
additive attention module, and a SoftPool module on the basis of U-Net), aiming to improve
the segmentation ability of the model and strengthen the segmentation effect on detailed
image areas.

The main contributions of the algorithm described in this paper are as follows:

Electronics 2023, 12, 3359. https://doi.org/10.3390/electronics12153359 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153359
https://doi.org/10.3390/electronics12153359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1085-7246
https://doi.org/10.3390/electronics12153359
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153359?type=check_update&version=3


Electronics 2023, 12, 3359 2 of 18

1. A Structured Convolutional Attention module (DC-Conv) is used in the encoding and
decoding stages of the network to enhance the channel features of retinal vessels.

2. An Additive Attention Gate (AG+) module is introduced at the skip connection of the
network to enhance the spatial features of retinal vessels.

3. A SoftPool pooling method is added to reduce information loss during downsampling.

The experimental results show that, compared with other segmentation algorithms,
the CAS-UNet model significantly improves the segmentation ability of small complex
vessels and improves the segmentation effect on detailed areas. The proposed algorithm
in this paper outperforms the existing classical algorithms in terms of comprehensive
segmentation performance and training efficiency.

The structure of this paper is as follows: Firstly, the background and challenges of
the retinal vessel segmentation are introduced, and traditional methods, machine learn-
ing algorithms, and deep learning algorithms are classified and reviewed. Based on a
comprehensive analysis and comparison of existing algorithms, this paper proposes a
CAS-UNet retinal vessel segmentation algorithm based on an attention mechanism. The
Cross-Fusion Channel Attention module, the Additive Attention Gate module, and the
SoftPool pooling module are respectively introduced. The experimental section of the
article includes the dataset and preprocessing, experimental parameter settings, evaluation
metrics, and analysis of the experimental results. Finally, the conclusion and future work
are presented.

2. Related Work

Over past decades, many retinal vessel segmentation methods have been proposed,
and they have mainly divided into manual segmentation methods and automatic segmen-
tation methods. The former is time-consuming and requires extremely high professional
skills from practitioners. The latter can alleviate the burdens of manual segmentation.
Therefore, many retinal segmentation algorithms have emerged, which can be classified
into three categories: traditional methods, machine learning algorithms, and deep learning
algorithms.

Traditional methods are mainly based on image processing techniques and mathemati-
cal theories, such as region growing and thresholding. These methods work well for retinal
image segmentation with simple or specific features, but are not effective for complex or
highly variable retinal images, and do not easily handle noise and artifacts.

Machine learning algorithms include unsupervised and supervised algorithms. Unsu-
pervised algorithms do not require manually labeled data and mainly use specific methods
to extract vessel features. For example, Chaudhuri et al. introduced a Gaussian filter
to detect vessels in different directions [2]. Yin et al. proposed a probabilistic tracking
method [3] that identifies the local retinal vessel structure by sampling the edges of several
vessels and using Gaussian filters and Bayesian methods to achieve improved segmentation
results. Zana et al. proposed a linear model based on Gaussian contour improvement [4],
which can be applied to complex vessel detection environments. Kass et al. proposed an
improved Snake model [5] that transforms the vessel segmentation process into a problem
of minimizing the energy function. Through algorithm guidance, this model acts on the
vessel contour to achieve retinal vessel segmentation. However, unsupervised algorithms
suffer from strong classification preference and ambiguous feature extraction.

Supervised algorithms usually require a large number of manually segmented and
annotated retinal vessel images as a dataset for model training. Although they have longer
training times, they have relatively high accuracy and strong portability for use in different
datasets after model fine-tuning. For example, Ricci et al. proposed a vessel segmentation
method that combines line operations and support vector machines (SVMs) for assisting in
the diagnosis of ophthalmic diseases [6]. Marin et al. proposed an artificial neural network
structure for vessel segmentation [7], which can achieve good segmentation results on
various datasets. Staal et al. proposed a method that combines image ridge extraction and
a KNN classifier for the automatic screening of diabetic retinopathy patients [8]. Fraz et al.
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used feature vectors to process retinal images [9]. These supervised algorithms can usually
achieve higher segmentation accuracy.

In recent years, the rapid development of deep learning technology has led many
researchers to use deep learning techniques for retinal image segmentation. In 2015,
Long et al. proposed a fully convolutional network (FCN) for the semantic segmentation of
images [10]. Based on the FCN, Ronneberger et al. proposed the U-Net network [11], which
demonstrated superior performance in medical image segmentation and became a focus
model in the field of medical image segmentation. Subsequently, the U-Net network model
has become a hot spot in medical image segmentation. For example, Shankaranarayana et al.
introduced residual blocks into U-Net and proposed Res-UNet, which deepens the network
structure [12] and accelerates the convergence of the network. Zhang et al. borrowed the
idea of DenseNet [13] and introduced dense connections to enhance the fusion of feature
maps, designing a new network structure called MDU-Net [14]. Oktay et al. introduced
attention mechanisms into the U-Net network and integrated attention modules (AGs)
into the U-Net network, which can better capture salient features of specific tasks and
improve the prediction accuracy of the model [15]. Gu et al. proposed a Context Encoder
Network (CE-Net) [16], which reduces the loss of spatial information caused by continuous
pooling and skip connections in the U-Net network. Zhou et al. proposed U-Net++,
which integrates the features of each layer in the skip-connection layer and designs a
pruning strategy that can accelerate inference and maintain performance [17]. Alom et al.
improved the upsampling and downsampling processes and proposed two models, RU-
Net and R2U-Net, based on the ideas of recursive convolutional neural networks and
recursive residual neural networks, respectively [18]. Without increasing the parameter
calculation, the segmentation performance of the network exceeded that of U-Net and Res-
UNet. Jafari et al. combined residual networks [19] and DenseNet, added additional skip
connections, and improved accuracy while reducing the number of parameters [20]. These
models have achieved good results on retinal datasets. The work of these scholars provides
important inspiration for the research and development of medical image segmentation.

3. The Algorithm Principle
3.1. CAS-UNet Network Model

The proposed CAS-UNet network is built on the basis of U-Net. The network model of
this algorithm is designed as a four-layer encoding and decoding structure, which mainly
consists of three parts: the left encoding path, the right decoding path, and the middle
skip-connection part. The CAS-UNet algorithm model is shown in Figure 1.
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In this paper, we propose an encoder–decoder structured retinal image segmentation
model. The specific implementation process is as follows: In the encoding stage, the retinal
image is preprocessed and then input into the encoder of the network. The encoder includes
three downsampling steps, each of which contains a Structured Convolution Attention
module (DC-Conv) and a SoftPool pooling operation. After each convolutional block is a
DropBlock, a Batch Normalization (BN) layer, and a ReLU activation function. The final
module is the Cross-Fusion Channel Attention module. The number of feature channels
doubles in each downsampling step, with feature channel numbers of 64, 128, 256, and
512. In the decoding stage, the decoder is symmetric to the encoder and includes three
upsampling steps, each of which contains a DC-Conv and a deconvolution layer. Since
upsampling can cause a loss of vessel information, the feature maps after upsampling and
the corresponding encoder feature maps with the same resolution are skip-connected. The
features from the encoding layers have a higher resolution, while the features from the de-
coding layers contain more semantic information. An Additive Attention Gate plus module
(AG+) is used to enhance the feature map, spatially enhancing the feature map to improve
the model’s segmentation ability in detailed areas and improve segmentation accuracy. In
the classification stage, a fully connected layer and a Softmax activation function are used
to classify the vessels and background in the retinal image, and the segmentation result of
the retinal image is output. The experimental results demonstrate that the proposed retinal
image segmentation model performs well in retinal image segmentation tasks, effectively
segmenting the vessels and the background in retinal images.

3.2. The Cross-Fusion Channel Attention Model

In the CAS-UNet network structure, the Cross-Fusion Channel Attention module plays
a crucial role. In this module, the number of channels in the feature map is determined by
the number of convolution kernels in the convolution operation. Past researchers believed
that the importance of the information contained in each channel of the obtained multi-
channel feature map was the same and did not distinguish the importance of the feature
channels. However, in fact, the attention to the different areas of each image is also different.
For example, in a retinal vessel image with two channels, if the segmentation target is a
vessel, more attention should be paid to the vessel channel that needs to be segmented.

The channel attention mechanism can distinguish the importance of different feature
channels in the feature map [21]. It usually compresses the feature map by global average
pooling to establish the relationship between feature channels. However, in retinal image
segmentation tasks, the retinal vessels vary in thickness, and there are many subtle vessels
with low contrast. These details are important for segmentation tasks and cannot be
ignored. Therefore, this paper proposes a new Cross-Fusion Channel Attention module,
which considers the importance of both global and local features while having a certain
degree of a local receptive field, as shown in Figure 2.

Specifically, the input feature map is first globally average-pooled and globally max-
pooled to obtain two feature vectors. These two feature vectors represent the global average
and global maximum values of the feature map, which are used to calculate the importance
weight of each feature channel. The results of global average pooling and global max
pooling are then fed into the feature cross layer (product layer) to fully cross the global and
local features. The feature cross layer combines different feature vectors to obtain a new
feature vector, where each element represents the cross-feature between different channels.
The output of the MLP [22] is then subject to weighted summation with the feature map to
obtain the final feature map. This step allows the attention coefficient values to incorporate
both global features and local detail features. Finally, the feature map is recalibrated to
obtain a new feature map. Recalibration is achieved by multiplying each element of the
feature map by a learned scaling factor to further improve segmentation accuracy.
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The execution process of the Cross-Fusion Channel Attention module can be generally
divided into five steps: squeeze, cross, excitation, element-wise addition, and scale. The
specific steps are as follows:

Step 1: Squeeze

First, we define the feature map F with C feature channels. We establish the dependen-
cies between channels using global max pooling and global average pooling, respectively,
to obtain two 1 × 1 × 1 × C tensors, denoted as Fmax and Favg. Next, we use the Sigmoid
activation function to establish the feature weight tensors for the channels obtained by
global max pooling and global average pooling, denoted as Amax and Aavg, respectively.
We then apply the Sigmoid function to Fmax and Aavg to obtain two feature weight vectors,
denoted as Amax and Aavg, respectively.

Amax = Sigmoid(Fmax) (1)

Aavg = Sigmoid
(

Favg
)

(2)

Both of these feature weight vectors have C elements, representing the importance of
different channels. Specifically, each element in Amax and Aavg is a real number between 0
and 1, representing the importance weight of the corresponding channel.

Step 2: Cross

The four tensors obtained by global max pooling and global average pooling, namely
Fmax, Favg, Amax, and Aavg, are fed into the feature cross layer (product layer) for four
rounds of feature cross to fully fuse global and local features. In the feature cross layer,
different feature vectors are combined to obtain a new feature vector, where each element
represents the cross-feature between different channels. Through four rounds of feature
cross, the global and local features are fully crossed to some extent, which enhances the
network’s ability to perceive details and further improves segmentation accuracy.

The first feature cross operation involves multiplying Fmax and Amax element-wise to
fuse more detailed local features. This results in a 1 × 1 × C tensor denoted as A′max.

A′max = Fmax ⊗ Amax (3)
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The second feature cross operation involves multiplying Favg and Aavg element-wise
to fuse more comprehensive global features. This results in a 1 × 1 × C tensor denoted as
A′avg.

A′avg = Favg ⊗ Aavg (4)

The third feature cross operation involves multiplying Fmax and Aavg element-wise to
fuse the global and local features, resulting in a 1 × 1 × C tensor denoted as A′′max.

A′′max = Fmax ⊗ Aavg (5)

The fourth feature cross operation involves multiplying Favg and Amax element-wise
to also fuse the global and local features, resulting in a 1 × 1 × C tensor denoted as A′′avg.

A′′avg = Favg ⊗ Amax (6)

Step 3: Excitation

The four tensors obtained by the four rounds of feature cross, namely A′max, A′avg,
A′′max, and A′′avg, are individually fed into the Multi-Layer Perceptron (MLP) module for
feature learning, as shown in Figure 3.
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The first fully connected layer (FC layer) of the MLP module compresses the tensor
with C channels into C/r channels to reduce the number of parameters and computation
time required by the model. The second fully connected layer restores the feature map to C
channels, making the model more nonlinear and better adapted to complex relationships.
Details are as follows.

First, we concatenate the four tensors A′max, A′avg, A′′max, and A′′avg together to obtain a
1 × 1 × 1 × 4C tensor, denoted as x. We then compress x into a 1 × 1 × 1 × C/r tensor,
denoted as y1, through the first FC layer for feature learning and dimension transformation:

y1 = FC(x) (7)

Next, we compress y1 into a 1 × 1 × 1 × C tensor, denoted as y2, through the second
FC layer for feature learning and dimension transformation:

y2 = FC(y1) (8)

Finally, we activate y2 using the Sigmoid activation function to obtain the four attention
coefficients, denoted as A1, A2, A3, and A4, respectively:

A1 = Sigmoid
(
y2·A′max

)
(9)
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A2 = Sigmoid
(

y2·A′avg

)
(10)

A3 = Sigmoid
(
W2·A′′max

)
(11)

A4 = Sigmoid
(
y2·A′′avg

)
(12)

Step 4: Feature Weighted Summation

To consider the dependencies between global and local detail features simultaneously,
we perform feature weighted summation on the four feature vectors A1, A2, A3, and A4,
and apply Sigmoid activation to map the resulting channel feature weights Z to the interval
[0, 1].

Z = Sigmoid(A1 + A2 + A3 + A4) (13)

Step 5: Re-calibration

After obtaining the new channel feature weights Z, we can re-calibrate the original
feature map to obtain a new feature map. Specifically, we multiply each channel i in the
original feature map F by its corresponding channel weight Zi to obtain a new channel
feature map F′i .

F′i = Zi ∗ Fi (14)

We then concatenate all the new channel feature maps F′1, F′2, . . ., F′C together to obtain
the new feature map F′. The new feature map F′ has the same spatial resolution as the
original feature map F, but the feature responses of each channel are re-adjusted. Through
the processing of feature weighting and re-calibration, we obtain a new feature map F′ that
can be used for subsequent segmentation tasks.

Experimental results show that the fundus image segmentation model using the Cross-
Fusion Channel Attention module performs well in segmentation tasks. Compared with
the channel attention mechanism using global average pooling, the proposed Cross-Fusion
Channel Attention module can better utilize both global and local features, improving
segmentation accuracy.

3.3. The DC-Conv Module

The model proposed in this paper uses the DC-Conv module, as shown in Figure 4, to
replace the double convolution structure of the traditional U-Net encoder–decoder.
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The DC-Conv module consists of two sub-convolution blocks and Cross-Fusion Chan-
nel Attention. The structure of each sub-convolution block is shown in Figure 5, and each
sub-convolution is composed of 3 × 3-Conv, DropBlock, BN, and ReLU in sequence.
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Inspired by the recent use of DropBlock in computer vision models [23–25], we use
DropBlock for regularization in our network, as shown in Figure 6.
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DropBlock is a structured form of Dropout that prevents overfitting of convolutional
neural networks, especially for semantic segmentation problems. The main difference
between DropBlock and Dropout is that DropBlock discards contiguous regions of the con-
volutional feature map of a layer, which is equivalent to discarding some semantic features,
while Dropout discards randomly and relatively independent feature units. Models that use
DropBlock are more adaptable to different semantic segmentation scenarios, have stronger
robustness and sensitivity, and are better able to learn more complete vessel structures and
branching characteristics of small vessels when dealing with situations such as insufficient
brightness, poor clarity, and difficulty capturing small vessel branches that frequently occur
in retinal vessel segmentation. The BN layer is used to maintain the stability of input and
output data distribution and reduce the model’s dependence on initial input data. The
Cross-Fusion Channel Attention module can balance global and local features, enhance the
channels related to retinal vessels, and further improve segmentation accuracy.

In summary, the proposed model in this paper uses the DC-Conv module to replace the
double convolution structure of the traditional U-Net encoder–decoder and incorporates
DropBlock layers, batch normalization layers, and Cross-Fusion Channel Attention to
improve retinal vessel image segmentation accuracy.

3.4. The Additive Attention Gate Module

In order to highlight the specific details of fine blood vessels, a spatial attention
mechanism is introduced to enhance them. Inspired by Attention U-Net, we improve the
original attention mechanism by introducing an attention gate that weights the upsampled
features on the retina and the attention features in Attention U-Net. The resulting attention
mechanism output is obtained through the ReLU function, and we name it the Additive
Attention Gate (AG+) module. Its structure is shown in Figure 7.
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This attention mechanism takes two feature maps as input: the first is the feature
map gl obtained during the upsampling process, and the second is the feature map xl
obtained from the skip connection. After both inputs undergo 1 × 1 × 1 convolution
operations, resulting in feature maps of the same size and C channels, they are added
together. Subsequently, the ReLU activation function is applied to obtain an intermediate
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feature map, which undergoes 1 × 1 × 1 convolution operations, a Sigmoid activation
function, and resampling to obtain the attention coefficients α. The output feature map x̂l is
expressed as follows:

x̂l = α·xl (15)

In Equation (15), xl represents the input feature, and l represents the number of pixels
for each feature. The attention coefficient α is expressed as follows:

α = σ2
(
ψ
(
σ1
(
ωxxl + ωggl + bg

))
+ bψ

)
(16)

In Equation (16), ωx is the weight of the input feature xl , ωg is the weight of the input
feature gl , ψ is the standard convolution function, bg is the bias value of gl , and bψ is the
bias value of ψ. The input features xl and gl provide contextual information to the attention
mechanism, which can determine which input features are related to retinal vessels. α
weights the low-level features to highlight the importance of retinal vessels.

In segmentation tasks, as there are multiple semantic categories, a method for learning
multi-dimensional attention coefficients is introduced to better focus on the main situations
during the segmentation process. Compared with the multiplication attention algorithm,
the addition attention algorithm has better segmentation accuracy and performance. By
comparing the performance of the multiplication attention algorithm and the addition
attention algorithm, we can find that the addition attention algorithm has higher segmenta-
tion accuracy and better segmentation results. Therefore, we weight the features of gl and
x̂l , and then apply the Sigmoid function to obtain the final attention mechanism output x̂out:

x̂out = σ2(x̂l + gl) (17)

In the proposed Additive Attention Gate module in this paper, the input feature and
the skip-connection feature provide contextual information that can determine which input
features are related to retinal vessels. By weighting the input features, the importance of
retinal vessels is highlighted, leading to further improvements in segmentation accuracy.

3.5. SoftPool Pooling

In this paper, SoftPool pooling [26] is chosen as the pooling method for feature ex-
traction during the downsampling process. SoftPool is a fast and efficient pooling method
that can retain more retinal vessel information in the downsampling activation map com-
pared to the original MaxPool pooling in the U-Net network, thus improving segmentation
accuracy.

Figure 9 shows the MaxPool pooling operation in the original U-Net, where the
input feature map is denoted as α and the output feature map is denoted as α̃max. The
mathematical formula for this operation is expressed as Equation (18):

α̃max = max
i∈R

αi (18)

Figure 8 shows the SoftPool pooling operation used in this paper, which is mainly
based on SoftMax weighted pooling. It defines a local region R of size C× H ×W in the
feature map α and calculates the weight ωi of region R nonlinearly based on the feature
values. The output feature map α̃ is obtained by weighting the feature values within the
region R. The mathematical formulas for this operation are expressed as Equations (19)
and (20):

ωi =
eαi

∑
j∈R

eαj
(19)

α̃ = ∑
i∈R

(ωi·αi) (20)
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SoftPool pooling is a probability-based pooling method that can generate a certain
probability distribution by referencing the activation value distribution within the feature
region. In practical implementation, SoftPool pooling replaces the MaxPool operation
with a smoothing function whose shape can be adjusted according to a specific distribu-
tion. Through this method, SoftPool pooling can effectively preserve the subtle feature
expressions of retinal vessels while maintaining computational and memory efficiency.
Therefore, SoftPool pooling has become an important technique in retinal vessel image
segmentation tasks.

4. Experiments
4.1. Datasets and Preprocessing
4.1.1. Datasets

Two publicly available datasets, CHASEDB1 and DRIVE, were used in our experiments.
The CHASEDB1 dataset consists of 28 retinal images in jpg format with a size of

999 × 960, taken of the eyes of 14 schoolchildren. Each image has manual segmentation
labels from two experts, and the corresponding masks need to be set by code. Generally, the
first 20 images were used for training, and the remaining 8 images were used for testing.

The DRIVE dataset was released in 2004, which includes 40 color fundus images in
tif format with a size of 565 × 584. Each image contains a gold standard image manually
labeled by two experts and a mask image of retinal vessels.

Information about these two retinal vessel image datasets is shown in Table 1.
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Table 1. Examples of images from the retinal vessel image datasets.

Datasets Original Image Gold Standard Image Mask Image

CHASEDB1
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4.1.2. Preprocessing

As retinal fundus images suffer from non-uniform illumination and low contrast
between vessels and background, pre-processing of the input retinal fundus images is
required before feeding into the network. The pre-processing methods are shown in Table 2
and include the following steps:

1. extract the green channel of the retinal vessel image and convert it to grayscale;
2. normalize the image;
3. apply Contrast Limited Adaptive Histogram Equalization (CLAHE);
4. apply Gamma correction.

Table 2. Examples of original images and preprocessed images.

Datasets Original Image G Channel Normalization Equalization Gamma Adjustment

CHASEDB1

Electronics 2023, 12, 3359 11 of 20 
 

 

SoftPool pooling is a probability-based pooling method that can generate a certain 

probability distribution by referencing the activation value distribution within the feature 

region. In practical implementation, SoftPool pooling replaces the MaxPool operation 

with a smoothing function whose shape can be adjusted according to a specific distribu-

tion. Through this method, SoftPool pooling can effectively preserve the subtle feature 

expressions of retinal vessels while maintaining computational and memory efficiency. 

Therefore, SoftPool pooling has become an important technique in retinal vessel image 

segmentation tasks. 

4. Experiments 

4.1. Datasets and Preprocessing 

4.1.1. Datasets 

Two publicly available datasets, CHASEDB1 and DRIVE, were used in our experi-

ments. 

The CHASEDB1 dataset consists of 28 retinal images in jpg format with a size of 999 

× 960, taken of the eyes of 14 schoolchildren. Each image has manual segmentation labels 

from two experts, and the corresponding masks need to be set by code. Generally, the first 

20 images were used for training, and the remaining 8 images were used for testing. 

The DRIVE dataset was released in 2004, which includes 40 color fundus images in 

tif format with a size of 565 × 584. Each image contains a gold standard image manually 

labeled by two experts and a mask image of retinal vessels. 

Information about these two retinal vessel image datasets is shown in Table 1. 

Table 1. Examples of images from the retinal vessel image datasets. 

Datasets Original Image Gold Standard Image Mask Image 

CHASEDB1 

 

 

 

 
 

 

 

 

 

  

DRIVE 

 

 

 
 

 

 

 

  

4.1.2. Preprocessing 

As retinal fundus images suffer from non-uniform illumination and low contrast be-

tween vessels and background, pre-processing of the input retinal fundus images is re-

quired before feeding into the network. The pre-processing methods are shown in Table 2 

and include the following steps: 

Electronics 2023, 12, 3359 12 of 20 
 

 

1. extract the green channel of the retinal vessel image and convert it to grayscale; 

2. normalize the image; 

3. apply Contrast Limited Adaptive Histogram Equalization (CLAHE); 

4. apply Gamma correction. 

Table 2. Examples of original images and preprocessed images. 

Datasets Original Image G Channel Normalization Equalization Gamma Adjustment 

CHASEDB1 

 

 

 

 
 

 

 

 

 

 

    

DRIVE 

 

 

 

 

 

 
 

 

 

 

    

4.1.3. Data Augmentation 

The structure of a deep convolutional neural network is often very complex, and 

training a deep convolutional neural network for image segmentation usually requires a 

large number of labeled images. However, only a few dozen retinal vessel images have 

pixel-level labels, making it easy for the designed deep learning network model for retinal 

vessel segmentation to suffer from overfitting. In our experiments, we used random crop-

ping to augment the data. For the DRIVE dataset, we directly used random cropping to 

augment the data. Each image in the training set was randomly cropped into 9000 48 × 48 

local blocks, of which 7200 were used for training and 1800 were used for validation. The 

CHASEDB1 dataset has a total of 28 images, and we selected the first 20 images as the 

training set and the remaining 8 images as the test set. Each image in the CHASEDB1 

dataset was randomly cropped into 15,000 48 × 48 local blocks, of which 13,500 were used 

for training and 1500 were used for validation. These image blocks were used together 

with the original images for model training and testing. 

During training, we used 5-fold cross-validation to evaluate the performance of the 

model. Specifically, the training set was divided into 5 subsets, with each subset used as 

the validation set in turn, and the remaining subsets used as the training set to train the 

model. In each cross-validation iteration, we used a stochastic gradient descent optimiza-

tion algorithm with a cross-entropy loss function. The learning rate was set to 0.01 and 

adjusted at the end of each epoch. We trained the model for 50 epochs and validated the 
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4.1.3. Data Augmentation

The structure of a deep convolutional neural network is often very complex, and
training a deep convolutional neural network for image segmentation usually requires a
large number of labeled images. However, only a few dozen retinal vessel images have
pixel-level labels, making it easy for the designed deep learning network model for retinal
vessel segmentation to suffer from overfitting. In our experiments, we used random
cropping to augment the data. For the DRIVE dataset, we directly used random cropping to
augment the data. Each image in the training set was randomly cropped into 9000 48 × 48
local blocks, of which 7200 were used for training and 1800 were used for validation. The
CHASEDB1 dataset has a total of 28 images, and we selected the first 20 images as the
training set and the remaining 8 images as the test set. Each image in the CHASEDB1
dataset was randomly cropped into 15,000 48 × 48 local blocks, of which 13,500 were used
for training and 1500 were used for validation. These image blocks were used together
with the original images for model training and testing.

During training, we used 5-fold cross-validation to evaluate the performance of the
model. Specifically, the training set was divided into 5 subsets, with each subset used as the
validation set in turn, and the remaining subsets used as the training set to train the model.
In each cross-validation iteration, we used a stochastic gradient descent optimization
algorithm with a cross-entropy loss function. The learning rate was set to 0.01 and adjusted
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at the end of each epoch. We trained the model for 50 epochs and validated the model at
the end of each epoch. In each epoch, we also performed data augmentation on the training
data through random flipping, rotation, and scaling. An early stopping technique was used
during training to prevent overfitting. Specifically, if the performance on the validation set
did not improve for 10 consecutive epochs, we stopped the training. During testing, we
input each image block in the test set into the trained model to obtain the corresponding
segmentation mask image. We then stitched these segmentation mask images together
to form the complete retinal image. Despite the relatively small size of our dataset, we
augmented the training set to improve the model’s generalization ability. We also used
cross-validation to evaluate the model’s performance and early stopping technique to
prevent overfitting. Although performance bias is inevitable, we have made every effort to
ensure the accuracy and reliability of the experiments.

Figure 10 shows the integrated image blocks and corresponding mask blocks.
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4.2. Experimental Parameter Settings

The experiments were conducted on a Windows 10 operating system running on an
Intel® Core™ i5 processor with 16 GB of memory and an NVidia GeForce RTX 3070 8.0 GB
GPU. The Pytorch 1.6.0 deep learning framework was used to build the network models.
During the model training process, the cross-entropy loss function was used as the model’s
training loss function. The batch size was set to 32, and the model was trained for 50 epochs.
The initial learning rate was set to 0.01, and the SGD stochastic gradient descent method
was selected as the optimizer for updating the parameters.

4.3. Evaluation Metrics

The essence of a retinal vessel segmentation task is pixel-level classification, which
determines whether a pixel belongs to the vessel class or the non-vessel class. Vessels
are the target objects to be detected and segmented, called the positive class, while the
remaining parts are called the negative class. By comparing the segmentation results with
the ground truth, a confusion matrix can be obtained, which includes true positive TP,
false positive FP, true negative TN, and false negative FN, as shown in Table 3. TP is
the number of pixels that are correctly classified as belonging to the vessel class, FP is the
number of pixels that are misclassified as belonging to the vessel class but actually belong
to the non-vessel class, TN is the number of pixels that are correctly classified as belonging
to the non-vessel class, and FN is the number of pixels that are misclassified as belonging
to the non-vessel class but actually belong to the vessel class.
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Table 3. Confusion matrix.

True Value Predicted Positive Class
(Vessel)

Predict Negative Class
(Background)

Positive class label
(blood vessels) TP FN

Negative class label
(background) FP TN

To evaluate the performance of the retinal vessel segmentation algorithm, four metrics,
namely accuracy Acc, sensitivity Sen, specificity Spe, and F1-value (F1 - score is an alias of
the Dice index, i.e., the Sørensen–Dice coefficient), were selected as evaluation indicators.
Acc represents the probability of correctly identifying vessel and background classes,
Sen represents the probability of correctly identifying the vessel class, Spe represents
the probability of correctly identifying the background class, and the F1 score represents
the overall performance of the algorithm in segmenting vessels. The formulas for each
evaluation indicator are as follows:

Acc =
TP + TN

TP + TN + FP + FN
(21)

Sen =
TP

TP + FN
(22)

Spe =
TN

TN + FP
(23)

F1 =
2× TP

2× TP + FP + FN
(24)

4.4. Analysis of Experimental Results
4.4.1. Comparison of the Overall Segmentation Results

To demonstrate the superiority of the proposed algorithm proposed in this paper, it
was compared with other algorithms using the same datasets. All segmentation results
were obtained under the same experimental environment, as shown in Figure 11, where
Figure 11a is the original retinal image, Figure 11b is the segmentation ground truth,
Figure 11c is the segmentation result of the algorithm proposed in this paper, and Figure 11d
is the segmentation result of the U-Net network. The first and second rows show the retinal
images and segmentation results of various networks for the CHASEDB1 dataset, while
the third and fourth rows show the retinal images and segmentation results of various
networks for the DRIVE dataset.

Figure 12 shows the enlarged details of the segmentation results of different algorithms
on the CHASEDB1 and DRIVE datasets.

Figures 11 and 12 show that the U-Net algorithm produces vessel discontinuities at the
crossing points and misses many fine vessel details. In contrast, the CAS-UNet algorithm
can effectively segment the fine vessels that are missed by the U-Net algorithm and preserve
more vessel details. Therefore, the results verify that the CAS-UNet can effectively solve
the problem of insufficient feature extraction capability in the U-Net algorithm and ensure
the integrity and continuity of vessel segmentation.
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4.4.2. Objective Data Comparison

Figure 13 shows the ROC curves of the proposed algorithm on the CHASEDB1 and
DRIVE datasets. The superiority of the segmentation results was evaluated by the area
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under the ROC curve (AUC). An AUC value of 0.9872 was achieved with the CHASEDB1
dataset and an AUC value of 0.9860 was achieved with the DRIVE dataset. This indicates
that the proposed algorithm can achieve a low segmentation error rate in situations where
the false positive rate is relatively high while maintaining a high true positive rate. These
results fully demonstrate the excellent performance of the proposed algorithm in retinal
vessel segmentation tasks.
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Table 4 presents the objective evaluation results of U-Net, U-Net++, and our algorithm
using the CHASEDB1 and DRIVE datasets. The optimal values for each metric are shown in
bold. With the CHASEDB1 dataset, our algorithm achieved the best results on all evaluation
metrics, outperforming both U-Net by 3.89% and 1.02% and U-Net++ by 2.20% and 0.76% in
F1 and Acc metrics, respectively. With the DRIVE dataset, our algorithm achieved the best
results on all evaluation metrics, outperforming U-Net by 0.66% and 0.58% and U-Net++
by 0.51% and 0.50% in F1 and Acc metrics, respectively. These results indicate that our
algorithm has a high degree of similarity with expert manual segmentation results, stronger
vessel recognition ability, and stronger robustness.

Table 4. Evaluation results of performance indicators on different datasets.

Dataset Method Acc Sen Spe F1

CHASEDB1
U-Net 0.9566 0.8183 0.9716 0.8191

U-Net++ 0.9592 0.8210 0.9812 0.8170
CAS-UNet 0.9668 0.8321 0.9896 0.8390

DRIVE
U-Net 0.9528 0.7936 0.9821 0.8141

U-Net++ 0.9536 0.8104 0.9805 0.8156
CAS-UNet 0.9586 0.8375 0.9828 0.8207

Note: The bold data represents the optimal values.

4.4.3. Comparison with Other Algorithms

To further validate the superiority and advancement of the proposed algorithm, this
paper compared it with other algorithms in terms of accuracy (Acc), sensitivity (Sen), speci-
ficity (Spe), and F1-score with the CHASEDB1 and DRIVE datasets. The results are shown
in Table 5 (the optimal values for each metric are highlighted in bold). With the CHASEDB1
dataset, the proposed algorithm achieved optimal values for all evaluation metrics except
Sen. The method proposed in Reference [27], which is based on a residual mechanism and
a scale-aware deformable attention M network, combined with an improved pulse-coupled
neural network, has an attention mechanism that allows the network to focus more on the
vessel region. Its Sen value is higher than that of the proposed algorithm, but it may result
in segmentation errors in noisy areas, leading to a lower Spe value.
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Table 5. Comparison results of objective data with other algorithms using CHASEDB1 and DRIVE.

Method Year
CHASEDB1 DRIVE

Acc Sen Spe F1 Acc Sen Spe F1

Mo [28] 2017 0.9599 0.7661 0.9816 0.7812 0.9521 0.7779 0.9780 0.7782
Yan [29] 2018 0.9610 0.7633 0.9809 0.7781 0.9542 0.7653 0.9818 0.7752
Guo [30] 2019 0.9627 0.7888 0.9801 0.7940 0.9551 0.7800 0.9806 0.7796

Li [31] 2020 0.9655 0.7970 0.9823 0.8051 0.9573 0.7735 0.9838 0.7816
Gu [32] 2020 0.9653 0.8121 0.9769 0.8012 0.9561 0.8143 0.9758 0.8103

Zhou [33] 2021 0.9630 0.8315 0.9782 0.8172 0.9563 0.8294 0.9812 0.8030
Deng [27] 2022 0.9587 0.8543 0.9693 0.7906 0.9539 0.8368 0.9712 0.8112

Rahman [34] 2023 0.9658 0.8216 0.9710 0.8145 0.9566 0.8362 0.9803 0.8034
CAS-UNet 2022 0.9668 0.8321 0.9896 0.8390 0.9586 0.8375 0.9828 0.8207

Note: The bold data represents the optimal values.

With the DRIVE dataset, the proposed algorithm achieved optimal values for all
evaluation metrics except Spe. The method proposed in Reference [31] utilized a small U-
Net for generating corrected vessel segmentation maps after multiple iterations. Although
its Spe value is higher than that of the proposed algorithm, if it failed to extract sufficient
subtle vessel information in the early iterations, it may lose the features of subtle vessels in
the later iteration process, resulting in a lower Sen value than the proposed algorithm.

4.4.4. Comparison of Ablation Experiments

The proposed algorithm in this paper is an improvement on the U-Net network model.
The proposed model, i.e., the CAS-UNet, is based on the U-Net backbone and includes three
additional modules: 1© the DC-Conv module, 2© the AG+ module, and 3© the SoftPool
pooling module. Ablation experiments were conducted on each of the proposed modules
to demonstrate their impact on U-Net. Table 6 shows the results of the ablation experiments
on the CHASEDB1 dataset.

Table 6. Evaluation results of performance indicators on different datasets.

Method
CHASEDB1 DRIVE

Acc Sen Spe F1 Acc Sen Spe F1

U-Net 0.9566 0.8183 0.9716 0.8101 0.9528 0.7936 0.9821 0.8141
U-Net+ 1© 0.9631 0.8275 0.9820 0.8305 0.9562 0.8292 0.9825 0.8195
U-Net+ 2© 0.9612 0.8224 0.9756 0.8210 0.9537 0.8160 0.9823 0.8156
U-Net+ 3© 0.9623 0.8231 0.9760 0.8274 0.9540 0.8106 0.9823 0.8170

U-Net+ 1© + 2© 0.9648 0.8290 0.9836 0.8365 0.9573 0.8305 0.9826 0.8201
U-Net+ 1© + 3© 0.9651 0.8305 0.9841 0.8354 0.9570 0.8320 0.9826 0.8198
U-Net+ 2© + 3© 0.9630 0.8286 0.9803 0.8302 0.9548 0.8240 0.9825 0.8183

CAS-UNet 0.9668 0.8321 0.9896 0.8390 0.9586 0.8375 0.9828 0.8207

Note: 1© is the Convolutional Attention module (DC-Conv), 2© is the Additive Attention Gate (AG+), and 3© is
SoftPool pooling. The bold data represents the optimal values.

Table 6 shows that the proposed DC-Conv module, the AG+ module, and the SoftPool
pooling module can all improve the segmentation performance of the original U-Net. In
particular, adding the DC-Conv module to the network greatly improved the Sen value and
accuracy, as the DC-Conv module can cross-fuse global and local features, effectively high-
lighting the vessel region, suppressing unnecessary background regions, and preserving
more details as output, resulting in more accurate segmentation. This also demonstrates
the superiority of the Cross-Fusion Channel Attention mechanism. The ablation exper-
iments also combined the three modules in pairs, and the combined modules showed
better performance in all evaluation metrics compared to the addition of a single module,
indicating that all three proposed modules contribute to the segmentation performance of
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the network without redundancy. Overall, the proposed CAS-UNet significantly improves
the comprehensive performance of the original U-Net network.

5. Conclusions and Future Work

In this paper, we proposed an attention-based retinal vessel segmentation algorithm
to address the problems of small and complex retinal vessel structures and insufficient
segmentation caused by lighting interference. Firstly, in the encoding and decoding stage,
we proposed a Convolutional Attention block (DC-Conv) to replace the traditional consec-
utive convolution in U-Net, which cross-fuses global and local information, enabling the
network to preserve more vessel details. An Additive Attention Gate (AG+) was then intro-
duced in the skip-connection layer between the encoding and decoding stages to enhance
the spatial features and highlight important regions while suppressing irrelevant areas.
Finally, SoftPool pooling was used instead of the original MaxPool pooling in U-Net, which
enhances the extraction of vessel details while increasing the receptive field. Experimental
results have shown that, compared to other advanced algorithms, the proposed CAS-UNet
algorithm has higher segmentation accuracy and superior performance. In future work,
we will continue to optimize the developed algorithm, improve the segmentation perfor-
mance through network improvement, expand the dataset for experiments, and apply the
proposed algorithm model to practical medical image segmentation.
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