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Abstract: A diffractive imaging system consisting of two satellites is analyzed in view of dynamics.
The mathematical model of rigid and flexion couples is studied to describe the relative motion
of diffractive satellites and imaging satellites. Based on an integrated dynamics model with dual
quaternion, a fixed-time non-singular terminal sliding mode controller is designed to meet the
requirements of Earth observation. Finally, introducing the non-singular terminal sliding mode as
the control group, a comparative simulation of relative motion and control is implemented to verify
the controller and dynamics model.

Keywords: terminal sliding mode control; diffractive imaging; relative motion; fixed time control;
integrated dynamics

1. Introduction

Mega constellations make the implementation of 6G mobile networks possible; further-
more, earth observation satellites are important for the construction of space-based Internet
of Things. High resolution is an important development direction for the Earth observing
system (EOS). To meet the requirements of the rocket launch envelope and realize the giant
aperture optical imaging, the thin film diffraction imaging technique has been studied by
many scholars as a new imaging technique. Diffractive films have the advantages of being
lightweight, having changeable face shapes, having smaller face densities, being low cost,
and being easy to fold and unfold compared to conventional optical imaging loads. Thin
film diffraction imaging is one of the most promising and effective methods and technical
implementations used to solve the problem of very large aperture and ultra-light load
imaging systems in space [1,2].

In the area of diffraction imaging, research institutions have conducted a lot of explo-
ration and experiments. In 1998, the Lawrence Livermore National Laboratory (LLNL)
proposed the Eyeglass program, which used two satellites, an objective, and an eyepiece
to form a telescope system [3,4]. Ground prototypes proved the feasibility of diffraction
imaging technology. In 2010, the Defense Advanced Research Projects Agency (DARPA) of
the US Department of Defense announced the MORIE (Membrane Optical Imager Real-
time Exploration) satellite research program, which made significant improvements based
on the Eyeglass program [5,6]. The Royal Observatory of the UK has proposed a 30 m
diameter diffractive space telescope scheme similar to the Eyeglass project; it is named
GISMO and is based on relevant research from LLNL [7,8]. The French Space Research
Center has proposed the Fresnel Diffractive Array Imager (FDAI) with a 20 m Fresnel
diffractive array as its primary mirror aperture, which is expected to be launched in 2025
to verify the feasibility of Fresnel diffractive array imaging [9,10]. In 2019, the Falcon
Satellite 7 developed by the US Air Force Academy for imaging the sun was successfully
launched into orbit. The rigid arm structure of the Falcon Satellite 7 supports the 0.2 m
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diameter “photon sieve” carried to maintain its correct position. Falcon 7, as a pathfinder
for future low-mass, high-resolution surveillance application missions, has verified in orbit
the effectiveness of deployable photon sieve telescopes and successfully demonstrated
space-based deployable diffractive film telescope technology; this has provided a basis
for the next expansion to larger-scale spacecrafts and larger aperture diffractive film ap-
plications [11,12]. Sliding mode control is widely used in the field of spacecraft attitude
and orbit control due to its fast response and insensitivity to system uncertain parameters,
such as distributed attitude control [13], event-driven sliding mode robust control [14], and
fixed-time active disturbance rejection high-order sliding mode control [15].

Many scholars have studied the modeling and control of the attitude orbit integration
of rigid spacecrafts and the dynamic modeling of the attitude vibration coupling of rigid–
flexible coupled spacecrafts; however, there are fewer studies considering the attitude
orbit integration modeling and control of rigid–flexible coupled systems. Daero Lee used
the exponential coordinates in SE (3) to represent the relative configuration of spacecrafts
relative to the virtual leader for spacecraft formation flying (SFF) and established a coupled
dynamics model of relative translation and rotation for rigid spacecraft formation [16,17].
Jun Sun et al. derived dynamic equations for the cross-coupling of the translation, rotation,
and vibration of flexible rigid systems using dual quaternions within the same mathematical
framework for high-precision, ultra-close range formation missions of spacecrafts carrying
large-scale antenna arrays [18]. Henry D considered the coupling effects of large-scale
solar cell array flexible attachments, propellant sloshing, and spatial disturbances for
autonomous rendezvous in orbit. Based on dual quaternions, a single equation has been
established to describe the rotation and motion dynamics of spacecrafts and an attitude–
orbit integrated fault-tolerant controller has been designed [19]. Zhang Xianliang et al.
considered the complex coupling effects between structural module deformation and
vibration during transportation, as well as the translational and rotational maneuvers of
the assembly robot; they designed an attitude orbit-integrated PD controller based on the
relative dynamics model of the rigid torsion system derived from dual quaternions for the
problem of the large-scale antenna in-orbit assembly [20]. Sun L et al. aimed at addressing
the problem of short-range maneuvers of on-orbit service spacecrafts; a dynamics model
based on dual quaternion was established and they further designed a fixed-time-tracking
adjustment and drive allocation scheme for redundant driven spacecrafts [21].

In this paper, we propose a double-satellite formation diffractive thin-film imaging
system in the context of high-resolution Earth observation. Aiming at the characteristics of
“rigid flexure” coupled large aperture diffractive film satellites, an attitude orbit integration
dynamics model based on dual quaternion is established. Considering the bounded
interference in the complex space environment, a fixed-time non-singular terminal sliding
mode controller for attitude orbit integration is derived. In Section 2, a brief introduction is
given regarding basic knowledge of dual quaternions and fixed time theory. In Section 3,
the relative dynamics model of the rigid–flexible coupled system is proposed; in Section 4, a
fixed-time non-singular terminal sliding mode controller is designed to realize the position–
attitude integrated control of the rigid–flexible coupled system. Finally, the simulation
results are presented in Section 5 and the conclusions are given in Section 6.

2. Preliminaries

Compared with other methods that can represent spiral motion in space, dual quater-
nions have a concise and compact form with high computational efficiency. Roonye’s
research has shown that dual quaternions are the most effective and concise form of spatial
line transformation [22,23].

A dual quaternion is a pair of even numbers with elements of quaternion, as follows:

q = q0 + q1i + q2 j + q3k
q̂ = q + εq′

q̂ = [ŝ v̂]
(1)
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where q and q′ are ordinary quaternions, ŝ is a pair of even numbers, and v̂ is a pair of even
vectors. According to Bottega’s conclusion, the unit dual quaternion is defined as [24]:

q̂ = q + εq′ = q + ε 1
2 q ◦ p = qeε

q′
q

log q̂= logq + ε 1
2 p

(2)

The Euler theorem states that the motion of any rigid body can be achieved by rotating
around an axis and moving parallel to that axis [25]. The six degrees of freedom (6-DOF)
transformation consisting of the rotated quaternion q and the translated r(x, y, z) can be
expressed as:

q0 = cos(θ/2), q1 = nx sin(θ/2), q2 = ny sin(θ/2), q3 = nz sin(θ/2) (3)

rb = q⊗ ra ⊗ q∗

rN = q∗ ⊗ rO ⊗ q
(4)

The vector ra rotates around axis n by an angle θ to obtain the vector rb, it is also
possible to fix the vector rotation coordinate system, and the projection rN of the vector r
after rotation is derived from the projection rO before rotation.

Compared to quaternions that can only describe rotational motion, dual quaternions
can describe helical motion, avoiding decomposing motion into two processes: rotation
and translation.

As shown in Figure 1, spiral motion can be described as rotating the θ angle around
the n-axis and then translating d along the n-axis. The coordinate system O rotates the
angle θ around the n-axis and then shifts d to obtain the coordinate system N.

q̂ =

[
cos

(
θ̂

2

)
, sin

(
θ̂

2

)
n̂

]
(5)

where, n̂ = n + εc× n is the helical axis, and θ̂ = θ + εd is the dual angle. The projection
point of the origin of the coordinate system O on the spiral n-axis is p. For a more detailed
derivation, please refer to reference [24].
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Figure 1. Schematic diagram of coordinate transformation.

By analogy with Equation (5), the Plücker linear transformation can be expressed as
L̂N = q̂∗ ⊗ L̂O ⊗ q̂. Where L̂N and L̂O are Plücker lines in the coordinate system O and the
coordinate system N, respectively, specifically:

L̂O = lO + εmO L̂N = lN + εmN (6)
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where lN= (q∗ ◦ lO ◦ q), equivalent formulas can be derived:

lN + εmN =
(
q + εq′

)∗ ⊗ (lO + εmO
)
⊗
(
q + εq′

)
(7)

Dual quaternions can be represented as:

q̂ = q + εq′ = q + ε
1
2

rO ⊗ q = q + ε
1
2

q⊗ rN (8)

The formula for a unit dual quaternion can be derived as follows:

rO = 2q′ ⊗ q∗ rN = 2q∗ ⊗ q′ (9)

3. Model Establishment
3.1. Mathematical Model of a Single Rigid–Flexion Coupled Spacecraft

As shown in Figure 2, the system consists of an imaging satellite and a diffraction thin
film satellite, where the diffraction thin film satellite is mainly composed of a central rigid
body and diffraction thin film. To derive the comprehensive dynamics model of the system,
the following four basic assumptions are made in this article:

(1) The main body of the spacecraft is rigid, and it can freely engage in unrestricted
translational and rotational motion relative to inertial space.

(2) The attachment is modeled as a flexible body that can be discretization by the finite
element method, and its translational and rotational motions relative to the platform
are limited.

(3) Assuming that the elastic displacement of the satellite’s flexible attachment is very
small, it follows the theory of linear elasticity.

(4) The centroid of the entire system coincides with the geometric center, and the dis-
placement of the system centroid caused by the vibration of flexible attachments is a
negligibly small amount.
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Figure 2. Schematic diagram of dual star orbit position.

As shown in Figure 3, the thin film diffraction mirror array satellite (diffraction satellite)
consists of a central rigid body brig, a flexible body b f le, and a girder. The diffraction satellite
can be simplified into rigid modules and flexible modules, which are marked with dashed
and solid lines briefly indicating the state before and after deformation.
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Figure 3. Simplified flexible attachment model of the diffractive thin-film satellite.

The following reference coordinate system is introduced:

(1) Earth-Centered Inertial (ECI) O−XYZ: Taking the center of the Earth as the origin, the
x-axis points towards the vernal equinox along the intersection of the equatorial and
ecliptic planes, the z-axis points towards the North Pole, and the y-axis is determined
by the right-hand rule.

(2) Satellite system: With the center of mass of the spacecraft as the origin, the x-axis,
y-axis, and z-axis are the three inertia axes of the spacecraft.

(3) Floating coordinate system Ob − XbYbZb: The floating coordinate system is the follow-
up coordinate system for the flexible module to move relative to the attitude of the
main spacecraft. When the origin Ob of the coordinate system is attached to the
material point of the flexible attachment space structure, the direction of the three-axis
XbYbZb is determined by the attachment direction of the coordinate system; When the
origin Ob of the coordinate system is not attached to the material point of the flexible
attachment structure, the position Ob of the origin of the coordinate system and the
direction of the three-axis XbYbZb is determined by the defined constraint conditions.

The motion of rigid–flexible coupling spacecraft B can be described as three transla-
tions and three rotations of its system OB − XBYBZB relative to the inertial frame O− XYZ.
Represent the angular velocity vector and velocity vector of this system OB − XBYBZB
relative to the inertial frame O− XYZ as ωb and vb, respectively. As shown in Figure 2,
k(k = 1, 2, . . . , n) is selected as the nominal point of flexible attachment. In addition, rbk
and uk are the position vector and elastic displacement vector of the point k relative to the
ObXbYbZb system, respectively. Wherein the elastic displacement vector uk is measured
relative to ObXbYbZb this system.

The position vector of any point k on the spatial structure of a flexible attachment in
the earth-centered fixed coordinate system O− XYZ can be expressed as

RJ = rB + AJb(rbk + uk) (10)

where rB is the position vector of the origin Ob − XbYbZb in the floating coordinate system
Ob − XbYbZb in the O − XYZ coordinate system, and rbk is the position vector of the
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nominal point k in the coordinate system Ob − XbYbZb. The elastic displacement vector
uk is measured relative to the coordinate system Ob − XbYbZb and AJb is the coordinate
transformation matrix from the coordinate system Ob − XbYbZb to the coordinate system
O− XYZ.

The component of the velocity vector of the nominal point k relative to the centroid Ob
in the Ob − XbYbZb coordinate system can be expressed as:

vb f le
(k) = ωb f le

(k)× (rbk + uk) +
.
uk (11)

where ωb f le
(k) ∈ R3 is the angular velocity vector of the nominal point k relative to the

center of mass in the coordinate system Ob − XbYbZb. Is always equal to ωb, and
.
uk

represents the elastic velocity of the nominal point k. Obviously, ωb f le
(k) is always equal to

ωb, and
.
uk represents the elastic velocity at the nominal point k.

Brodsky and Shoham treat objects as a set of discrete mass elements, each of which
corresponds to a unique velocity spinor ω̂ = ω + εv [26,27]. The dual mass of the mass ele-
ment is described as dm̂ = dmd/dε, The linear momentum dm̂ω̂ = dm d

dε (ω + εv) = vdm
of each mass element is the product of the dual mass and the velocity spin. Further, linear
momentum and angular momentum can be combined to form dual momentum.

In addition, the dual operator d/dε and ε have complementary definitions:

d
dε

â =
d
dε

(a + εa0) = a0 εâ = ε(a + εa0) = εa (12)

The component of the dual velocity vector of the nominal point k relative to the center
of mass in the ObXbYbZb coordinate system can be expressed as a dual quaternion:

ω̂b f le
(k) = ω̃b f le

(k) + εṽb f le
(k) (13)

where ω̃b f le
(k) =

[
0 ωT

b f le
(k)
]T
∈ R4, ṽb f le

(k) =
[
0 vT

b f le
(k)
]T
∈ R4 is the nominal point k

angular velocity vector and velocity vector described by the quaternion.
The dual momentum of the point k relative to the center of mass Ob in the ObXbYbZb

coordinate system can be expressed as:

Ĥb f le
(k) = R̂b f le

(k)⊗
[
m̂kω̂b f le

(k)
]

(14)

R̂b f le
(k) = 1 + ε[r̃bk + ũk]

× =

[
E3×3 0

[rbk + uk]
× E3×3

]
is the Hermitian matrix of k points,

where r̃bk =
[
0 rT

bk
]T ∈ R4 and ũk =

[
0 uT

k
]T ∈ R4 are four-dimensional vectors related to

rbk and uk, respectively. m̂k is the dual mass of the point k, and Ĥb f le
(k) ∈ R8 represents the

dual momentum of the point k.
Substituting Equation (13) into Equation (14), the dual momentum of the point k can

be expressed as:

Ĥb f le
(k) =

[
1 + ε[r̃bk + ũk]

×
]
⊗
[
mk

d
dε

[
ω̃b f le

(k) + εṽb f le
(k)
]]

=
[
1 + ε[r̃bk + ũk]

×
]
⊗mk ṽb f le

(k)

= mk ṽb f le
(k) + ε

[
mk(r̃bk + ũk)× ṽb f le

(k)
] (15)

Based on the finite element principle, the dual momentum components of the flexible
attachment b f le relative to the centroid Ob along the system were obtained, as follows:

Ĥb f le
(k) =

n

∑
k=1

Ĥb f le
(k) , k = 1, 2, . . . , n (16)
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Substitute Equations (11) and (14) into Equation (13) to obtain the dual momentum of
the flexible attachment b f le:

Ĥb f le
=

n
∑

k=1
Ĥb f le

(k)

=
n
∑

k=1

(
mk

(
ωb f le

(k)× (rbk + uk) +
.
uk

)
+ε
[
mk[r̃bk + ũk]

×
(

ωb f le
(k)× (rbk + uk) +

.
uk

)]
=

n
∑

k=1

[
mk

(
[ω̃b]

×(r̃bk + ũk) +
.
ũk

)]
+ε

(
n
∑

k=1
[r̃bk + ũk]

×mk

[
[ω̃b]

×(r̃bk + ũk) +
.
ũk

])
(17)

where, ω̃b =
[

0 ωT
b
]T ∈ R4 is an extended four-dimensional vector of ωb.

[ω̃b]
× ∈ R4×4, [r̃bk + ũk]

× ∈ R4×4 is the cross-product extension matrix of ω̃b and (r̃bk + ũk).
Because the elastic displacement modulus ‖ũk‖ is much smaller than the attachment

size, the elastic displacement ũk can be ignored in the above calculation. Subsequently,
Equation (17) can be transformed into

Ĥb f le
=

n
∑

k=1
Ĥb f le

(k)

=
n
∑

k=1

[
mk

(
[ω̃b]

× r̃bk +
.
ũk

)]
+ ε

(
n
∑

k=1
mk[r̃bk]

×
[
[ω̃b]

× r̃bk +
.
ũk

])
=

n
∑

k=1

[
mk[r̃bk]

×
V ω̃b + mk

.
ũk

]
+ ε

(
n
∑

k=1
mk[r̃bk]

×[r̃bk]
×
V ω̃b + mk[r̃bk]

× .
ũk

) (18)

[
C̃b f le

]×
V
=

n

∑
k=1

mk[r̃bk]
×
V , Ĩb f le

=
n

∑
k=1

mk[r̃bk]
×[r̃bk]

×
V (19)

Bringing Equation (19) into Equation (18) yields

Ĥb f le
=
[
C̃b f le

]×
V

ω̃b +

(
n

∑
k=1

mk
.
ũk

)
+ ε

(
Ĩb f le

ω̃b +
n

∑
k=1

mk[r̃bk]
× .

ũk

)
(20)

where

Ĩb f le
=

[
0 01×3

03×1 Ib f le

]
(21)

Ib f le
is the inertia matrix of the flexible attachment relative to the ObXbYbZb coordinate

system. The component of the dual momentum of the flexible attachment b f le in the
ObXbYbZb coordinate system relative to the geocentric fixed inertial system is

Ĥb f le
=

(
n
∑

k=1
mk ṽb

)
+
[
C̃b f le

]×
V

ω̃b +

(
n
∑

k=1
mk

.
ũk

)
+ε

(
Ĩb f le

ω̃b +
n
∑

k=1
mk[r̃bk]

× .
ũk

) (22)

where ṽb =
[
0 vT

b
]T is the extension vector of the velocity vector component vb relative to

the geocentric fixed coordinate system of the flexible spacecraft B in its system.
The dual quaternion form expression for the displacement response of each node

obtained by combining the flexible attachment modal superposition method is

ũk = Φ̃kη (23)
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where η is the modal coordinate n× 1 matrix, n is the modal order, and Φ̃k =
[
0N×1 ΦT

k
]T ∈

R4×N is the eigenvector matrix of the point k based on dual quaternion representation. Us-
ing ũk is a convenient method to represent the dual displacement response of attachments;
ũk relates to the displacement response uk and has no physical meaning.

Define the stiffness torsion translational coupling matrix B̃tran and the rotational
coupling matrix B̃rot as follows [20]:

B̃tran =
n

∑
k=1

mkΦ̃k , B̃rot =
n

∑
k=1

mk[r̃bk]Φ̃k (24)

Substitute Equations (23) and (24) into Equation (22) to obtain the dual momentum of
the flexible attachment b f le in the mixed coordinate system ObXbYbZb.

Ĥb f le
= mb f le

ṽb +
[
C̃b f le

]×
V

ω̃b + B̃tran
.
η + ε

(
Ĩb f le

ω̃b + B̃rot
.
η
)

(25)

Convert to matrix form

Ĥb f le
=

[C̃b f le

]×
V

mb f le
E4×4

Ĩb f le
04×4

[ω̃b
ṽb

]
+

[
B̃tran 04×N
04×N B̃rot

][ .
η
.
η

]
(26)

where, E and 0 are the identity matrix and zero matrix, respectively.

M̂b f le
=

[C̃b f le

]×
V

mb f le
E4×4

Ĩb f le
04×4

 represents the dual inertia of the flexible attachment,

ω̂b =

[
ω̃b
ṽb

]
represents the dual velocity vector of the system relative to the inertial frame,

B̂ =

[
B̃tran 04×N
04×N B̃rot

]
and

.
η̂ =

[ .
η
.
η

]
represent the coupling matrix and modal coordinate

matrix in the dual quaternion form. Equation (26) can be simplified as

Ĥb f le
= M̂b f le

⊗ ω̂b+B̂⊗
.
η̂ (27)

3.2. An Integrated Relative Motion Model for Attitude Orbit of a Rigid–Flexion Coupled Spacecraft

3.2.1. Relative Kinematics Model

The relative motion between Spacecraft B and Spacecraft A can be regarded as the
spiral motion of Spacecraft B relative to Spacecraft A, that is, the spiral motion from
Oa − xayaza to Ob − xbybzb, that is, the relative kinematics equation can be expressed as

.
q̂BA =

1
2

q̂BA ⊗ ω̃B
BA (28)

where, q̂BA ∈ R8 and q̂BA = qBA + ε 1
2 qBA ⊗ r̃B

BA, and qBA represents the relative attitude
quaternion between spacecraft B and spacecraft A. ω̃B

BA, r̃B
BA are the extended matrices

of ωB
BA,rB

BA, and ω̂B
BA is the relative dual velocity spinor of the two spacecraft in the

O− xByBzB coordinate system.

ω̂B
BA = ω̃B

BA + εṽB
BA = ω̃B

BA + ε

(
.
r̃

B
BA + ω̃B

BA × r̃B
BA

)
(29)

Extended matrix with ṽB
BA as vB

BA, ωB
BA and rB

BA are the angular velocity and centroid
relative position vectors of spacecraft B relative to spacecraft A in the O− xByBzB coordinate
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system, respectively. ω̂A
A and ω̂B

B , respectively, represent the dual velocity spinors of two
spacecraft in their respective body coordinate systems, and ω̂B

BA can be expressed as

ω̂B
BA = ω̂B

B − q̂∗BA ⊗ ω̂A
A ⊗ q̂BA (30)

where ω̂A
A = ω̃A

A + εṽA
A, ω̂B

B = ω̃B
B + εṽB

B. ω̃A
A and ω̃B

B are the extended matrices of ω̂A
A and

ω̂B
B , respectively, and q̂∗BA is the conjugate of q̂BA.

3.2.2. Relative Dynamics Model

The expression for the relative dual velocity spinor ω̂B
BA of two spacecraft in the

O− xByBzB coordinate system has been derived in the previous text. Further derivation of
Equation (30) yields

.
ω̂

B
BA =

.
ω̂

B
B − q̂∗BA ⊗

.
ω̂

A
A ⊗ q̂BA −

.
q̂
∗
BA ⊗

.
ω̂

A
A ⊗ q̂BA − q̂∗BA ⊗

.
ω̂

A
A ⊗

.
q̂BA (31)

Substituting the dynamics equation of a single spacecraft’s rigid torsion coupling
system under dual quaternion description can obtain:

.
ω̂

B
BA = M̂−1

B F̂B − M̂−1
B B̂⊗

..
η̂ − M̂−1

B ω̂B
B ×

(
M̂B ⊗ ω̂B

B + B̂⊗
.
η̂
)

−q̂∗BA ⊗
.

ω̂
A
A ⊗ q̂BA −

.
q̂
∗
BA ⊗ ω̂A

A ⊗ q̂BA − q̂∗BA ⊗ ω̂A
A ⊗

.
q̂BA

(32)

Equation (32) is the relative dynamics equation established based on dual quaternions.
M̂B is the dual inertia matrix of spacecraft B which M̂B = M̂brig

+ M̂b f le
. F̂B is the dual

forces acting on spacecraft B.
We expand the coupling terms M̂−1

B

[
F̂B − B̂⊗

..
η̂ − ω̂B

B ×
(

M̂B ⊗ ω̂B
B + B̂⊗

.
η̂
)]

and
.

ω̂
B
BA ×

(
q̂∗BA ⊗ ω̂A

A ⊗ q̂BA
)

in Equation (32) into matrix form as follows:

M̂−1
B

[
F̂B − B̂⊗

..
η̂ − ω̂B

B ×
(

M̂B ⊗ ω̂B
B + B̂⊗

.
η̂
)]

=

[
04×4 Ĩ−1

B
(1/mB)E4×4 04×4

][
F̃B
T̃B

]
−
[

04×4 Ĩ−1
B

(1/mB)E4×4 04×4

][
B̃tran 04×N
04×N B̃rot

][ ..
η
..
η

]
−
[

04×4 Ĩ−1
B

(1/mB)E4×4 04×4

][ [
ω̃B

B
]× 04×4[

ṽB
B
]× [

ω̃B
B
]×

][
0 mBE4×4
ĨB 04×4

][
ω̃B

B
ṽB

B

]
−
[

04×4 Ĩ−1
B

(1/mB)E4×4 04×4

][ [
ω̃B

B
]× 04×4[

ṽB
B
]× [

ω̃B
B
]×

][
B̃tran 04×N
04×N B̃rot

][ .
η
.
η

]

=

 Ĩ−1
B

(
T̃B − ω̃B

B × ĨBω̃B
B − B̃rot

..
η − ω̃B

B × B̃rot
.
η − ṽB

B × B̃tran
.
η
)

(1/mB)
(

F̃B −mB
(
ω̃B

B × ṽB
B
)
− B̃tran

..
η − ω̃B

B × B̃tran
.
η
) 

(33)

ω̂B
BA ×

(
q̂∗BA ⊗ ω̂A

A ⊗ q̂BA
)

=

[ [
ω̃B

BA
]× 04×4[

ṽB
BA
]× [

ω̃B
BA
]×

][
ω̃B

A
ṽB

A

]
=

[
ω̂B

BA × ω̃B
A

ṽB
BA × ω̃B

A + ω̃B
BA × ṽB

A

] (34)

Equation (33) consists of two parts, one of which represents the real part of the ro-
tational relative dynamics coupling interaction, including the rotational coupling term
−ω̃B

B × ĨBω̃B
B − ω̃B

B × B̃rot
.
η, the translational coupling term −ṽB

B × B̃tran
.
η, and the vibration

coupling term −B̃rot
..
η. It illustrates the influence of the relative orbital translational and

rigid–flexible coupling spacecraft vibration on the relative attitude operation of two space-
craft; the other part is the dual part that represents the coupling interaction between relative
orbital motion, where−mB

(
ω̃B

B × ṽB
B
)
− ω̃B

B × B̃tran
.
η, −B̃tran

..
η, and these terms describe the

coupling interaction between vibration and rotation acting on the orbital motion. The dual
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part in Equation (34) has a ω̂B
BA term, indicating the impact of the relative attitude motion

of two spacecraft on the orbital motion. In summary, these coupling terms describe the
coupling effects between the relative posture and structural vibration of spacecraft.

In addition, the vibration equation of the flexible attachment in the coordinate system
O− xByBzB can be written as

..
η + 2ξΛ

.
η + Λ2η + (Btran)

T .
vB

BA + (Brot)
T .

ω
B
BA = 0 (35)

3.3. A Dynamics Model for Relative Error Motion of Rigid–Flexion Coupled Spacecraft

Based on Equations (28) and (32), the relative error kinematics equation and relative
error dynamics equation of rigid–flexible coupling spacecraft can be expressed as

.
q̂e =

1
2

q̂e ⊗ ω̃e (36)

.
ω̂e = −M̂−1(ω̂e + q̂∗e ⊗ ω̂d ⊗ q̂e)×

(
M̂(ω̂e + q̂∗e ⊗ ω̂d ⊗ q̂e) + B̂⊗

.
η̂
)

+M̂−1 F̂B − q̂∗e ⊗
.

ω̂d ⊗ q̂e + ω̂e × (q̂∗e ⊗ ω̂d ⊗ q̂e)− M̂−1B̂⊗
..
η̂

(37)

where the relative error q̂e of dual quaternions can be expressed as q̂e = qe + ε 1
2 qe⊗

[
0 re

]T ,
where qe and re are error quaternions and error position vectors, respectively. F̂B = fB + ετB
is the dual force acting on the center of mass of the spacecraft, while fB is composed of
gravitational force fg = −µmr/‖r‖3, control force fu, and interference force fd.

τB consists of gravity gradient torque τg = 3µr× J · r/‖r‖5, control torque τu, and
interference torque τd. The velocity spin error can be expressed as ω̂e = ω̂− q̂∗e ⊗ ω̂d ⊗ q̂e,
where ω̂d is the expected velocity spin.

4. Fixed Time Non-Singular Terminal Sliding Mode Design

The convergence time of the traditional terminal sliding mode controller depends on
the initial state. When the initial value is large, the time is long, which is unacceptable
in practical engineering applications. This article is based on the fixed time theory and
introduces a piecewise switching function to propose a globally fixed time convergent
non-singular terminal sliding surface. Thus, the transition from finite time convergence
to fixed time convergence is achieved, which improves the control response speed and
accuracy [28,29].

Theorem 1. Nonlinear system
.
x = −Lsigλx, where λ = (m + n)/2+((m− n)/2)sign(|x| − 1),

x(0) = x0, L > 0, m > 1, 1 > n > 0. The system converges to 0 within a fixed time, and the
upper bound of its convergence time is

t ≤ tmax =
m− n

L(m− 1)(1− n)
(38)

Proof of Theorem 1. Select the Lyapunov function V(x) = x2 and differential the function
to obtain .

V(x) = 2x
.
x = −2L|x|λ+1 = −2L|V|

λ+1
2 (39)

when |x| > 1, it can be equivalent to |V| > 1, where λ = m. When |x| = 1, it can be
equivalent to |V| = 1, where λ = (m + n)/2.

In both cases, Equation (39) can be derived as
.

V(x) = −2L|V|
m+1

2 , (m + 1)/2 > 1,

Equation dV/(−2L|V|
m+1

2 ) = dt holds. Solve the time upper bound t1
max when the system

converges to V = 1.

t1
max = lim

V(0)→∞
t(V(0)) = lim

V0→+∞

∫ V0

1

1

2LV
m+1

2
dV =

1
L(m− 1)

(40)
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when |x| < 1, it can be equivalent to V < 1, where λ = n.
Equation (39) can be derived as

.
V(x) = −2LV

n+1
2 , (n + 1)/2 < 1, and equation

dV/(−2LV
n+1

2 ) = dt holds. The time upper bound t2
max for the system to converge to the

origin can be solved as

t2
max = lim

V(0)→1
t(V(0)) = lim

V0→1

∫ 1

V0

1

−2LV
n+1

2
dV =

1
L(1− n)

(41)

According to References [30,31], the nonlinear system
.
x = −Lsigλx is a fixed-time

stable system, and the origin is the equilibrium point of the system. The upper bound of
the convergence time is

t ≤ tmax = t1
max + t2

max =
m− n

L(m− 1)(1− n)
(42)

�

Theorem 2. Nonlinear system
.
x = −L1sigλx − L2sign(x), where x(0) = x0, L1, L2 > 0,

λ = (m + n)/2 + ((m− n)/2)sign(|x| − 1), m > 1, 1 > n > 0. The system converges to 0
within a fixed time, and the upper bound of its convergence time is

t ≤ tmax =
2

m−1
2

L
2

m+1
1 (m− 1)

(
L1

2
m+1 + L2

2
m+1

) 1−m
2

+
1

L2(1− n)
ln
(

L1 + L2

L1

)
(43)

Proof of Theorem 2. Select the Lyapunov function V(x) = x2 and differential the function
to obtain .

V(x) = 2x
.
x = −2L1|x|λ+1 − 2L2|x| = −2L1|V|

λ+1
2 − 2L2|V|

1
2 (44)

when x > 1, it can be equivalent to V > 1, where V
1
2 > 1, λ = m. When x = 1, it can be

equivalent to V
m+n+2

4 = V
m+1

2 = 1, where λ = (m + n)/2.
In the above two cases, Equation (44) can be derived as

.
V(x) = −2L1V

m+1
2 − 2L2 (45)

dV/(−2L1V
m+1

2 − 2L2) ≥ dt (46)

Integrating both sides of Equation (46) simultaneously yields

t3
max ≤ lim

V(0)→∞
t(V(0)) ≤ lim

V0→+∞

∫ V0

1

1

2L1V
m+1

2 + 2L2
dV (47)

According to [21,32], in the case of (m + 1)/2 > 1, the following equation holds

L1V
m+1

2 + L2 ≥ 2
1−m

2

(
L

2
m+1
1 V + L

2
m+1
2

)m+1
2

(48)

t3
max ≤ lim

V0→+∞

∫ x0

1

1

2
3−m

2

(
L

2
m+1
1 V + L

2
m+1
2

)m+1
2

dV =
2

m−1
2

L
2

m+1
1 (m− 1)

(
L

2
m+1
1 V + L

2
m+1
2

) 1−m
2

(49)
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when |x| < 1, it can be equivalent to V < 1, where λ = n. Equation (44) can be derived as

.
V(x) ≤ −2L1V

n+1
2 − 2L2V

1
1−n

dV
1−n

2
dt ≤ −(L1 + 2L2V

1−n
2 )

(50)

Substituting V
1−n

2 into Equation (50) yields

t4
max = lim

z(0)→1
t(z(0)) ≤ lim

z0→1

∫ 0

z0

dz
(n− 1)(L1 + L2z)

=
1

L2(1− n)
ln
(

L1 + L2

L1

)
(51)

The nonlinear system
.
x = −L1sigλx− L2sign(x) is a fixed-time stable system, and the

origin is the equilibrium point of the system. The upper bound of the convergence time of
the system is represented as follows:

tmax = t3
max + t4

max =
2

m−1
2

L
2

m+1
1 (m− 1)

(
L

2
m+1
1 V + L

2
m+1
2

) 1−m
2

+
1

L2(1− n)
ln
(

L1 + L2

L1

)
(52)

�

For the integrated relative error model of the attitude orbit of a rigid–flexible coupling
spacecraft described in Equations (36) and (37), this paper designs a fixed-time non-singular
terminal sliding surface as follows:

ŝ = ω̂e + g(q̂v) (53)

where

g(q̂v) =

{
Lsigλ q̂v |q̂v| ≥ ξ

Lξn−1q̂v |q̂v| < ξ
(54)

Equation (52) λ = (m + n)/2 + ((m− n)/2)sign(|q̂v| − 1), L > 0, m > 1, 1 > n > 0,
and that ξ > 0 is a constant with very small values.

Differentiate Equation (54) and further obtain from reference [33]:

.
g(q̂v, ω̂e) =

{
Lλω̂e|q̂v|λ−1 |q̂v| ≥ ξ

Lξn−1ω̂e |q̂v| < ξ
(55)

The fixed-time nonsingular terminal sliding mode controller is as follows:

F̂u = (ω̂e + q̂∗e ⊗ ω̂d ⊗ q̂e)×
(

M̂(ω̂e + q̂∗e ⊗ ω̂d ⊗ q̂e) + B̂⊗
.
η̂
)

−M̂ω̂e × (q̂∗e ⊗ ω̂d ⊗ q̂e) + M̂
(

q̂∗e ⊗
.

ω̂d ⊗ q̂e

)
+ B̂⊗

..
η̂ − F̂g

− .
g(q̂v, ω̂e)− ρ̂� sigγ(ŝ)− T̂ � sign(ŝ)

(56)

where γ = (a + b)/2+ ((a− b)/2)sign(|ŝ| − 1), a > 1, 1 > b > 0, ρ̂ and T̂ are both positive
definite diagonal matrices. Equation (54) is a continuous piecewise function. When q̂v
converges to the |q̂v| < ξ region, the sliding surface shown in Equation (53) switches to a
linear sliding surface form to avoid singular problems.

The proof will be divided into two steps:
Step 1
Prove that the system state converges to ŝ = 0 within a fixed time.

Select Lyapunov function

V1 =
1
2
〈
ŝ, M̂ŝ

〉
(57)
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Equation (57) is derived as:

.
V1 =

〈
ŝ, M̂

.
ŝ
〉

= ŝT


−(ω̂e + q̂∗e ⊗ ω̂d ⊗ q̂e)×

(
M̂(ω̂e + q̂∗e ⊗ ω̂d ⊗ q̂e) + B̂⊗

.
η̂
)

+M̂ω̂e × (q̂∗e ⊗ ω̂d ⊗ q̂e)− M̂
(

q̂∗e ⊗
.

ω̂d ⊗ q̂e

)
− B̂⊗

..
η̂

+
.
g(q̂v, ω̂e) + F̂u + F̂g + F̂d

 (58)

Assuming that the interference received by the spacecraft is bounded, the F̂u of
Equation (56) is substituted into Equation (58) for calculation.

.
V1= ŝT(−ρ̂� sig(ŝ)− T̂ � sign(ŝ)

)
= −ρ̂|ŝ|γ+1 − T̂|ŝ| = −ρ̂V1

γ+1
2 − T̂V1

1
2

(59)

According to Theorem 2, during the approaching stage of the sliding mode surface,
the system state can reach ŝ = 0 + ε0 within a fixed time.

t1 =
2

a−1
2

ρ
2

a+1 (a− 1)

(
ρ

2
a+1 + T

2
a+1

) 1−a
2

+
1

T(1− b)
ln
(

ρ + T
ρ

)
(60)

Step 2
Prove that in the case of ŝ = 0, the system state variables q̂v and ω̂e(t) converge to 0 in

finite time.
When ŝ = 0,

ω̂e = −g(q̂v) (61)

when |q̂v| ≥ ξ the Lyapunov function is selected as

V2 =
1
2
〈q̂v, q̂v〉 (62)

Derive to obtain Equation (63):

.
V2 = −L|q̂v|λ+1 = −LV2

γ+1
2 (63)

According to Theorem 1, q̂v and ω̂e(t) converge within a fixed time t2 after reaching
the sliding surface.

t2 ≤ t1 +
m− n

L(m− 1)(1− n)
(64)

when |q̂v| < ξ the equation dq̂v/dt = −Lξn−1q̂v holds and exponentially converges.
Proof completed.

5. Simulation and Results

To verify the feasibility and effectiveness of the control algorithm proposed in the pre-
vious section, mathematical simulations were conducted based on mathematical simulation
software. The target orbit parameters of the spacecraft and the initial state error parameters
of the tracking spacecraft relative to the target spacecraft are detailed in Tables 1 and 2.

Table 1. Six elements of spacecraft target orbit.

a/m e i/deg Ω/deg ω/deg f/deg

7,200,000 0 45 0 0 30
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Table 2. Initial state error parameters of spacecraft.

Attitude quaternion error qe =
[
0.8 0.4 −0.4 0.2

]T
Track position error re =

[
−10 15 −10

]T
Attitude angular velocity error ωe =

[
0.001 0.002 0.001

]T
velocity error ve =

[
0.2 0.1 0.25

]T
Set the target spacecraft to be oriented toward the ground with an angular velocity of

ωd =
[
0 0 0.0010334

]Trad/s.
Assuming that the rigid platform mass mrig of the rigid–flexible coupling spacecraft

is 80 kg, the mass m f le of the flexible attachment is 20 kg, and the rotational inertia of the
rigid platform and the flexible attachment are

Irig =

100 0 0
0 150 0
0 0 120

 I f le =

 40.34 −4.92 −8.50
−4.92 150 29.93
−8.5 29.93 233.33


For the convenience of calculation, the flexible mode of a rigid–flexible coupled

spacecraft is simplified and equivalent to the flexible cantilever mode. Its initial mode is
η(0) =

.
η(0) =

..
η(0) = 0, and the specific parameter information is shown in Table 3.

Table 3. Parameters of rigid–flexion coupled spacecraft.

Translational Coupling
Matrix Rotational Coupling Matrix Modal Damping Coefficient Modal Stiffness Coefficient

Btran =

 0.0155
−0.0155
0.0225

√kg Brot =

 0.02
0.005
0.015

√kg ·m ξ = 0.05 Λ = 0.5

Assuming that the spacecraft is subjected to the following environmental dual inter-
ference forces

F̂d =

0.006 + 0.001 sin(πt/10)
0.005 + 0.003 sin(πt/10)
0.004 + 0.006 sin(πt/10)

N + ε

0.0001 + 0.002 sin(πt/10)
0.003− 0.001 sin(πt/10)
0.002 + 0.003 sin(πt/10)

N ·m

Considering the actual control execution mechanism, in the simulation process of the
following three sets of controller models, the control force and torque are limited to the
range of

[
−1 1

]T N and
[
−0.2 0.2

]
N ·m, respectively.

The fixed-time nonsingular terminal sliding mode controller is selected as follows:

p̂ = 0.1 + ε0.1
T̂ = 5 + ε5
L = 0.2 ξ = 0.001
m = 1.05 n = 0.95
a = 1.05 b = 0.95

To better compare the effect of fixed time convergence speed, the nonsingular terminal
sliding mode controller is introduced as the control group. Its sliding mode surface and
approach law (switching control term) are as follows:

ŝ = δ̂v + â� sig
( .

δ̂v

)α

F̂vss = ρ̂� sign(ŝ) + T̂ � ŝ
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where sig
(
ξ̂v
)α

= sign(qv)|qv|α + ε sign(re)|re|α, 1 < α < 2. â = a + εa′ is a dual constant
and a > 0, a′ > 0. The parameters of the nonsingular sliding mode controller are selected
as follows:

â = 20 + ε20
p̂ = 0.3 + ε0.3
T̂ = 5 + ε5
α = 1.5

In order to present the simulation results more clearly and intuitively, this article
calculates the relative dual quaternion into the form of relative attitude quaternion and
relative position and also converts the attitude quaternion into Euler angle form, which is
more conducive to visually observing and comparing the changes in attitude angle errors.
The simulation results are shown in Figures 4–13. The left side of the image is the fixed-time
nonsingular sliding mode controller designed in this paper, and the right side of the image
is the nonsingular terminal sliding mode control group.
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From Figures 4–6, it can be seen that the relative attitude quaternion error, relative
Euler angle error, and relative angular velocity error decrease over time. The fixed time
nonsingular terminal sliding mode attitude quaternion and attitude angle converge to
zero within 200 s, and the steady-state error accuracy can reach 10−4 within 300 s. The
relative angular velocity error converges within 200 s. The attitude quaternion, attitude
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angle, and relative angular velocity errors of nonsingular terminal sliding mode converge
within 1500 s due to the influence of the initial state of the system. The actual control torque
output under

[
−0.2 0.2

]
N ·m conditions is shown in Figure 7.

Figures 8–10 show the variation of the relative orbital motion parameters of the rigid–
flexion coupling system, as shown in Figure 8. The dual part variation curve of the dual
quaternion of the fixed time non-singular terminal sliding mode, that is, the orbital motion
and attitude orbit coupling part converge to 0 within 150 s; the dual part of the nonsingular
terminal sliding mode dual quaternion converges to 0 within 180 s.

As shown in Figures 9 and 10, the relative position and relative velocity errors of
the fixed time nonsingular terminal sliding mode converge to zero within 150 s, and the
steady-state error can reach 10−3 after 300 s. The relative position and relative velocity
errors of the nonsingular terminal sliding mode converge to zero within 180 s. Figure 11
shows the actual control force output under

[
−1 1

]
N conditions.

Figures 12 and 13, respectively, show the modal vibration curves of the fixed time
nonsingular terminal sliding mode and the flexible attachment of the nonsingular terminal
sliding mode controller in relative attitude orbit motion. The fixed time nonsingular
terminal sliding mode flexible mode converges to the steady state within 150 s; the mode
of the flexible attachment of the nonsingular terminal sliding mode controller tends to be
stable within 400 s.

Through simulation and comparison, it can be concluded that under the same initial
state and controller parameters of the same magnitude, the convergence time of nonsingular
terminal sliding mode is relatively long, which is unacceptable in practical engineering
applications. Fixed time control has stronger robustness, faster convergence speed, and
higher convergence accuracy. The most important thing is that its convergence time is
independent of the initial conditions and only depends on the control parameters. Therefore,
it is more suitable for practical task applications, even if the task environment is different,
there is no need to adjust the parameters accordingly. The simulation results show that
the designed controller can improve the convergence speed, achieve a transition from
finite time convergence to fixed time convergence, have good robustness, and improve the
control performance of the system.

6. Conclusions

To better describe the dual star thin film diffraction imaging system, an integrated
dynamics model and relative error motion and dynamics equations for the relative motion,
attitude, and orbit of a rigid–flexible coupling spacecraft were established based on dual
quaternions. Considering external interference, a fixed time convergent nonsingular termi-
nal sliding mode surface is constructed by switching the power terminal of the system state
variable to address the problem of integrated attitude and orbit control of rigid–flexible
coupled spacecraft based on dual quaternion. Theoretical analysis and verification show
that the controller proposed in this chapter can achieve state error convergence to zero,
achieving a transition from finite time related to the initial state of the system to fixed
time independent of the initial state of the system. Numerical simulation verifies the effec-
tiveness of the proposed controller and introduces a nonsingular terminal sliding mode
controller to compare and analyze the application advantages of the fixed-time nonsingular
terminal sliding mode controller designed in this paper through numerical simulation.
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