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Abstract: Privacy-preserving task assignment is vital to assign a task to appropriate workers and
protect workers’ privacy or task privacy for spatial crowdsourcing (SC). Existing solutions usually
require each worker to travel to the task location on purpose to perform this task, which fails to
consider that workers have specific trajectories and carry out the task on their way in a hitchhiking
manner. To this end, this paper proposes a privacy-preserving hitchhiking task assignment scheme for
SC, named PKGS. Specifically, we formulate the privacy-preserving hitchhiking task assignment as a
decision problem of the relationship between dot and line under privacy protection. In particular, we
present a privacy-preserving travel distance calculation protocol and a privacy-preserving comparison
protocol through the Paillier cryptosystem and the SC framework. Results of theoretical analysis
and experimental evaluation show that PKGS can not only protect the location privacy of both each
worker and the task simultaneously but also assign the task to the worker holding a minimum travel
distance. In contrast to prior solutions, PKGS outperforms in the computation of travel distance and
task assignment.

Keywords: spatial crowdsourcing; task assignment; privacy-preserving; Paillier homomorphic
encryption

1. Introduction

Spatial crowdsourcing (SC) [1,2] has been widely applied in our daily life, such
as crowdsourcing taxis (Uber, DiDi, Didachuxing, etc.) crowdsourcing logistics, and
crowdsourced take-out delivery. In these applications, task assignment is an essential
requirement for SC. As shown in Figure 1, the task assignment is to tackle how to assign
a crowdsourcing task to appropriate workers. For example, an appropriate worker has a
minimum travel distance. The task publishers are called task requesters (TRs), and the task
completers are called task workers (TWs).

Figure 1. Working Models in SC.
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Privacy concerns are widespread in various scenarios in cloud environments, such
as neural network training and prediction [3] and support vector machine training in the
cloud [4]. It is also a key barrier faced by task assignment of SC. Task assignment of SC
always needs to utilize the location both of TWs and task to perform task assignment.
However, in terms of TWs and TRs, location data are sensitive information, which involves
location privacy [5]. Thus, TWs may refuse to take part in the crowdsourcing task due to
privacy concerns. If all TWs do not participate in any crowdsourcing task, the SC paradigm
fails to tackle any task by the capability of crowds. On the other hand, in terms of an SC
platform, it suffers from high penalties due to disclosing collected TWs’ locations and task
locations. For example, DiDi is fined $1.28 billion, and Uber is fined $148 million.

Privacy-preserving task assignment simultaneously resolves the task assignment and
privacy concerns of SC. Privacy-preserving task assignment is to assign the crowdsourcing
task to TWs without compromising any TW or task privacy. Privacy-preserving task
assignment has become a research hotpot, and a number of solutions have been proposed.
In existing solutions, encryption-based and differential privacy (DP)-based are common
methods to protect the privacy of TWs’ locations or task locations. DP-based solutions
have an advantage over efficiency but are weak in accuracy. In contrast, encryption-based
solutions can perform accurate computations but face high computation burdens. Although
there are abundant solutions to enable privacy-preserving task assignment, hardly any
existing scheme supports the privacy-preserving hitchhiking paradigm, in which each
worker has a specific trajectory and is allowed to perform a task on her way without
scarifying location privacy of any worker and task. Privacy-preserving hitchhiking task
assignment faces with following technical challenges.

The first challenge is how to compute the travel distance without knowing any TW
location and task location. The travel distance is the distance between TW’s location and a
task location. The travel distance is usually measured by Euclidean distance or Manhattan
distance. However, whether it is Euclidean distance or Manhattan distance, computing
them is not straightforward when the worker’s location and the task location are unknown.
Technically, it requires computing the travel distance over encrypted or obscured locations.
The second challenge is how to estimate reachability without compromising privacy. An
SC task is spatiotemporal dependent, thus, and it requires not only computing the travel
distance but also estimating whether a TW can reach the task location or not under the time
constraint. Intuitively, if all TWs’ locations and task locations as well as their temporary
information are known, it is easy to estimate whether a TW can reach the location on
schedule. However, to protect privacy, a privacy-preserving task assignment solution fails
to learn any TW and task spatiotemporal sensitive information. The third challenge is how
to search for an optimal worker under privacy protection. The task assignment is usually
regarded as an optimization problem, such as searching for the minimum travel distance
under multiple constraints. The challenge for privacy-preserving task assignment is to
resolve the optimization problem under all data being encrypted or obscured.

To tackle the above challenges, in this paper, we propose a privacy-preserving hitchhik-
ing task assignment solution for SC, called PKGS (PKGS comes from a Privacy-preserving
hitchhiKing task assiGnment solution for spatial crowdSourcing). Specifically, we first
formulate the privacy-preserving hitchhiking task assignment as a decision problem of the
relationship between dot and line within privacy protection. We then adopt the Paillier
cryptosystem that enables computation over encrypted data to encrypt the worker and task
spatiotemporal information and protect their privacy. To enable the Paillier cryptosystem
supporting operations of privacy-preserving task assignment, including computation of
traveling distance, accessibility estimation, and optimization under constraints, we carefully
design a privacy-preserving travel distance calculation protocol and a privacy-preserving
comparison protocol. Our contributions are three-fold as follows.

(1) We formulate a privacy-preserving hitchhiking task assignment. To the best of our
knowledge, this paper formulates a privacy-preserving hitchhiking task assignment as
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a decision problem of the relationship between dot and line under privacy protection
for the first time.

(2) We present two privacy-preserving computation protocols. To enable privacy protec-
tion and computation over encrypted data, we present a privacy-preserving travel
distance calculation protocol to measure the Manhattan distance between a TW and
a task. We also present a privacy-preserving comparison protocol to estimate the
accessibility and search for the TW holding a minimum travel distance.

(3) We propose a privacy-preserving hitchhiking task assignment solution and evaluate
its effectiveness and efficiency. Based on the proposed two privacy-preserving com-
putation protocols, we construct a privacy-preserving hitchhiking task assignment
solution, which can search for the optimal TW with a minimum travel distance within
several seconds.

The rest of this paper is organized as follows. We introduce the related work in
Section 2. In Section 3, we describe the system model, security model, Paillier cryptosystem,
and problem formulation. In Section 4, we introduced Scheme PKGS in detail, including
how to select potential TWs and how to select optimal TW. In Section 5, we analyze the
security of PKGS. Section 6 reports and evaluates the experimental results. Finally, we
draw a conclusion in Section 7.

2. Related Work

In recent research, task assignment protecting user privacy can be roughly divided
into two types. One is to protect user privacy by processing user-uploaded information
or query feedback information. The other is to achieve the purpose by encrypting this
information. The first type mainly builds a cloaking region by processing information data.
Intuitively, anonymous and perturbation techniques can do this. Based on k-anonymity [6]
and l-diversity [7], a lot of anonymous task assignments have been proposed [8–11]. In [8],
Kazemi et al. proposed the PiRi scheme, in which multiple users co-create anonymous
zones and send requests to the SC server through anonymous zones, thus achieving privacy
protection. Users in the anonymous zone share the results of requests to the SC server.
Vu et al. [9] partition at least k adjacent users into a group with locality-sensitive hashing
(LSH) that maintains both localization and k-anonymity. They design an algorithm for
kNN querying based on this partition. Pournajaf et al. [10] study a spatial task assignment
method when workers utilize spatial cloaking to obfuscate their locations, which assigns
tasks by managing location regions with resource constraints. Based on Pournajaf’s work,
Hu et al. [11] consider the extent to which a worker is willing to move so that the worker’s
position in a task assignment is an area of activity. Like the anonymous technique, perturba-
tion techniques can protect users’ privacy by modifying values, such as differential privacy
or perturbation of geographical position [12–15]. To et al. [12] utilize a trusted third party
to preprocess data and then utilize differential privacy protection to protect the worker’s
location. After that, they tackle the moving TWs challenge by continuously sending privacy-
preserving location information and reducing the noise generated in this way by Kalman
filter-based post-processing technique [15]. Based on [12], Gong et al. [13] introduced rep-
utation parameters for quality assessment. In a similar framework, Zhang et al. [14] use
contour plots to characterize the distribution of workers and thus have less noise generation
than others.

Cryptographic systems to encrypt data are the other way to protect the user’s pri-
vacy [16–21]. Without further consideration of efficiency, the method is strongly theoreti-
cally supported for security. These schemes for encrypting data require the construction
of protocols that conform to that encryption method to accomplish the assignment of
tasks. Zhao et al. [16] propose the iTAM scheme that achieves multiple constrained exact
matching of TR and TW by Paillier. However, the full ciphertext comparison leads to
the need to compare all the candidates. Although Shu et al. [17] achieve bidirectional
privacy-preserving task assignment through proxy re-encryption, their proposed solu-
tion requires additional servers such as proxy servers or fog nodes. Then they proposed
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pMatch [18], that is, a mechanism based on Shamir secret sharing that solves the problem
of needing a proxy in privacy-preserving task assignment. Wang et al. [19] provided a per-
sonalized privacy-preserving task assignment mechanism PWSM that uses fuzzy location
information to assign tasks to the maximum probability worker closest to the task. In [20],
Ni et al. proposed the SPOON scheme, which recruits workers based on user location and
protects privacy through proxy re-encryption and BBS+ signature. Liu et al. [21] proposed
a range search retrieval method that can perform ciphertext retrieval in a small area, thus
improving efficiency, but did not propose a corresponding range determination and scaling
method. The encryption scheme has the advantage of accurate retrieval, but its retrieval
matching process is time-consuming. Workers need to wait for a long matching time after
completing a task before they can be assigned the next task. Therefore, we propose a
hitchhiking scheme that enables workers to complete tasks within an existing trip, thus
increasing their motivation.

3. Problem Formulation and Preliminaries
3.1. System Model

As depicted in Figure 2, our system model consists of Task Requesters (TRs), Task
Workers (TWs), Key Generation Center (KGC), and CS server. The CS server is an online
platform provided by a service provider (SP) where it matches the TRs and TWs according
to their requirement. In other words, it receives task requests from TRs as well as TWs
and matches them online. KGC is a trusted organization for secret key generation and
distribution. The TRs are the users of SP who want to find a suitable worker to help them
complete a task within space-time by the platform. Similarly, the TWs are the other kind of
users of SP who want to find a job satisfying their requirements. In our system, the whole
task assignment process is divided into four main steps as follows.
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In 1©, KGC generates public and private keys and manages them for TRs, TWs, and
the SC server.

In 2©, TRs use public keys to encrypt key task information and upload task descriptions
and encrypted task information to the SC server.

In 3©, TWs download the information about the task they want to perform and upload
their work information to the SC server with the same public key encryption.
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In 4©, the SC server cooperates with the TR issued the task to complete the selection of
the optimal worker without revealing private information.

3.2. Security Model

In SC, due to the strongly spatiotemporal properties of tasks, the task request of both
TRs and TWs includes much personal sensitive information. This information reveals the
current approximate location and needs of a TR or TW to a certain extent, and it has also
become the target that the adversary wants to obtain. We assume a strong adversary A in
our model, who has the following capabilities.

(1) A can disguise as a legal TR or TW and communicate with the SC server to obtain information.
(2) A can eavesdrop on the communication channel between TRs or TWs and CS server

to capture communication information.
(3) A can compromise the SC server to obtain some information of an unselected TW

stored on it.

As Figure 2 shows, the potential threats mainly come from TRs, TWs, and the SC server.
Here, we assume that the SC server is semi-honest. In other words, the SC server is honest-
but-curious, which follows the protocol but wants to snoop on the user’s privacy. This
assumption is reasonable because a formal service provider needs to register when releasing
its products, and it will provide services under the pre-agreed agreement. However, it
also wants to optimize and promote its products by collecting user information, but the
collected user information is harmful to users. So, we need to face security threats from
these aspects of them, not just adversaries but curious users or the CS server. We should
avoid the three of them casually viewing the plaintext of task request information of TRs
and TWs. This can prevent an adversary from pretending to be a legal user to obtain the
task information of TRs or TWs by his task requirement.

3.3. Paillier Cryptosystem

As a homomorphic public key cryptosystem, the Paillier cryptosystem [22] is widely
used for secure multiparty computer protocols.

Key generation: p and q are large prime numbers independently, set N = pq and
λ = lcm(p − 1, q − 1), and select random integer g ∈ Z∗

N2 , and then compute

µ = (L(gλmodN2))
−1modN, where the function L is defined as L(x) = x−1

N . The public
key is pk = (g, N) and the private key is sk = (λ, µ).

Encryption: Given a message m ∈ ZN to be encrypted with the public key pk,
C = JmKpk = gm · rNmodN2, where r is a selected random integer r ∈ Z∗N .

Decryption: Given the ciphertext C to be decrypted with the private key sk,
m = Dsk(C) = L(CλmodN2) · µmodN.

Let x, y ∈ ZN , its homomorphic properties are described below.

(1) Additive homomorphism:

JxK · JyK = Jx + yK. (1)

(2) Scalar-multiplicative homomorphism:

JxKy = Jx · yK. (2)

3.4. Problem Formulation

In PKGS, we try to help TWs with an existing itinerary to match a suitable task. A TW
has her/his departure time, departure location, and destination location. A TR publishes a
task that requires someone to complete the specified task at the agreed place at the specified
time. To transform the real problem into a mathematical problem, we formulate Task, TW,
Travel Distance, and Task Assignment. For the convenience of description, we use loc
instead of specific coordinates (x, y).
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Definition 1 (Task). A Task denoted by T = {locR, TRstart, Ttask, TD} requires a TW to travel to
the physical location locR to perform the task. The task start time is TRstart, and the time required to
complete the task is Ttask,TD is a task description without involving privacy of the task.

Definition 2 (TW). A TW denoted by W = {locS, locD, TWstart, TWend, v} starts from point locS to
point locD , her/his departure time is TWstart , the cutoff time to reach locD is TWend , and the travel
speed is v.

Definition 3 (Travel Distance). Travel distance is Manhattan Distance (MD) denoted by m(A, B)
that is a new metric in which the distance between two points is the sum of the absolute differences of
their cartesian coordinates and is also known as city block distance or taxicab geometry. Assuming
there are two points A(x1, y1) and B(x2, y2) , their Manhattan distance is calculated as follows.

m(A, B) =|x1 − x2|+|y1 − y2| (3)

Compared with Euclidean distance, Manhattan distance is more suitable for calculat-
ing the distance between two points in the city. As we know, it is not possible to get from
point A to point B in a city directly through a building, which is why it is called city block
distance or taxicab geometry.

Definition 4 (Task Assignment). Task assignment is a set of conditions matching TR and TW. As
Figure 3 shows, the TW plans to go from locS to locD . The task location is locR . Task assignment
requires the following conditions to be met. For the TW, she/he needs to reach locD before TWend .
For the TR, the task needs to start at moment TRstart . The time taken by the TW to travel
from locS to locR and from locR to locD is T1 and T2, respectively. So, the task assignment needs to
fulfill the following conditions.

Figure 3. Task Assignment Constraint.

{
TWstart+T1 + Ttask+T2 ≤ TWend
TWstart+T1 ≤ TRstart

(4)

To make the matching condition satisfy the homomorphic cryptosystem, we do a
little trick with it. We transform a comparison of time into a comparison of distance.
Assume there is a TR’s task denoted by T = {locR, TRstart, Ttask, TD} and a TW denoted by
W = {locS, locD, TWstart, TWend, v}. If the following constraints are met{

S1+S2 ≤ S
S1 ≤ S′

(5)

the TW can perform the TR’s task. In this set of equations, S1 = m(locR, locS),
S2 = m(locR, locD), S =(TWend − TWstart − Ttask) ∗ v, S′ =(TWstart − TRstart) ∗ v.

Remark 1. The distance of the TW from the starting point to the task point is denoted as S1. The
distance from the task point to the end point of the TW is denoted as S2. The farthest moving distance
of the TW under the premise of completing the task is recorded as S. This is the product of the time



Electronics 2023, 12, 3318 7 of 13

the TW can spend moving and his or her speed. Before the task starts, the maximum distance that
the TW can move is recorded as S′. Its rationale is like that of S. S1+S2 ≤ S means that the TW
can go to the mission point to complete the mission without delaying his original journey. S1 ≤ S′

means that the TW can reach the task point before the task needs to be started.

Task allocation needs to consider not only whether the task will be completed on time, but
also who is the optimal TW. The set of candidate TWs is denoted by W= {W1, W2, . . . , Wn} ,
and the set of S1 of each TW is denoted by WS1= {W1S1, W2S1, . . . , WnS1} . A TW is an
optimal worker if he satisfies the following conditions.

WS1 = min(WS1) (6)

As we know, S1 is the distance of the TW from the start point to the task point.
Equation (6) means that WS1 is the nearest worker to the task point. If the TW is closer,
the probability is higher that the TW will arrive at the task point as early as possible to
start working.

4. Design of PKGS
4.1. Overview of PKGS

We have a preliminary understanding of PKGS through the previous system model,
and now we will introduce its scheme process in detail. In Figure 4, we illustrate the
process of PKGS with an example where a TR matches TWs for clarity. This situation can
be seen as a case where, among the many TRs tasks, this group of TWs chose this task at
the same time.

Figure 4. Scheme Process of PKGS.

In 1©, a TR sends a request to the SC server to find a suitable TW to complete her/his CS
task. As mentioned in Section 3.4, the TR’s task is denoted by T = {locR, TRstart, Ttask, TD}.
To make it easier for TWs to choose, he uploads the encrypted location information locR
and the time required to complete the task Ttask, as well as the unencrypted task start time
TRstart and task description TD to the SC server.

In 2©, TWs select a task on the SC server and download the task information from it.
In 3©, each TW adds their encrypted information to the downloaded encrypted task

information and sends the encrypted information back to the SC server.
In 4©, the SC server figures out candidate TWs who met the constraints with the help

of TR.
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In 5©, the SC server finds the optimal TW from the candidate TWs with TR’s assistance.
In 6©, finally, the SC server establishes a connection between them.
Note that according to the descriptions in Sections 3.4 and 4.1, there are mainly two

difficult problems to be solved. The travel distance is calculated from the encrypted task
information and the encrypted travel distance is compared. Given this, we will focus
on these two types of challenges and address two solutions detailed in the following
two subsections.

4.2. Privacy-Preserving Comparison Protocol

Both absolute value symbol removal and constraint judgment require a comparison
operation on the ciphertext. In this subsection, we propose a PC (privacy-preserving
comparison) protocol to solve the comparison of encrypted information.

The SC server owns the computed ciphertext but cannot get the size relation because
it does not have the private key. So, it needs the help of TR. However it cannot send the
ciphertext directly to the TR because the TR has the private key and the location of the
task. If the ciphertext is sent directly to the TR, then the TR can project the location of the
TWs. So, as shown in Figure 5, the SC server performs a perturbation operation before
transmission, and the TR decrypts the received message and returns the size relation to the
SC server. The details are described below.

Figure 5. Process of PC.

Assume the length of a public key (N) is L and the encrypted numbers to be compared
are recorded as m = JA− BK. For security purposes, a typical public key length needs to
be greater than or equal to 256 bits. Therefore, the number of bits in the values of A, B is
much smaller than L. Let the perturbation value be mi

′ = J2L/2K · JA− BKxi . xi is a random
integer for perturbing, ranging from −64 to 64 without 0. Since it is all positive integers
in the Paillier cryptosystem, here, we add 2L/2 to the difference to avoid an overflow
situation. The TR compares the sizes of Dsk(mi

′) and 2L/2. If Dsk(mi
′) > 2L/2, R = 1, if

Dsk(mi
′) < 2L/2, R = −1, if Dsk(mi

′) = 2L/2, R = 0. Then, the SC server can determine the
size relationship of A, B based on the values of R and xi as shown in the following equation.

xi ∗ R > 0 ⇒ A > B
xi ∗ R < 0 ⇒ A < B
xi ∗ R = 0 ⇒ A = B

(7)

Remark 2. JA− BKxi is a number. When we add 2L/2 to it, if the result is greater than 2L/2 , it
means that JA− BKxi is a positive number, if it is less than 2L/2 then JA− BKxi is negative, and if it
is equal to 2L/2 , then JA− BKxi is equal to 0. There are two levels of perturbation of xi. On the one
hand, there is its sign, which denotes A − B if it is positive and B − A if it is negative. on the other
hand, we amplify the result of A − B by a factor of xi. The result of |xi| is the number of times the
result of A − B. After the perturbation process, the TR can still determine J2L/2K and JA− BKxi in
relation to each other, but cannot infer one value of A, B from the other. With R = 1 and xi > 0, we
get A − B > 0; with R = 1 and xi < 0, we get A − B < 0; with R = −1 and xi > 0, we get A − B <
0; with R = −1 and xi < 0, we get A − B > 0; with R = 0, we get A = B. So, we can get the above
equation. With this, we can easily complete the comparison operation of encrypted data without
revealing private information.
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4.3. Privacy-Preserving Travel Distance Calculation Protocol

In this subsection, we propose a privacy-preserving travel distance calculation protocol
based on PC. Denote the PC operation as P(A,B). A and B are the ciphertexts to be compared
and the return value is the size relationship between A and B. Now, we design the protocol
that implements steps 4© and 5©. In 4©, the goal is to find candidate TWs who meet the
requirements. In 5©, the goal is to find the optimal TW. To satisfy the judgment condition
of the task assignment, as shown in Equation (5), we need to calculate S1, S2, S , S′ .
Assume that the coordinates of locR, locS, locD are (latR, lngR), (latS, lngS), (latD, lngD),
respectively. We can expand these equations as follows.

S1 = m(locR, locS) =|latR − latS|+|lngR − lngS| (8)

S2 = m(locR, locD) =|latR − latD|+|lngR − lngD| (9)

We convert the time point to the number of minutes elapsed so that the time can be
converted into an integer for operation.

S =(TWend − TWstart) ∗ v− Ttask ∗ v (10)

S′ =(TWstart − TRstart) ∗ v (11)

To protect privacy, we encrypt this information with TR’s Paillier public key. We use
Jx1K to denote the Paillier encryption ciphertext of x1. According to the Paillier cryptosys-
tem, we can use the following equation with the encryption task information to calculate
the desired distance cipher.

JS1K = Jm(locR, locS)K
= |JlatR − latSK|+ |JlngR − lngSK|
= |JlatRK · JlatSK−1|+ |JlngRK · JlngSK−1|

(12)

JS2K = Jm(locR, locD)K
= |JlatR − latDK|+ |JlngR − lngDK|
= |JlatRK · JlatDK−1|+ |JlngRK · JlngDK−1|

(13)

In 1©, a TR sends the JlatRK, JlngRK, JTtaskK, TRstart, and TD to the SC server.
In 2©, TWs select a task on the SC server based on the task description and task start

time as well as download the task information from it.
In 3©, each TW adds their encrypted information to the downloaded encrypted task

information and sends the encrypted information back to the SC server, as JlatRK · JlatSK−1,
JlngRK · JlngSK−1,JlatRK · JlatDK−1, JlngRK · JlngDK−1,J(TWend − TWstart) ∗ vK, JTtaskK

−v,
J(TWstart − TRstart) ∗ vK.

In 4©, the SC server performs a perturbation operation on the values to be com-
pared and the following operations with the assistance of TR: PC((JlatRK · JlatSK−1)

′
,J2L/2K),

PC((JlngRK · JlngSK−1)
′
,J2L/2K), PC((JlngRK · JlngDK−1)

′
,J2L/2K), PC((JlngRK · JlngDK−1)

′
,

J2L/2K). Based on the well-judged size relation, the server can compute JS1K, JS2K, and
calculate JSK, JS′K according to the following equation.

JSK = J(TWend − TWstart) ∗ v− Ttask ∗ vK
= J(TWend − TWstart) ∗ vK · JTtaskK

−v (14)

JS′K = J(TWstart − TRstart) ∗ vK (15)

The SC server figures out candidate TWs who meet the constraints based on the
following PC operations: PC((JSK · JS1K

−1 · JS2K
−1)
′
,J2L/2K), PC((JS′K · JS1K

−1)
′
,J2L/2K).
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In 5©, the SC server puts the TWs who passed the judgment in 4© into set W and
puts their corresponding S1 into set WS1 . PC operations are performed continuously in
the set WS1 until the optimal TW is selected and the algorithm is described as follows
(Algorithm 1).

Algorithm 1: Find Optimal TW

Input: WS1

Output: The number of WSmin
Initialize min = 1;
for i = 1 to n− 1 do //n = WS1 .length

PC((JWiS1K · JWi+1S1K
−1)
′
, J2L/2K),

min = get the number of the small WS1
Return min;

In 6©, finally, the SC server establishes a connection between them according to
the number.

5. Security Analysis

In this section, we analyze the security of PKGS in the process of task constraint
determination and choosing optimal TW. In other words, PC and travel distance calculation
protocol is secure as same as Paillier.

Theorem 1. If the Paillier cryptosystem is secure, then the PC protocol is secure.

Proof. For the SC server, the data are always in the form of ciphertext to be computed
during the comparison process. Since it has no private key, it cannot decrypt the encrypted
data. In other words, if the Paillier is secure, then the server cannot get the user’s location
information during the comparison process. For the TR, even though she/he has the
private key to decrypt the ciphertext, the ciphertext has been perturbed. This also prevents
the TR from obtaining the TWs’ location information. Since the TR has the private key
and the ciphertext is meaningless to him, we next analyze it in plaintext. In the process
of perturbation, we randomly disturbed the position of the subtractor and the subtracted
number and subjected the result of calculations to random magnification. This makes it
impossible for the TR to distinguish the actual difference and to know the exact magnitude
relationship, thus making it impossible to speculate on the location of the workers. �

Theorem 2. If the Paillier cryptosystem is secure, then the travel distance calculation protocol does
not reveal the location.

Proof. In the previous theorem, it was shown that the TR cannot infer the location of TWs
from the PC protocol. Next, we analyze the security for TWs and the SC server in the travel
distance calculation protocol. For TWs, since they do not have the private key, they cannot
decrypt the ciphertext, and no result is returned after they add the encrypted message.
If the Paillier cryptosystem is secure, the TWs cannot guess the location of the task. For
the SC server, it performs operations on the ciphertext, but the result of the computation
is still the ciphertext. Moreover, it has no private key, so it cannot decrypt the ciphertext.
The TR decrypts the ciphertext and returns the size relation instead of the specific result
of the calculation. That is, if the Paillier cryptosystem is secure, it cannot get the location
information of any party. �
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6. Performance Analysis
6.1. Experiment Setting

In this section, we will test the performance of our proposed scheme through a series of
experiments. As in previous work [16], we used the addition of simulated fields to the real
dataset to complete the experiment. In this paper, we use the real Gowalla dataset and select
30 data entries in the range of latitude 37.75431 to 37.80062 and longitude −122.42691 to
−122.39382. We choose 10 check-in data as the TWs and add departure time, task working
time, and speed attributes at the original latitude of the data. The remaining 20 pieces of
data are used as the TRs. Similarly, we add task start time and task need time to it. We
assume 10 tasks have been assigned to TWs. In this way, each worker has a certain itinerary.
TWs have three transportation tools, walking (90 m/min), bicycles (240 m/min), and cars
(660 m/min).

We simulate the SC server with a computer with i7cpu and 16 GB of RAM. We simulate
the users with a smartphone with a Kirin 990 core and 8 BG of RAM. We evaluate the
performance of the scheme from the two aspects of the total time to complete all tasks and
the total distance to complete all tasks.

6.2. Evaluation Results

We choose the related study [16] to complete the comparative experiment. In the
experiment, there are 10 TWs with matched 10 tasks. So, each TW has a certain itinerary.
We assign the remaining 10 tasks to them. In [16], TWs need to complete tasks and then
select new tasks according to their task assignment scheme. In PKGS, we directly match
the remaining 10 tasks to the 10 TWs with our task assignment scheme. We reselect
30 recordings and repeat the experiment 10 times. The total task completion time includes
the time it takes to get to the task location and the time it takes to complete the task. The
total distance traveled to complete all tasks includes the total distance the worker must
travel. As shown in Figures 6 and 7, the results of the experiments show that the PKGS has
less mission completion time and mission total distance.
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7. Conclusions

In this paper, we propose a privacy-preserving hitchhiking task assignment solution
for SC, called PKGS, that can help TWs with existing travel trajectories to match with the
appropriate TR. Since it can allocate tasks based on the TW’s original trajectory under the
premise of protecting user privacy. This greatly increases the speed of task completion
and reduces the extra distance workers need to travel to complete additional tasks. In
future work, we will consider the optimal solution problem of how to package and assign
multiple tasks to a single TW.
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