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Abstract: Applying deep learning (DL) algorithms for image classification tasks becomes more
challenging with insufficient training data. Transfer learning (TL) has been proposed to address these
problems. In theory, TL requires only a small amount of knowledge to be transferred to the target
task, but traditional transfer learning often requires the presence of the same or similar features in
the source and target domains. Cross-modality transfer learning (CMTL) solves this problem by
learning knowledge in a source domain completely different from the target domain, often using a
source domain with a large amount of data, which helps the model learn more features. Most existing
research on CMTL has focused on image-to-image transfer. In this paper, the CMTL problem is
formulated from the text domain to the image domain. Our study started by training two separately
pre-trained models in the text and image domains to obtain the network structure. The knowledge
of the two pre-trained models was transferred via CMTL to obtain a new hybrid model (combining
the BERT and BEiT models). Next, GridSearchCV and 5-fold cross-validation were used to identify
the most suitable combination of hyperparameters (batch size and learning rate) and optimizers
(SGDM and ADAM) for our model. To evaluate their impact, 48 two-tuple hyperparameters and two
well-known optimizers were used. The performance evaluation metrics were validation accuracy,
F1-score, precision, and recall. The ablation study confirms that the hybrid model enhanced accuracy
by 12.8% compared with the original BEiT model. In addition, the results show that these two
hyperparameters can significantly impact model performance.

Keywords: batch size; cross-modality; deep learning; image classification; learning rate; overfitting;
text classification; transfer learning

1. Introduction

Image classification problems have been leading research in computer vision. With the
continual development of the Internet in recent decades, people can easily create, access,
and analyze all types of images, which has resulted in the rapid expansion of the number of
images. Images are an important way of carrying information and are essential in all aspects
of people’s daily communication, life, and work. In this context, there has been an emphasis
on finding accurate and valuable images in a short amount of time from many images.
The potential of machine learning algorithms (particularly deep learning algorithms) is
increasingly being explored as technology advances, and it has produced beneficial effects
in various sectors, including, but not limited to, natural language processing (NLP), traffic
prediction, medical diagnosis, and image classification [1]. Attention is drawn to image
classification problems because of their state-of-the-art performance in the field. However,
machine learning must improve with lengthy training times, the large sample sizes required,
and limited computer ability [2].

With the advent of deep learning algorithms, automatic feature extraction from images
can be achieved. Convolutional neural networks (CNNs) [3] are one of the most mainstream
image analysis methods [4]. Regarding deep learning models, it is desirable to have
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sufficient labeled training data to achieve promising model performance (e.g., accurate
and unbiased classification). However, some real-world problems are linked to small-scale
labeled datasets, such as rare diseases [5], mental health [6], and legal areas [7]. Transfer
learning has recently been suggested as a solution to this issue, which has several benefits
for enhancing the performance of target models from single or multiple source models [8,9].
The general idea of transfer learning is to transfer knowledge learned from the source
domain to the target domain, speeding up training and lowering the requirement for
sample size in the target dataset. Some studies have demonstrated the improvement of
transfer learning on image classification accuracy and the effect of transfer learning on CNN,
which performs better in image classification after pre-training compared to traditional
CNN [10,11]. In the methodologies of [12–14], including another domain as the source
domain becomes redundant if the training samples are large enough and an impressive
performance can be achieved while restricted in the target domain. There are various levels
of disagreement between different source and target domain data pairs. Regardless of
their disagreement, imposing knowledge from the source domain into the target domain
can lead to some performance degradation or, in worse cases, disrupt data consistency in
the target domain [15]. On the other hand, traditional transfer learning is only partially
applicable to some tasks and requires a good degree of similarity or common information
between the source and target domains. As mentioned above, the key part of the transfer
learning algorithm is to discover the similarity between the source domain PS(X, Y) and
the target domain PT(X, Y). When the labeled target data are not available (nl = 0), one
has to resort to the similarity between the marginal PS(X) and PT(X); although this does
have a theoretical limitation [14]. In contrast, this problem can be solved if a significant
number of samples (xl , yl) ∼ PT(X, Y) and (xs, ys) ∼ Ps(X, Y) are available. Thus, a
reasonable migration learning algorithm may be able to use datasets with labeled target
domains to mitigate the negative impact of irrelevant source information [16]. In other
words, transferring learning between domains with low similarity will be prone to negative
transfer [16–18], i.e., resulting in degradation of the performance of the target model.

Such a problem of transfer learning between domains with low similarity is known
as cross-modality transfer learning, which involves transfer learning between heteroge-
neous datasets [19]. In this paper, a breakthrough is desired to alleviate the limits of
traditional transfer learning when the source and target domains differ. A cross-modality
transfer approach from text to images is chosen. It is believed that the machine learn-
ing methods used for text classification could be used for image classification, known as
cross-modality transfer.

1.1. Related Work on Cross-Modality Transfer Learning

The discussion of existing works includes only research studies using cross-modality
transfer learning, i.e., existing works using traditional transfer learning with high similarity
between the source and target domains are not considered. Therefore, cross-modality trans-
fer learning was proposed to tackle the issue of negative transfer between heterogeneous
source and target domains [20–25].

Image to Image. Lei et al. [20] performed cross-modality transfer learning using
ResNet-50 with three convolutional layers from ImageNet (the source dataset) to the
ICPR2012 dataset or the ICPR2016 dataset (the target datasets). The ratio between the
training and testing datasets was 80:20. The model achieved an accuracy of 97.1% (an
improvement of 6.12%) for the ICPR 2012 dataset and an accuracy of 98.4% (an improvement
of 0.163%) for the ICPR 2016 dataset. In another work [21], knowledge was transferred
from the NPHEp-2 dataset (source dataset) to the LSHEp-2 dataset (target dataset) using a
parallel deep residual network with a two-dimensional discrete wavelet transform. The
training-testing dataset was in an 80:20 ratio. The proposed method enhanced the accuracy
by 0.417% (from 95.9% to 96.3%). Hadad et al. [22] proposed using cross-modality transfer
learning to improve the recognition rate of masses in breast MRI images. They trained
a network on X-ray images and then transferred the pre-trained network to the target
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domain (MRI images). Performance evaluation revealed that cross-modality transfer
learning improved the classification performance from an overall accuracy of 90% to 93%.
Their study’s limitation is that it involves transferring between different types of images,
specifically from X-ray images to MRI images. While X-ray images have a relatively small
dataset compared to other domains (e.g., the text domain), the transfer process still fails
to fully utilize the benefits of CMTL due to the relatively large amount of data in MRI
images. Another work [23] proposed a cross-modality transfer learning approach from
2D to 3D sensors in which different modalities shared the same observation targets. They
employed a pre-trained model network based on 2D images and then transferred the
pre-trained model to the visual system of 3D sensors. The model achieved an average
precision improvement of 13.2% and 16.1% compared to ConvNets and ViTs, respectively.
A cross-modality transfer learning algorithm was proposed for transferring a network
trained on a large dataset in the source domain (RGB) to the target domains (depth and
infrared) [24], which was used for the task of transferring knowledge from one source
modality to another target modality without accessing task-related source data. The model
achieved an accuracy of 90.2% in the single-source cross-modality knowledge transfer task
from RGB to NIR using the RGB-NIR dataset without task-related source data and 92.7%
from NIR to RGB. However, their designed model has yet to be tested in tasks with larger
modality gaps as it was only applied in cases with smaller modality differences.

Text to Image. Du et al. [25] described a chest X-Ray quality assessment method that
combined image-text contrastive learning and medical domain knowledge fusion. The
proposed method integrated large-scale real clinical chest X-rays and diagnostic report text
information and fine-tuned the pretrained model based on contrastive text-image pairs.
The model yielded an accuracy of 89.7–97.2% for 13 classes. Another work [26] proposed a
zero-shot transfer learning model that can recognize objects in images without any training
samples available. The model acquired knowledge by learning from an unsupervised,
large-scale text corpus. In the performance evaluation, the images were split into visible
and invisible categories. The model achieved about 80% accuracy in the training categories.
The research study also suggested that if two zero-shots had no remote similarity with
any visible class, the performance was relatively poor, resulting in suboptimal zero-shot
classification. Chen et al. [27] presented a history-aware multimodal transformer (HAMT)
approach for visual linguistic navigation (VLN). The HAMT encoded all past panoramic
observations by a hierarchical visual transformer, which can effectively incorporate far-
future history into multimodal decision-making. The model joins text, history, and current
observations to predict the following actions. Another work [28] compared pre-trained
and fine-tuned representations at the visual, verbal, and multimodal levels using a set
of detection tasks and introduced a new dataset specifically for multimodal detection.
While their visual-linguistic models could understand color at the multimodal level, they
relied on biases in the textual data concerning object position and size. This suggests that
fine-tuning the visual-linguistic model in a multimodal task does not necessarily improve
its multimodal capabilities. In [29], a new efficient and flexible multimodal fusion method
called prompt-based multimodal fusion (PMF) was proposed that utilized a unimodal
pre-trained transformer. The authors presented a modular multimodal fusion framework
that enabled bidirectional interactions between different modalities to dynamically learn
different objectives of multimodal learning. The proposed method is memory-efficient,
which can significantly reduce the use of training memory and achieve comparable per-
formance to existing fine-tuning methods with fewer trainable parameters. However, the
performance of PMF on all three datasets still lags behind the baseline tuning with the same
pre-trained backbone and no tuning of hyperparameters. In addition, CLiMB consisted
of several implementations of CL algorithms and an improved visual language translator
(ViLT) model that could be deployed on both multimodal and unimodal tasks [30]. It
was found that common language learning methods could help mitigate forgetting in
multimodal task learning but did not enable cross-task knowledge transfer.
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Other. Falco et al. [31] collected a visual dataset and a tactile dataset to form the nature
of the distant source and target domains. Cross-modality transfer learning was supported
by subspace alignment and transfer component analysis for dimensionality reduction and
a geodesic flow kernel for characterizing geodesic flow. The model achieved an accuracy of
89.7%. A multimodal transformer framework with variable-length memory (MTVM) was
proposed for VLN [32]. The framework also included an explicit memory bank for storing
past activations. It enabled the agent to easily update the temporal context by adding
the current output activation corresponding to the action at each step to learn a strong
relationship between the instruction and the temporal context, thus further improving
navigation performance.

1.2. Research Limitations of Existing Works

By analyzing existing research papers, we can identify their limitations. Most current
research involves similar domains, such as cross-domain studies within the Image-to-
Image field. In the Text-to-Image field, good performance can be achieved by making
an ideal model if the data in the source and target domains are similar [25]. However,
considering the zero-shot transfer learning problem [26], when the data in the source and
target domains are dissimilar or have low similarity, the performance of the target model is
poor, which illustrates that the current research in the Text-to-Image field is still limited by
the similarity between the source and target domains. In other fields, such as the previously
mentioned research from the visual to the tactile domain, the performance is good, with
high accuracy. However, the applicability is limited, making it suitable for niche areas but
not widely applicable.

1.3. Our Research Contributions

Cross-modality transfer learning is considered for text-to-image classification prob-
lems. First, we adopt bidirectional encoder representations from the transformer (BERT)
model, typically trained in two stages [33]. The first stage uses MaskLM to train the lan-
guage model, mask a random portion of words in a sentence, and predict the masked
words by understanding the context. In the second stage, the BERT model predicts the
following sentence, which helps it better understand the relationship between individual
sentences. We used BERT to train text sentiment classification on the IMDb reviews dataset,
which contains 25,000 movie reviews for training and 25,000 movie reviews for testing,
explicitly used for sentiment classification. In addition, we employ a bidirectional encoder
representation from the image transformer (BEiT) model [34]. This self-supervised learning
model applies a similar idea to the BERT model to the image classification task. The idea
is to obtain image features by masking the image modeling pre-training task, achieving
an accuracy of 83.2 in the ImageNet-1K classification task, which we used to train on the
ImageNet-1K dataset for image classification. Finally, a novel hybrid model is designed
by joining the first ten layers of the pre-trained BERT model and the last two layers of the
pre-trained BEiT model. An ablation study showed that the contribution of the BEiT model
enhanced accuracy by 12.8%.

Regarding the performance evaluation of the hybrid model, we have conducted an
in-depth analysis of the model’s performance with the batch size, learning rate, and types
of optimizers.

1.4. Organization of the Paper

The rest of the paper is organized as follows: Section 2 introduces the datasets and
illustrates the methodology of the novel hybrid model. Then, a performance evaluation
of the proposed model is conducted, comparing the proposed work with existing work.
To study the contributions of the standalone BERT model and the standalone BEiT model,
an ablation study is carried out in Section 4. Finally, a conclusion is drawn, and research
implications and future research directions are discussed.
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2. Materials and Methods

In this section, all stages of cross-modality transfer learning are illustrated. First, two
datasets are used to train the models in two different domains, i.e., the image and text
domains, and save the training results as the pre-trained models for the next stage. In
the second stage, we combined the two pre-trained models and selected CIFAR-10 as the
dataset for the next stage of training. In the third stage, to obtain the most suitable optimizer,
batch size, and learning rate for the model, we used both GridSearchCV and K-Fold cross-
validation methods. The performance is evaluated using different hyperparameters and
optimizers by calculating the F1-score, precision, and recall. The whole process of cross-
modal transfer learning will be summarized. Following the workflow, the BERT and BEiT
models are first pretrained using the IMDb reviews and ImageNet-1K datasets, respectively.
Then, the knowledge is transferred to the novel hybrid model. Afterward, the CIFAR-
10 dataset is pre-processed to determine whether the 5-fold cross-validation has been
completed. If it is not yet complete, the combination of optimizers and hyperparameters is
fed into the unique hybrid model, and if it is, training and testing are finished using the
best optimizer and hyperparameters. In the 5-fold cross-validation process, the dataset is
first divided into five parts, with one part selected as the testing data and four parts as
the training data for each training session. Each set of hyperparameters is cross-validated
five times, and the mean result is calculated. The results were then compared to select the
best combination of hyperparameters. In normal model training, we calculated the results
without averaging them.

2.1. Pre-Training Models

The main objective of this section is to use the pre-trained model as a feature extractor
by pre-training the model on a large dataset. We first trained the model on a large under-
lying dataset; in the text domain, we chose to use the BERT model on the IMDb review
dataset, a widely used sentiment binary classification dataset, as a benchmark for sentiment
classification, which consists of 100,000 text reviews of films. Half (50,000) of the reviews
contained no labels, and these were used for testing, with the other 50,000 reviews paired
with labels of 0 or 1, representing negative and positive sentiment, respectively. These
reviews with tags were split into two groups, with each group having 12,500 positive and
12,500 negative reviews to keep the data balanced. These labels are linearly mapped from
IMDb’s star rating system, in which critics can rate a film with a certain number of stars
from 1 to 10 [35]. Figure 1 shows the split of the IMDb review dataset and two examples
of reviews. The BERT model is a pre-trained model proposed by the Google AI Institute
that has demonstrated impressive performance in all aspects, using a network architecture
with a multi-layer transformer structure, which is most distinctive in that it does not use
traditional recurrent neural networks (RNNs) and CNNs; instead, it uses an attention
mechanism to convert the distance between two arbitrarily placed positions. This solves
the problem of long-term dependency in NLP. It has already achieved wide application in
the field of NLP.
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Figure 1. The split of the IMDb review dataset and two examples of reviews.

In the image domain, we chose to use the BEiT model for training on the ImageNet-
1K dataset, which is currently the largest image recognition dataset in the world and is
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mainly used in machine vision, target detection, and image classification. The ImageNet-1K
dataset introduced for the ILSVRC 2012 visual recognition challenge has been at the center
of modern advances in deep learning. ImageNet-1K is the primary dataset for pre-training
computer vision migration learning models, and improving the performance of ImageNet-
1K is often seen as a litmus test for general applicability to downstream tasks. ImageNet-1K
is a subset of the full ImageNet dataset, which consists of 14197122 images divided into
21841 classes. We will refer to the full dataset as ImageNet-21K, and ImageNet-1K was
created by selecting a subset of 1.2 million images belonging to 1000 mutually exclusive
classes from ImageNet-21K [36]. In contrast, the BEiT model is a self-supervised visual
representation model proposed by Microsoft, which is similar to BERT in that it uses the
transformer’s masked image modeling task. Specifically, in pre-training, each image has
two views. The developer converts the original image into a tokenizer, then randomly
masks some patches and feeds them into the transformer. Experimental results in image
classification and semantic segmentation show that the BEiT model achieves better results.
Figure 2 shows the whole process of pre-training the BERT and BEiT models. The BERT
model was trained using the IMDb Reviews dataset as an input, whereas the BEiT model
was trained using the ImageNet-1K dataset. Their weights and network structures after
pre-training are saved, and some of them (knowledge) will be transferred to a novel hybrid
model in a later step, which is known as knowledge transfer. The selection of the number
of layers from the pre-trained BERT and BEiT models will be elaborated in Section 2.2. The
left half of Figure 3 illustrates the pre-training process for BERT and BEiT, with BERT being
pre-trained in the IMDb reviews dataset and BEiT being pre-trained in ImageNet-1K.
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2.2. Design of a Novel Hybrid Model

To achieve cross-modal transfer learning, we combined the BERT and BEiT models.
By merging the two models, we can transfer a large amount of knowledge learned by
the BERT model in the source domain to the task in the target domain to compensate for
the lack of data in the target domain. The first ten layers of the BERT model and the last
two layers of the BEiT model are retained. The last few layers of a neural network are
usually specialized; Yosinski et al.’s study [37] claims that the last layer allows features to
transition from general to specific with some specificity. In contrast, the first few layers
are usually not specific to a particular dataset or task but generic as they apply to many
datasets and tasks; therefore, we chose to retain the last two layers of BEiT, which would
make the novel hybrid model better suited to image classification tasks. The other layers
are frozen and are not used for training. Liu et al. [38] showed that the transformer-based
structure is more transferable to other tasks in the middle layer, while the higher layers are
more task-specific. Kirichenko et al. [39] demonstrated that the retraining of the last layer
improves the performance of the model and improves its robustness. This suggests that the
results are heavily influenced by the last linear layer of the model and that even though
the model has acquired the features of the data in the previous layers, the last layer can
still assign higher weights to the data. Kovaleva et al.’s study [40] calculated the similarity
between pre-trained and fine-tuned BERT weights by finding that the weights of the last
two layers changed the most after fine-tuning. This suggests that the last two layers of
the BERT model learn the most information in a given task and that the previous layers
mainly capture more underlying base information. Based on these studies, we believe that
removing the last two layers of BERT can help the new hybrid model better learn the basics
of BERT while retaining the specificity of the BEiT model for better classification tasks.
Then, we add the corresponding network structures and weights of the pre-trained BERT
and BEiT models to a new hybrid model for the next stage of training. Cross-modality
transfer learning is used to extract information features from the pre-trained datasets, which
could be used to extract deep features from new images. Therefore, these models may help
accomplish image classification tasks. Our novel hybrid model processes the input image
through 3 convolutional layers and the ReLU activation function; then, the processed image
is considered a tensor with shape (batch size, 512, 768); next, this tensor is passed into the
first ten layers of the BERT encoder, and the output tensor is passed as an input to the
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BEiT model; then, using the interpolation method, the output tensor is resized to (batch
size, 2048) using interpolation; the elements of the first dimension are extracted; finally,
these elements are passed to the fully connected layers; the final output with shape (batch
size, 10) is obtained through the fully connected layers. The right half of Figure 3 shows
the transfer learning process of the two pre-trained models and the structure of the new
hybrid model, where the knowledge of the first ten layers of BERT is transferred to the new
model. In contrast, the first ten layers of BEiT are frozen, keeping the last two layers for the
image classification task. Table A1 (Appendix A) explains the detailed structure of our new
hybrid model, including the layer’s type, output shape, and parameters, and concludes
with a summary of the model’s parameters and sizes.

2.3. GridSearchCV and K-Fold Cross-Validation

To find the best combination of batch size and learning rate for the new hybrid model,
the traditional GridSearchCV method is used to find the best hyperparameters. In this
process, the CIFAR-10 dataset is trained using 48 combinations of BS (4, 8, 12, 16, 20, 24,
28, and 32), LR (0.005, 0.001, 0.0005, 0.0001, 0.00005, and 0.00001), optimizers (stochastic
gradient descent with momentum (SGDM), and adaptive moment estimation (ADAM)).
Because of the momentum involved, SGDM is faster than SGD, training will be faster
than SGD, and local minima can be an escape to achieve global minima. Simply put,
momentum enables SGD to locate the global minima more quickly and precisely. Both
SGDM and ADAM are two of the most popular optimizers. In typical applications, the
ADAM optimizer takes advantage of faster initial learning, whereas the SGDM optimizer
yields a more accurate model in the later stage. It can be explained by the fact that the
ADAM optimizer has added the adaptive learning rate mechanism on top of the SGDM
optimizer, which enables the ADAM optimizer to increase the optimization speed by
assigning different learning rates for different parameters. Being an adaptive learning rate
algorithm, ADAM determines unique learning rates for various parameters. RMSprop and
stochastic gradient descent with momentum can be combined to form ADAM. Similar to
RMSprop, it scales the learning rate using gradient squaring, and like SGDM, it leverages
momentum by utilizing a moving average of the gradient rather than the gradient itself.
Figure 4 illustrates this process and all combinations of the hyperparameters used in the 5-
fold cross-validation. Figure 5 illustrates the CIFAR-10 dataset with 5-fold cross-validation
and training in our novel hybrid model.
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The performance of this hybrid model is then evaluated using K-fold cross-validation
with K = 5 [41], which divides the dataset into K groups, with each subset of data serving
as a separate validation set and the remaining K-1 subset of data serving as the training
set. Each fold takes 10 epochs to complete. The reason for this design is that we found in
the training of our previous hybrid model that the model was usually overfitted at around
10 calendar hours. The validation set results are evaluated separately, and the final mean
squared error (MSE) is summed and averaged to obtain the cross-validation error. Figure 6
shows the process of 5-fold cross-validation. Cross-validation efficiently uses the limited
data available, and the evaluation results are as close to the model’s performance on the
test set as possible. Unique values for the optimal hyperparameters batch size and learning
rate were determined by comparing the F1-score (Equation (1)), precision (Equation (2)),
and recall (Equation (3)) of each set of hyperparameters after K-fold cross-validation [42].
When the hybrid model is used to classify the CIFAR-10 dataset, we obtain the optimal
hyperparameter values (BS = 24 and LR = 0.0005) for the SGDM optimizer, which results in
an F1-score of 57.79%, a precision of 59.6481%, and a recall of 61.6944%.

F1 − score = 2 × Recall × Precision
Recall + Precision

(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Electronics 2023, 12, x FOR PEER REVIEW 10 of 27 
 

 

Figure 5. CIFAR-10 dataset with 5-fold cross-validation and training in novel hybrid model. 

The performance of this hybrid model is then evaluated using K-fold cross-validation 

with K = 5 [41], which divides the dataset into K groups, with each subset of data serving 

as a separate validation set and the remaining K-1 subset of data serving as the training 

set. Each fold takes 10 epochs to complete. The reason for this design is that we found in 

the training of our previous hybrid model that the model was usually overfitted at around 

10 calendar hours. The validation set results are evaluated separately, and the final mean 

squared error (MSE) is summed and averaged to obtain the cross-validation error. Figure 

6 shows the process of 5-fold cross-validation. Cross-validation efficiently uses the limited 

data available, and the evaluation results are as close to the model’s performance on the 

test set as possible. Unique values for the optimal hyperparameters batch size and learn-

ing rate were determined by comparing the F1-score (Equation (1)), precision (Equation 

(2)), and recall (Equation (3)) of each set of hyperparameters after K-fold cross-validation 

[42]. When the hybrid model is used to classify the CIFAR-10 dataset, we obtain the opti-

mal hyperparameter values (BS = 24 and LR = 0.0005) for the SGDM optimizer, which 

results in an F1-score of 57.79%, a precision of 59.6481%, and a recall of 61.6944%. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

 𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 (1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (3) 

 

Figure 6. Process of 5-fold cross-validation. 

3. Experimental Setup and Results Analysis 

The experimental setup is based on the methodology described in Section 2. All sim-

ulations are conducted using a PC with NVIDIA GEFORCE GTX 3090—24 GB Graphics, 

a 15 vCPU AMD EPYC 7543 32-Core Processor, and Python 3.8. 

3.1. 5-Fold Cross-Validation 

Figure 6. Process of 5-fold cross-validation.

3. Experimental Setup and Results Analysis

The experimental setup is based on the methodology described in Section 2. All
simulations are conducted using a PC with NVIDIA GEFORCE GTX 3090—24 GB Graphics,
a 15 vCPU AMD EPYC 7543 32-Core Processor, and Python 3.8.

3.1. 5-Fold Cross-Validation

Regarding 5-fold cross-validation, the dataset was divided into 80% and 20% for
training and testing of the model, respectively. To evaluate and validate the impact of
both hyperparameters, we increased the number of samples in the specified ranges of
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the LR (Equation (4)) and BS (Equation (5)) to obtain a detailed output distribution for
better interpretation. In determining the range of LR, we found that both optimizers were
prone to non-convergence when they used LRs greater than 0.005, so the maximum LR is
set at 0.005. For other specific values of LR, they refer to Usmani et al.’s research [43] to
finalize the range of LR. For the range of BS, we chose the most common from 4 to 32, with
BS increasing by eight at a time. This study used an extended Cartesian product matrix
consisting of 48 two-tuple hyperparameters generated from the following two vectors:

LRε[0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.0001] (4)

BSε[4, 8, 12, 16, 20, 24, 28, 32] (5)

In addition, the model is evaluated using SGDM and ADAM. Table 1 summarizes
the performance of each set of hyperparameters, including the average of all parameters
and standard deviation of validation accuracy for 5-fold at each cross-validation. The
summarized parameters are used in addition to the validation accuracy, and we use three
measures: F1-score, recall, and precision.

Table 1. The performance of each set of hyperparameters.

BS LR Optimizer Standard
Deviations (%)

Validation
Accuracy (%) F1-Score (%) Recall (%) Precision (%)

4

0.00001
SGDM 1.5727 56.32 32.889 34.667 33.833
ADAM 3.0496 59.18 32.333 33.999 31.500

0.00005
SGDM 0.9613 61.31 41.667 43.333 40.833
ADAM 0.2296 9.97 4.666 11.666 2.916

0.0001
SGDM 1.9611 59.15 36.333 37.333 36.833
ADAM 0.2872 9.91 3.775 14.167 2.239

0.0005
SGDM 24.8728 40.49 34.444 38.333 32.500
ADAM 0.3000 9.95 4.000 10.000 2.500

0.001
SGDM 0.1523 9.95 6.444 11.667 4.583
ADAM 0.3968 9.95 6.444 11.667 4.583

0.005
SGDM 0.2340 10.00 4.444 6.667 3.333
ADAM 0.2028 10.12 2.000 5.000 1.250

8

0.00001
SGDM 1.0712 51.43 40.444 41.845 43.155
ADAM 0.3269 57.49 47.500 50.575 50.238

0.00005
SGDM 0.5180 44.00 43.996 46.607 47.698
ADAM 0.3088 9.96 2.222 10.000 1.250

0.0001
SGDM 3.5695 60.03 44.978 48.714 47.000
ADAM 0.3309 10.05 2.222 10.000 1.250

0.0005
SGDM 18.3248 45.78 42.306 45.250 44.806
ADAM 0.2555 10.15 3.704 14.000 2.167

0.001
SGDM 21.3882 26.95 13.534 23.048 11.869
ADAM 0.2740 9.96 3.111 14.000 1.750

0.005
SGDM 0.2279 10.04 2.182 4.000 1.500
ADAM 0.2098 10.03 3.111 14.000 1.750

12

0.00001
SGDM 0.8184 48.61 35.667 36.167 36.667
ADAM 0.9671 57.77 53.299 55.867 53.001

0.00005
SGDM 1.3184 59.23 42.667 42.000 44.000
ADAM 24.6269 29.94 12.667 12.000 14.000

0.0001
SGDM 1.5544 60.93 40.899 42.107 42.024
ADAM 0.2972 9.99 4.444 6.667 3.333
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Table 1. Cont.

BS LR Optimizer Standard
Deviations (%)

Validation
Accuracy (%) F1-Score (%) Recall (%) Precision (%)

12

0.0005
SGDM 0.7146 59.27 37.133 35.833 40.333
ADAM 0.1212 9.93 10.444 21.667 7.083

0.001
SGDM 0.1469 10.01 4.667 11.667 2.917
ADAM 0.1937 10.09 4.667 11.667 2.917

0.005
SGDM 0.1754 10.06 6.444 11.667 4.583
ADAM 0.2196 10.02 2.000 5.000 1.250

16

0.00001
SGDM 1.3853 44.46 28.779 32.283 29.200
ADAM 0.5009 56.74 52.315 56.839 53.749

0.00005
SGDM 1.5716 58.73 42.184 47.870 43.685
ADAM 24.3304 39.23 36.593 42.256 37.370

0.0001
SGDM 1.9416 58.47 51.295 54.241 55.635
ADAM 0.2595 9.87 3.257 11.944 1.910

0.0005
SGDM 2.1745 60.06 50.436 53.204 53.153
ADAM 0.0963 9.88 2.795 11.944 1.667

0.001
SGDM 24.2741 39.84 31.150 35.167 32.365
ADAM 0.2001 10.11 1.373 9.444 0.747

0.005
SGDM 0.1659 9.92 1.373 7.222 0.764
ADAM 0.0508 9.87 1.987 9.413 0.908

20

0.00001
SGDM 0.9337 41.47 32.568 36.577 34.750
ADAM 1.1632 57.38 47.456 50.374 50.921

0.00005
SGDM 1.2411 58.17 49.420 52.798 55.075
ADAM 20.2989 50.38 43.375 48.237 44.785

0.0001
SGDM 1.2448 57.15 49.800 55.042 50.093
ADAM 0.2402 10.08 1.070 6.944 0.583

0.0005
SGDM 1.9982 59.45 47.849 49.890 51.778
ADAM 0.0837 9.76 1.575 9.722 0.861

0.001
SGDM 19.3078 48.44 38.313 40.950 41.583
ADAM 0.0989 10.11 2.334 11.944 1.319

0.005
SGDM 0.3008 10.00 0.666 4.722 0.361
ADAM 0.2338 10.17 1.530 9.444 0.847

24

0.00001
SGDM 1.3658 38.26 30.969 36.472 32.122
ADAM 0.4772 57.42 45.392 49.330 47.431

0.00005
SGDM 1.1611 54.64 51.796 57.306 55.889
ADAM 0.7211 59.47 52.799 59.652 56.463

0.0001
SGDM 1.3350 58.77 52.867 56.043 54.927
ADAM 0.1209 9.68 1.638 1.638 0.903

0.0005
SGDM 2.2888 60.47 57.789 61.694 59.648
ADAM 0.2597 10.01 2.160 11.944 1.198

0.001
SGDM 19.1042 46.75 39.269 43.170 41.476
ADAM 0.1559 10.01 1.634 9.444 0.903

0.005
SGDM 0.1629 10.09 1.078 6.944 0.590
ADAM 0.3708 10.24 1.837 8.615 1.031

28
0.00001

SGDM 2.8993 36.81 14.667 14.000 16.000
ADAM 0.4116 57.33 32.667 32.000 34.000

0.00005
SGDM 0.9147 54.74 34.667 33.167 37.667
ADAM 20.0329 50.07 36.667 39.000 37.250
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Table 1. Cont.

BS LR Optimizer Standard
Deviations (%)

Validation
Accuracy (%) F1-Score (%) Recall (%) Precision (%)

28

0.0001
SGDM 1.3348 56.45 38.167 39.167 40.333
ADAM 0.1785 10.02 2.000 5.000 1.250

0.0005
SGDM 2.1328 58.73 30.556 33.000 30.167
ADAM 0.1679 9.96 0.000 0.000 0.000

0.001
SGDM 19.4801 49.05 26.190 27.524 25.524
ADAM 0.2318 9.80 0.000 0.000 0.000

0.005
SGDM 0.1875 10.02 2.667 6.667 1.667
ADAM 0.2691 9.94 0.000 0.000 0.000

32

0.00001
SGDM 1.8973 35.88 22.401 26.796 23.499
ADAM 0.9375 56.38 42.033 46.230 42.611

0.00005
SGDM 0.9352 52.98 48.248 51.367 55.033
ADAM 2.5092 59.13 46.719 51.293 48.148

0.0001
SGDM 1.2391 57.47 47.486 50.344 50.344
ADAM 0.1832 10.00 1.868 9.444 1.059

0.0005
SGDM 0.2294 59.84 49.280 53.456 51.630
ADAM 0.1931 10.14 1.866 9.444 1.042

0.001
SGDM 1.7214 58.68 43.959 49.241 44.963
ADAM 0.2317 9.88 3.444 11.944 2.049

0.005
SGDM 0.1667 9.98 1.634 9.444 0.903
ADAM 0.1481 9.76 1.863 10.743 1.125

Table A2 in Appendix B details all the results of GridSearchCV and 5-fold cross-
validation for various combinations of optimizers and hyperparameters, including mean
validation accuracy, F1-score, precision, and recall.

In addition, the distribution of the results collected by the optimizer SGDM and
ADAM is shown on the new hybrid model retrained on the CIFAR-10 dataset. On the left
side of the table, the distribution of the measurement accuracy for a given BS ranges from
0.00001 to 0.005 for each specific LR. On the right side of the table, the distribution of the
validation accuracy, F1-score, precision, and recall for a given LR range starting from 4 to
32 for each specific BS is shown.

When using SGDM with BS = 24 and LR = 0.0005, a maximum accuracy of 60.474%,
an F1-score of 57.79%, a recall of 61.6944%, and a precision of 59.6481% were observed. In
ADAM, the maximum accuracy = 59.47% was observed for BS = 24 and LR = 0.0005, while
the maximum F1-score was 52.8%, recall was 59.6519%, and precision was 56.463%. Thus,
using our new hybrid model on CIFAR-10, SGDM has better performance compared to
ADAM as it achieves the maximum accuracy and F1-score, while also performing better in
terms of recall and precision.

Figure 7a,b, Figure 8a,b, Figure 9a,b and Figure 10a,b depict the resulting curves of
the validating accuracy, F1-score, recall, and precision for all parameters of SGDM and
ADAM, respectively. The numerical labels of the best-performing dataset will be labeled
with the specific values of BS = 24 and LR = 0.0005 in the SGDM optimizer and BS = 24 and
LR = 0.00005 in the ADAM optimizer.

When using the SGDM optimizer, we observed that the difference in validation
accuracy between different batch sizes was not significant when the learning rate was
less than or equal to 0.005. However, when the learning rate was greater than or equal to
0.005, the difference in validation accuracy was more sensitive to changes in the learning
rate. The F1-score, recall, and precision remained regular and stable across different batch
size combinations.
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When using the ADAM optimizer, we found that the difference in validation accuracy
between different batch sizes was most significant when the learning rate was set to 0.0005.
However, when the learning rate was greater than 0.001, the change in validation accuracy
was negligible. The F1-score, recall, and precision showed some changes but not significant
ones. Previous research has shown the use of an exponential moving average of the squares
of the gradients generated by previous iterations [44]. This moving average is used to scale
the current gradient after taking the square root of the average to update the weights. The
contribution of the exponential mean is positive, and this approach should prevent the
learning rate from becoming nearly infinitesimal during the learning process, which is
a key drawback of the ADAM optimizer. However, the short-term memory capacity of
this gradient becomes an obstacle in other cases. During the convergence of the ADAM
optimizer to a suboptimal solution, it has been observed that some small batches of data
provide large and informative gradients. Since these small batches occur very rarely,
exponential averaging will reduce their impact. As a result, the ADAM optimizer corrects
the gradient only when the learning rate is high, which can cause the algorithm to converge
to suboptimal minima or even fail to converge, resulting in skipping local minima. The
derivative can become too large, resulting in an infinite loss. This shows that ADAM does
not generalize as well as SGDM.

3.2. Ablation Study between the Novel Hybrid Model and Original BEiT Model

We trained and tested the original BEiT model for 50 epochs on the CIFAR-10 dataset
using the official default hyperparameters and optimizer configuration (batch size = 64,
optimizer = ADAM, optimizer Epsilon = 1 × 10−8, and learning rate = 5 × 10−4). We then
trained and tested our hybrid model for 50 epochs on the same dataset using the optimal
configuration (batch size = 24, optimizer = SGDM, and learning rate = 5 × 10−4). Table 2
shows the loss and test accuracy for each epoch and the test accuracy for both models.
Figure 11 illustrates the process of training CIFAR-10 in the original BEiT model.

Table 2. The loss, testing accuracy for each epoch, and test accuracy for the original BEiT model and
novel hybrid model.

Epoch
Original BEiT Model Novel Hybrid Model

Epoch
Original BEiT Model Novel Hybrid Model

Loss Training
Accuracy

Testing
Accuracy Loss Training

Accuracy
Testing

Accuracy Loss Training
Accuracy

Testing
Accuracy Loss Training

Accuracy
Testing

Accuracy

0 4.457 4.00% 4.27% 1.987 24.23% 37.80% 25 3.078 32.80% 44.57% 0.000 100.00% 64.70%
1 4.224 7.47% 8.93% 1.547 43.26% 47.09% 26 3.059 33.41% 44.72% 0.000 100.00% 64.72%
2 4.121 9.49% 11.64% 1.353 51.38% 54.00% 27 3.041 34.02% 45.54% 0.000 100.00% 64.70%
3 4.066 10.49% 15.29% 1.211 56.45% 56.46% 28 3.045 34.07% 45.94% 0.000 100.00% 64.70%
4 4.026 11.27% 18.78% 1.085 61.25% 59.58% 29 3.034 34.12% 47.23% 0.000 100.00% 64.66%
5 3.973 12.52% 20.79% 0.956 66.00% 61.15% 30 2.826 34.67% 47.23% 0.000 100.00% 64.63%
6 3.913 13.60% 24.13% 0.837 70.27% 62.09% 31 2.780 35.00% 48.02% 0.000 100.00% 64.60%
7 3.856 14.74% 25.46% 0.715 74.53% 63.20% 32 2.735 35.33% 48.64% 0.000 100.00% 64.57%
8 3.803 15.94% 27.54% 0.588 79.06% 63.51% 33 2.689 35.66% 48.89% 0.000 100.00% 64.54%
9 3.747 17.04% 29.12% 0.468 83.28% 61.87% 34 2.643 35.99% 48.89% 0.000 100.00% 64.51%
10 3.710 17.90% 30.36% 0.355 87.26% 61.76% 35 2.597 36.32% 49.18% 0.000 100.00% 64.48%
11 3.651 18.94% 32.30% 0.258 90.74% 61.89% 36 2.551 36.65% 50.02% 0.000 100.00% 64.45%
12 3.608 20.04% 33.48% 0.191 93.38% 61.89% 37 2.505 36.98% 50.02% 0.000 100.00% 64.42%
13 3.561 21.15% 34.45% 0.150 94.72% 62.38% 38 2.459 37.31% 50.02% 0.000 100.00% 64.39%
14 3.517 22.23% 35.51% 0.105 62.38% 62.92% 39 2.413 37.64% 50.39% 0.000 100.00% 64.36%
15 3.476 23.36% 36.29% 0.084 97.10% 62.20% 40 2.368 37.97% 50.63% 0.000 100.00% 64.37%
16 3.423 24.35% 37.22% 0.072 97.48% 61.98% 41 2.322 38.30% 50.98% 0.000 100.00% 64.40%
17 3.379 25.34% 38.95% 0.055 98.17% 62.96% 42 2.276 38.63% 50.98% 0.000 100.00% 64.41%
18 3.332 26.46% 39.29% 0.045 98.53% 62.57% 43 2.230 38.96% 51.41% 0.000 100.00% 64.38%
19 3.286 27.87% 40.51% 0.041 98.67% 62.69% 44 2.184 39.29% 51.41% 0.000 100.00% 64.38%
20 3.243 28.71% 41.20% 0.019 99.41% 63.57% 45 2.138 39.62% 51.63% 0.000 100.00% 64.39%
21 3.193 29.72% 41.71% 0.011 99.68% 63.47% 46 2.092 39.95% 51.63% 0.000 100.00% 64.42%
22 3.147 30.53% 42.28% 0.005 99.86% 64.37% 47 2.046 40.28% 51.65% 0.000 100.00% 64.43%
23 3.100 31.30% 43.16% 0.001 100.00% 64.78% 48 1.977 40.61% 51.65% 0.000 100.00% 64.42%
24 3.054 32.42% 43.91% 0.000 100.00% 64.67% 49 1.928 40.94% 51.65% 0.000 100.00% 64.42%
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During training, the new hybrid model achieved 100% accuracy in 23 calendar hours,
with loss dropping to 0. During validation, overfitting occurred in 10 epochs, with little
improvement in accuracy during the subsequent validation process. On the other hand, the
original BEiT model consistently improved in accuracy and decreased in loss during the
training period. During validation, the original model never overfitted, but the performance
improvement became smaller and smaller as the epochs increased. Due to the nature of
cross-modality transfer learning, our model is pre-trained in the source domain using
a completely different dataset from the target domain, which is a necessary condition
for cross-modality transfer learning. In the comparison session, we do not compare the
training accuracy of the two models but rather the testing accuracy. From the training
results, the accuracy of our new hybrid model at the beginning of training was 12.77%
higher compared to the original BEiT model. This is mainly due to pre-training; as the
number of training sessions increased, both the original BEiT model and our hybrid model
showed overfitting, but our hybrid model showed overfitting earlier, which made the
difference between the accuracy of the original BEiT model and our model smaller. We
performed Wilcoxon rank-sum tests between the novel hybrid model and the original BEiT
model using training accuracy and testing accuracy. The null hypothesis H0: accuracy
of the novel hybrid model < accuracy of the original BEiT model is being rejected for all
experimental settings (Table 2). Therefore, it is concluded that the novel hybrid model is
statistically outperforming the original BEiT model. Figure 12 compares the accuracy of
the two models tested over 50 epochs. The graph clearly shows that our model appears
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to overfit earlier and that the difference between the accuracy of the two models becomes
smaller and smaller until they both seem to overfit.
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4. Conclusions and Future Works

In this work, we propose a cross-modal transfer learning algorithm from the text
domain to the image domain for image classification problems to solve tasks in the image
classification domain. In the first phase of our work, two pre-trained models from different
domains are trained on different source domains, and a new hybrid model is designed
based on them. In the second phase of the work, we used GridSearchCV and 5-fold
cross-validation to determine the best combination of hyperparameters by evaluating the
validation accuracy, F1-score, precision, and recall of the model for different combinations.
The results of the experiments not only allowed us to select the most efficient hyperpa-
rameters from various combinations of optimizers (SGDM, ADAM) and hyperparameters
but also showed us that the optimizers and the two hyperparameters (BS and LR) had a
significant impact on our model. In addition to these results, after several comparisons of
BS and LR, we found that each hyperparameter affected our model’s performance indepen-
dently, suggesting that trade-offs should be made in the selection of BS and LR to obtain
the highest F1-score. In the third stage, after our tests, we showed that, compared to the
traditional BEiT model, the new hybrid model we designed had a higher accuracy.

It is worth noting that CMTL can facilitate knowledge transfer between the source
and target domains of different modalities (low similarity between domains), where some
knowledge cannot be learned from traditional transfer learning (domains with high sim-
ilarity) [16,45,46]. Therefore, a comparison with non-CMTL approaches is not included
in Section 3. Intuitively, combining traditional transfer learning with CMTL will further
enhance the performance of the target model because more knowledge (from similar and
dissimilar source domains) can be transferred, given that the issue of negative transfer is
suppressed. We have thus suggested future work in this area. In future work, we would
like to consider the application of migration learning to more different pre-trained models
of text domains for image classification tasks, allowing a broader range of application
scenarios for migration learning to occur. We believe that it is possible to study the effect of
different layers on the results by adjusting the number of layers of the retained or frozen
pre-trained model to study the importance of the last few layers in the overall model as well
as the performance of the model on new datasets by reducing or increasing the number of
layers in which the original model is retained, an approach that is considered an interesting
direction for improving the effectiveness of migration learning in the future. Indeed, in
addition to the text domain, many different source domains can be migrated to the image
domain. In the future, higher accuracy can be achieved in the image classification domain
by migrating to other domains. Furthermore, in our work, the evaluation of batch sizes
larger than 32 is a current limitation due to GPU performance limitations. More analysis can
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be conducted to evaluate the performance of the novel hybrid model using other datasets,
such as the Visual Question Answering (VQA) 2.0 dataset [47].
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Appendix A

Table A1. The table explains the detailed structure of our new hybrid model, including the types of
layers, output shapes, and parameters, in order from left column to right column, and concludes with
a summary of the model’s parameters and sizes.

Layer (Type) Output Shape No. of Params Layer (Type) Output Shape No. of Params

Conv2d-1 [−1, 64, 32, 32] 1792 Linear-127 [−1, 512, 768] 590,592
Conv2d-3 [−1, 128, 32, 32] 73,856 Linear-128 [−1, 512, 768] 590,592
Conv2d-5 [−1, 384, 32, 32] 442,752 Linear-129 [−1, 512, 768] 590,592
Linear-7 [−1, 512, 768] 590,592 Linear-130 [−1, 512, 768] 590,592
Linear-8 [−1, 512, 768] 590,592 Linear-131 [−1, 512, 768] 590,592
Linear-9 [−1, 512, 768] 590,592 Linear-132 [−1, 512, 768] 590,592

Linear-10 [−1, 512, 768] 590,592 Linear-135 [−1, 512, 768] 590,592
Linear-11 [−1, 512, 768] 590,592 Linear-136 [−1, 512, 768] 590,592
Linear-12 [−1, 512, 768] 590,592 LayerNorm-139 [−1, 512, 768] 1536
Linear-15 [−1, 512, 768] 590,592 LayerNorm-140 [−1, 512, 768] 1536
Linear-16 [−1, 512, 768] 590,592 Linear-141 [−1, 512, 3072] 2,362,368

LayerNorm-19 [−1, 512, 768] 1536 Linear-142 [−1, 512, 3072] 2,362,368
LayerNorm-20 [−1, 512, 768] 1536 Linear-145 [−1, 512, 768] 2,360,064

Linear-21 [−1, 512, 3072] 2,362,368 Linear-146 [−1, 512, 768] 2,360,064
Linear-22 [−1, 512, 3072] 2,362,368 LayerNorm-149 [−1, 512, 768] 1536
Linear-25 [−1, 512, 768] 2,360,064 LayerNorm-150 [−1, 512, 768] 1536
Linear-26 [−1, 512, 768] 2,360,064 Linear-151 [−1, 512, 768] 590,592

LayerNorm-29 [−1, 512, 768] 1536 Linear-152 [−1, 512, 768] 590,592
LayerNorm-30 [−1, 512, 768] 1536 Linear-153 [−1, 512, 768] 590,592

Linear-31 [−1, 512, 768] 590,592 Linear-154 [−1, 512, 768] 590,592
Linear-32 [−1, 512, 768] 590,592 Linear-155 [−1, 512, 768] 590,592
Linear-33 [−1, 512, 768] 590,592 Linear-156 [−1, 512, 768] 590,592
Linear-34 [−1, 512, 768] 590,592 Linear-159 [−1, 512, 768] 590,592
Linear-35 [−1, 512, 768] 590,592 Linear-160 [−1, 512, 768] 590,592
Linear-36 [−1, 512, 768] 590,592 LayerNorm-163 [−1, 512, 768] 1536
Linear-39 [−1, 512, 768] 590,592 LayerNorm-164 [−1, 512, 768] 1536
Linear-40 [−1, 512, 768] 590,592 Linear-165 [−1, 512, 3072] 2,362,368

LayerNorm-43 [−1, 512, 768] 1536 Linear-166 [−1, 512, 3072] 2,362,368
LayerNorm-44 [−1, 512, 768] 1536 Linear-169 [−1, 512, 768] 2,360,064

Linear-45 [−1, 512, 3072] 2,362,368 Linear-170 [−1, 512, 768] 2,360,064
Linear-46 [−1, 512, 3072] 2,362,368 LayerNorm-173 [−1, 512, 768] 1536
Linear-49 [−1, 512, 768] 2,360,064 LayerNorm-174 [−1, 512, 768] 1536
Linear-50 [−1, 512, 768] 2,360,064 Linear-175 [−1, 512, 768] 590,592

LayerNorm-53 [−1, 512, 768] 1536 Linear-176 [−1, 512, 768] 590,592
LayerNorm-54 [−1, 512, 768] 1536 Linear-177 [−1, 512, 768] 590,592

Linear-55 [−1, 512, 768] 590,592 Linear-178 [−1, 512, 768] 590,592
Linear-56 [−1, 512, 768] 590,592 Linear-179 [−1, 512, 768] 590,592
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Table A1. Cont.

Layer (Type) Output Shape No. of Params Layer (Type) Output Shape No. of Params

Linear-57 [−1, 512, 768] 590,592 Linear-180 [−1, 512, 768] 590,592
Linear-58 [−1, 512, 768] 590,592 Linear-183 [−1, 512, 768] 590,592
Linear-59 [−1, 512, 768] 590,592 Linear-184 [−1, 512, 768] 590,592
Linear-60 [−1, 512, 768] 590,592 LayerNorm-187 [−1, 512, 768] 1536
Linear-63 [−1, 512, 768] 590,592 LayerNorm-188 [−1, 512, 768] 1536
Linear-64 [−1, 512, 768] 590,592 Linear-189 [−1, 512, 3072] 2,362,368

LayerNorm-67 [−1, 512, 768] 1536 Linear-190 [−1, 512, 3072] 2,362,368
LayerNorm-68 [−1, 512, 768] 1536 Linear-193 [−1, 512, 768] 2,360,064

Linear-69 [−1, 512, 3072] 2,362,368 Linear-194 [−1, 512, 768] 2,360,064
Linear-70 [−1, 512, 3072] 2,362,368 LayerNorm-197 [−1, 512, 768] 1536
Linear-73 [−1, 512, 768] 2,360,064 LayerNorm-198 [−1, 512, 768] 1536
Linear-74 [−1, 512, 768] 2,360,064 Linear-199 [−1, 512, 768] 590,592

LayerNorm-77 [−1, 512, 768] 1536 Linear-200 [−1, 512, 768] 590,592
LayerNorm-78 [−1, 512, 768] 1536 Linear-201 [−1, 512, 768] 590,592

Linear-79 [−1, 512, 768] 590,592 Linear-202 [−1, 512, 768] 590,592
Linear-80 [−1, 512, 768] 590,592 Linear-203 [−1, 512, 768] 590,592
Linear-81 [−1, 512, 768] 590,592 Linear-204 [−1, 512, 768] 590,592
Linear-82 [−1, 512, 768] 590,592 Linear-207 [−1, 512, 768] 590,592
Linear-83 [−1, 512, 768] 590,592 Linear-208 [−1, 512, 768] 590,592
Linear-84 [−1, 512, 768] 590,592 LayerNorm-211 [−1, 512, 768] 1536
Linear-87 [−1, 512, 768] 590,592 LayerNorm-212 [−1, 512, 768] 1536
Linear-88 [−1, 512, 768] 590,592 Linear-213 [−1, 512, 3072] 2,362,368

LayerNorm-91 [−1, 512, 768] 1536 Linear-214 [−1, 512, 3072] 2,362,368
LayerNorm-92 [−1, 512, 768] 1536 Linear-217 [−1, 512, 768] 2,360,064

Linear-93 [−1, 512, 3072] 2,362,368 Linear-218 [−1, 512, 768] 2,360,064
Linear-94 [−1, 512, 3072] 2,362,368 LayerNorm-221 [−1, 512, 768] 1536
Linear-97 [−1, 512, 768] 2,360,064 LayerNorm-222 [−1, 512, 768] 1536
Linear-98 [−1, 512, 768] 2,360,064 Linear-223 [−1, 512, 768] 590,592

LayerNorm-101 [−1, 512, 768] 1536 Linear-224 [−1, 512, 768] 590,592
LayerNorm-102 [−1, 512, 768] 1536 Linear-225 [−1, 512, 768] 590,592

Linear-103 [−1, 512, 768] 590,592 Linear-226 [−1, 512, 768] 590,592
Linear-104 [−1, 512, 768] 590,592 Linear-227 [−1, 512, 768] 590,592
Linear-105 [−1, 512, 768] 590,592 Linear-228 [−1, 512, 768] 590,592
Linear-106 [−1, 512, 768] 590,592 Linear-231 [−1, 512, 768] 590,592
Linear-107 [−1, 512, 768] 590,592 Linear-232 [−1, 512, 768] 590,592
Linear-108 [−1, 512, 768] 590,592 LayerNorm-235 [−1, 512, 768] 1536
Linear-111 [−1, 512, 768] 590,592 LayerNorm-236 [−1, 512, 768] 1536
Linear-112 [−1, 512, 768] 590,592 Linear-237 [−1, 512, 3072] 2,362,368

LayerNorm-115 [−1, 512, 768] 1536 Linear-238 [−1, 512, 3072] 2,362,368
LayerNorm-116 [−1, 512, 768] 1536 Linear-241 [−1, 512, 768] 2,360,064

Linear-117 [−1, 512, 3072] 2,362,368 Linear-242 [−1, 512, 768] 2,360,064
Linear-118 [−1, 512, 3072] 2,362,368 LayerNorm-245 [−1, 512, 768] 1536
Linear-121 [−1, 512, 768] 2,360,064 LayerNorm-246 [−1, 512, 768] 1536
Linear-122 [−1, 512, 768] 2,360,064 LayerNorm-247 [−1, 197, 768] 1536

LayerNorm-125 [−1, 512, 768] 1536 Linear-249 [−1, 197, 768] 590,592
LayerNorm-126 [−1, 512, 768] 1536 LayerNorm-252 [−1, 197, 768] 1536

Total params: 152,928,522
Trainable params: 152,928,522

Non-trainable params: 0
Input size (MB): 0.011719

Forward/backward pass size (MB): 1562.278091
Params size (MB): 583.376015

Estimated Total Size (MB): 2145.665825

Linear−253 [−1, 197, 3072] 2,362,368
Linear−256 [−1, 197, 768] 2,360,064

LayerNorm−259 [−1, 197, 768] 1536
Linear−261 [−1, 197, 768] 590,592

LayerNorm−264 [−1, 197, 768] 1536
Linear−265 [−1, 197, 3072] 2,362,368
Linear−268 [−1, 197, 768] 2,360,064
Linear−271 [−1, 10] 20,490
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Appendix B

Table A2. This table shows all results for GridSearchCV and 5-fold cross-validation for various
combinations of optimizers and hyperparameters, including mean validation accuracy, F1-score,
precision, and recall.

SGDM

Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision

4

0.00001

1 53.52% 33.33% 40.00% 30.00%

8

0.00001

1 49.53% 43.33% 45.83% 43.75%
2 57.86% 33.33% 30.00% 40.00% 2 51.91% 61.90% 64.29% 64.29%
3 57.3% 66.67% 75.00% 62.50% 3 52.70% 63.89% 66.67% 66.67%
4 55.7% 20.00% 20.00% 20.00% 4 51.87% 8.33% 6.25% 12.50%
5 57.22% 11.11% 8.33% 16.67% 5 51.13% 24.76% 26.19% 28.46%

Mean 56.32% 32.89% 34.67% 33.83% Mean 51.43% 40.44% 41.85% 43.15%

0.00005

1 62.00% 33.33% 33.33% 33.33%

0.00005

1 61.63% 54.76% 61.90% 57.14%
2 60.55% 50.00% 50.00% 50.00% 2 61.62% 52.38% 57.14% 57.14%
3 61.33% 66.67% 75.00% 62.50% 3 60.74% 74.44% 75.00% 77.78%
4 60.01% 33.33% 33.33% 33.33% 4 60.70% 23.81% 28.57% 21.43%
5 62.68% 25.00% 25.00% 25.00% 5 61.98% 14.58% 10.42% 25.00%

Mean 61.31% 41.67% 43.33% 40.83% Mean 44.00% 44.00% 46.61% 47.70%

0.0001

1 56.5% 16.67% 16.67% 16.67%

0.0001

1 61.92% 34.26% 33.33% 35.71%
2 59.8% 50.00% 50.00% 50.00% 2 61.26% 40.48% 42.86% 42.86%
3 62.45% 41.67% 50.00% 37.50% 3 60.67% 55.56% 58.33% 58.33%
4 58.63% 60.00% 60.00% 60.00% 4 53.09% 28.57% 35.71% 31.43%
5 58.36% 13.33% 10.00% 20.00% 5 63.20% 66.00% 73.33% 66.67%

Mean 59.15% 36.33% 37.33% 36.83% Mean 60.03% 44.98% 48.71% 47.00%

0.0005

1 61.17% 33.33% 33.33% 33.33%

0.0005

1 55.87% 39.58% 41.67% 43.75%
2 62.00% 50.00% 50.00% 50.00% 2 56.74% 58.33% 56.25% 62.50%
3 10.22% 0.00% 0.00% 0.00% 3 47.04% 80.00% 83.33% 77.78%
4 59.19% 66.67% 75.00% 62.50% 4 59.18% 29.17% 25.00% 37.50%
5 9.88% 22.22% 33.33% 16.67% 5 10.06% 4.44% 2.00% 2.50%

Mean 40.49% 34.44% 38.33% 32.50% Mean 45.78% 42.31% 45.25% 44.81%

0.001

1 10.2% 0.00% 0.00% 0.00%

0.001

1 9.69% 0.00% 0.00% 0.00%
2 9.92% 0.00% 0.00% 0.00% 2 45.19% 40.48% 50.00% 40.48%
3 9.74% 10.00% 25.00% 6.25% 3 59.85% 19.05% 28.57% 14.29%
4 10.01% 0.00% 0.00% 0.00% 4 9.98% 3.70% 16.67% 2.08%
5 9.88% 22.22% 33.33% 16.67% 5 10.03% 4.44% 20.00% 2.50%

Mean 9.95% 6.44% 11.67% 4.58% Mean 26.95% 13.53% 23.05% 11.87%

0.005

1 10.20% 0.00% 0.00% 0.00%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 10.33% 0.00% 0.00% 0.00% 2 10.33% 0.00% 0.00% 0.00%
3 9.91% 0.00% 0.00% 0.00% 3 9.91% 0.00% 0.00% 0.00%
4 9.68% 0.00% 0.00% 0.00% 4 9.68% 0.00% 0.00% 0.00%
5 9.88% 22.22% 33.33% 16.67% 5 10.10% 10.91% 20.00% 7.50%

Mean 10.00% 4.44% 6.67% 3.33% Mean 10.04% 2.18% 4.00% 1.50%

12

0.00001

1 48.55% 33.33% 33.33% 33.33%

16

0.00001

1 44.38% 38.52% 43.33% 41.67%
2 48.11% 66.67% 62.50% 75.00% 2 46.77% 46.87% 56.25% 45.00%
3 47.46% 33.33% 40.00% 30.00% 3 44.78% 30.50% 32.50% 29.17%
4 49.04% 20.00% 20.00% 20.00% 4 43.87% 14.00% 15.00% 15.83%
5 49.87% 25.00% 25.00% 25.00% 5 42.51% 14.00% 14.33% 14.33%

Mean 48.60% 35.67% 36.17% 36.67% Mean 44.46% 28.78% 32.28% 29.20%

0.00005

1 57.77% 60.00% 60.00% 60.00%

0.00005

1 58.00% 41.48% 48.89% 43.52%
2 61.49% 100.00% 100.00% 100.00% 2 61.71% 66.93% 66.67% 69.44%
3 59.22% 20.00% 20.00% 20.00% 3 58.89% 31.69% 44.44% 26.30%
4 59.59% 20.00% 20.00% 20.00% 4 57.47% 27.67% 37.50% 29.17%
5 58.08% 13.33% 10.00% 20.00% 5 57.58% 43.15% 41.85% 50.00%

Mean 59.23% 42.67% 42.00% 44.00% Mean 58.73% 42.18% 47.87% 43.69%

0.0001

1 61.68% 14.29% 14.29% 14.29%

0.0001

1 57.37% 55.37% 62.22% 53.70%
2 62.67% 66.67% 62.50% 75.00% 2 63.05% 59.26% 57.41% 62.96%
3 58.44% 33.33% 40.00% 30.00% 3 61.01% 49.01% 56.48% 53.17%
4 62.01% 65.21% 68.75% 65.83% 4 61.52% 45.00% 42.50% 50.00%
5 59.87% 25.00% 25.00% 25.00% 5 59.38% 47.83% 52.59% 58.33%

Mean 60.93% 40.90% 42.11% 42.02% Mean 60.47% 51.29% 54.24% 55.63%

0.0005

1 59.34% 33.33% 33.33% 33.33%

0.0005

1 63.73% 61.46% 70.00% 63.54%
2 58.71% 33.33% 33.33% 33.33% 2 60.60% 41.67% 50.00% 37.50%
3 59.36% 45.67% 42.50% 55.00% 3 57.44% 48.89% 52.78% 46.76%
4 60.51% 40.00% 40.00% 40.00% 4 58.33% 45.67% 42.50% 55.00%
5 58.44% 33.33% 30.00% 40.00% 5 60.22% 54.50% 50.74% 62.96%

Mean 59.27% 37.13% 35.83% 40.33% Mean 60.06% 50.44% 53.20% 53.15%
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Table A2. Cont.

SGDM

Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision

12

0.001

1 10.11% 10.00% 25.00% 6.25%

16

0.001

1 10.01% 5.95% 12.50% 3.91%
2 10.14% 0.00% 0.00% 0.00% 2 58.75% 70.42% 70.83% 72.92%
3 10.00% 0.00% 0.00% 0.00% 3 59.32% 34.05% 45.00% 30.00%
4 9.73% 0.00% 0.00% 0.00% 4 60.89% 45.33% 47.50% 55.00%
5 10.06% 13.33% 33.33% 8.33% 5 10.24% 0.00% 0.00% 0.00%

Mean 10.01% 4.67% 11.67% 2.92% Mean 39.84% 31.15% 35.17% 32.36%

0.005

1 10.20% 0.00% 0.00% 0.00%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 10.33% 0.00% 0.00% 0.00% 2 9.92% 2.78% 12.50% 1.56%
3 9.91% 0.00% 0.00% 0.00% 3 9.91% 1.31% 11.11% 0.69%
4 9.98% 10.00% 25.00% 6.25% 4 9.68% 0.00% 0.00% 0.00%
5 9.88% 22.22% 33.33% 16.67% 5 9.88% 2.78% 12.50% 1.56%

Mean 10.06% 6.44% 11.67% 4.58% Mean 9.92% 1.37% 7.22% 0.76%

20

0.00001

1 42.66% 35.19% 41.85% 33.33%

24

0.00001

1 40.49% 32.08% 43.75% 31.67%
2 42.15% 59.26% 65.63% 62.50% 2 38.41% 52.28% 51.85% 60.00%
3 40.08% 31.33% 37.50% 29.17% 3 38.54% 22.52% 32.50% 18.33%
4 41.68% 19.60% 19.76% 29.00% 4 37.56% 18.33% 25.00% 18.33%
5 40.76% 17.46% 18.15% 19.75% 5 36.32% 29.63% 29.26% 32.28%

Mean 41.47% 32.57% 36.58% 34.75% Mean 38.26% 30.97% 36.47% 32.12%

0.00005

1 56.44% 58.81% 65.83% 58.33%

0.00005

1 55.67% 44.81% 57.78% 49.07%
2 59.93% 67.10% 71.88% 76.88% 2 52.94% 63.81% 64.58% 71.67%
3 58.99% 44.36% 47.50% 44.33% 3 54.86% 52.65% 58.33% 50.37%
4 57.21% 31.67% 32.62% 38.33% 4 56.01% 28.00% 32.50% 33.33%
5 58.30% 45.17% 46.17% 57.50% 5 53.71% 69.71% 73.33% 75.00%

Mean 58.17% 49.42% 52.80% 55.08% Mean 54.64% 51.80% 57.31% 55.89%

0.0001

1 60.15% 56.16% 60.00% 60.37%

0.0001

1 59.66% 45.33% 51.00% 42.50%
2 62.88% 63.65% 66.67% 62.04% 2 58.20% 67.56% 68.75% 73.75%
3 59.50% 47.35% 51.85% 44.44% 3 60.64% 38.70% 47.22% 34.26%
4 61.04% 37.12% 40.95% 39.17% 4 58.66% 52.00% 52.50% 56.67%
5 62.16% 44.71% 55.74% 44.44% 5 56.70% 60.74% 60.74% 67.46%

Mean 61.15% 49.80% 55.04% 50.09% Mean 58.77% 52.87% 56.04% 54.93%

0.0005

1 57.81% 53.41% 56.67% 55.56%

0.0005

1 59.01% 53.39% 60.00% 53.70%
2 58.31% 54.29% 55.00% 59.17% 2 62.81% 65.21% 68.75% 65.83%
3 63.36% 57.17% 60.00% 61.00% 3 62.92% 67.65% 72.22% 64.44%
4 59.04% 37.00% 35.95% 41.67% 4 56.93% 37.00% 37.50% 46.67%
5 58.73% 37.38% 41.83% 41.50% 5 60.70% 65.70% 70.00% 67.59%

Mean 59.45% 47.85% 49.89% 51.78% Mean 60.47% 57.79% 61.69% 59.65%

0.001

1 57.07% 37.08% 42.50% 35.42%

0.001

1 59.05% 53.70% 56.67% 58.33%
2 58.38% 61.57% 60.00% 69.17% 2 61.08% 57.78% 57.41% 62.96%
3 9.86% 2.02% 11.11% 1.11% 3 9.86% 1.31% 11.11% 0.69%
4 59.46% 40.33% 40.95% 46.67% 4 46.66% 38.89% 41.67% 38.89%
5 57.43% 50.56% 50.19% 55.56% 5 57.11% 44.67% 49.00% 46.50%

Mean 48.44% 38.31% 40.95% 41.58% Mean 46.75% 39.27% 43.17% 41.48%

0.005

1 9.73% 2.27% 12.50% 1.25%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 10.46% 0.00% 0.00% 0.00% 2 9.93% 2.78% 12.50% 1.56%
3 9.91% 1.06% 11.11% 0.56% 3 9.86% 1.31% 11.11% 0.69%
4 9.68% 0.00% 0.00% 0.00% 4 10.23% 1.31% 11.11% 0.69%
5 10.24% 0.00% 0.00% 0.00% 5 10.24% 0.00% 0.00% 0.00%

Mean 10.00% 0.67% 4.72% 0.36% Mean 10.09% 1.08% 6.94% 0.59%

28

0.00001

1 31.34% 0.00% 0.00% 0.00%

32

0.00001

1 36.77% 21.11% 32.22% 23.52%
2 37.39% 0.00% 0.00% 0.00% 2 39.12% 31.10% 37.50% 31.25%
3 38.16% 40.00% 40.00% 40.00% 3 34.83% 27.46% 33.33% 24.81%
4 39.94% 20.00% 20.00% 20.00% 4 34.98% 15.67% 15.00% 18.33%
5 37.20% 13.33% 10.00% 20.00% 5 33.69% 16.67% 15.93% 19.58%

Mean 36.81% 14.67% 14.00% 16.00% Mean 35.88% 22.40% 26.80% 23.50%

0.00005

1 56.21% 33.33% 33.33% 33.33%

0.00005

1 52.80% 55.24% 60.00% 66.67%
2 53.35% 66.67% 62.50% 75.00% 2 52.40% 62.14% 62.50% 71.67%
3 54.51% 20.00% 20.00% 20.00% 3 53.83% 39.52% 47.50% 35.83%
4 54.93% 40.00% 40.00% 40.00% 4 51.65% 43.33% 42.50% 55.00%
5 54.70% 13.33% 10.00% 20.00% 5 54.21% 41.00% 44.33% 46.00%

Mean 54.74% 34.67% 33.17% 37.67% Mean 52.98% 48.25% 51.37% 55.03%

0.0001

1 61.51% 33.33% 33.33% 33.33%

0.0001

1 56.69% 57.22% 62.22% 59.26%
2 59.69% 66.67% 62.50% 75.00% 2 58.72% 72.92% 75.00% 75.00%
3 60.92% 40.00% 40.00% 40.00% 3 57.91% 29.10% 41.67% 23.15%
4 58.24% 37.50% 50.00% 33.33% 4 55.45% 52.00% 47.50% 66.67%
5 61.90% 13.33% 10.00% 20.00% 5 58.58% 26.19% 25.33% 35.00%

Mean 60.45% 38.17% 39.17% 40.33% Mean 57.47% 47.49% 50.34% 50.34%
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Table A2. Cont.

SGDM

Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision

28

0.0005

1 56.86% 16.67% 16.67% 16.67%

32

0.0005

1 59.85% 58.20% 60.00% 63.89%
2 61.44% 50.00% 50.00% 50.00% 2 60.23% 57.30% 61.11% 54.63%
3 63.29% 41.67% 50.00% 37.50% 3 59.80% 44.71% 50.00% 42.96%
4 61.54% 33.33% 40.00% 30.00% 4 59.51% 46.67% 52.50% 48.33%
5 60.50% 11.11% 8.33% 16.67% 5 59.82% 39.52% 43.67% 48.33%

Mean 60.73% 30.56% 33.00% 30.17% Mean 59.84% 49.28% 53.46% 51.63%

0.001

1 58.72% 14.29% 14.29% 14.29%

0.001

1 60.31% 36.67% 42.22% 34.81%
2 59.69% 50.00% 50.00% 50.00% 2 60.94% 37.50% 50.00% 33.33%
3 58.04% 33.33% 40.00% 30.00% 3 58.44% 39.00% 43.33% 40.00%
4 58.68% 33.33% 33.33% 33.33% 4 56.43% 40.33% 42.50% 46.67%
5 10.10% 0.00% 0.00% 0.00% 5 57.29% 66.30% 68.15% 70.00%

Mean 49.05% 26.19% 27.52% 25.52% Mean 58.68% 43.96% 49.24% 44.96%

0.005

1 10.20% 0.00% 0.00% 0.00%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 9.70% 13.33% 33.33% 8.33% 2 9.70% 2.78% 12.50% 1.56%
3 9.91% 0.00% 0.00% 0.00% 3 9.91% 1.31% 11.11% 0.69%
4 10.17% 0.00% 0.00% 0.00% 4 10.01% 1.31% 11.11% 0.69%
5 10.10% 0.00% 0.00% 0.00% 5 10.06% 2.78% 12.50% 1.56%

Mean 10.02% 2.67% 6.67% 1.67% Mean 9.98% 1.63% 9.44% 0.90%

ADAM

Batch
size LR Fold Val

Accuracy F1-score Recall Precision Batch
size LR Fold Val

Accuracy F1-score Recall Precision

4

0.00001

1 58.63% 40.00% 40.00% 40.00%

8

0.00001

1 56.96% 63.81% 66.67% 64.29%
2 65.19% 20.00% 20.00% 20.00% 2 57.84% 45.83% 43.75% 50.00%
3 57.11% 41.67% 50.00% 37.50% 3 57.31% 40.00% 42.86% 38.10%
4 57.33% 40.00% 40.00% 40.00% 4 57.54% 29.52% 35.71% 32.14%
5 57.64% 20.00% 20.00% 20.00% 5 57.80% 58.33% 63.89% 66.67%

Mean 59.18% 32.33% 34.00% 31.50% Mean 57.49% 47.50% 50.58% 50.24%

0.00005

1 9.73% 0.00% 0.00% 0.00%

0.00005

1 10.20% 0.00% 0.00% 0.00%
2 10.17% 13.33% 33.33% 8.33% 2 10.14% 3.70% 16.67% 2.08%
3 10.25% 10.00% 25.00% 6.25% 3 10.25% 3.70% 16.67% 2.08%
4 9.68% 0.00% 0.00% 0.00% 4 9.73% 3.70% 16.67% 2.08%
5 10.03% 0.00% 0.00% 0.00% 5 9.46% 0.00% 0.00% 0.00%

Mean 9.97% 4.67% 11.67% 2.92% Mean 9.96% 2.22% 10.00% 1.25%

0.0001

1 9.94% 10.00% 25.00% 6.25%

0.0001

1 10.20% 0.00% 0.00% 0.00%
2 10.17% 3.70% 16.67% 2.08% 2 9.93% 3.70% 16.67% 2.08%
3 9.73% 3.70% 16.67% 2.08% 3 10.25% 3.70% 16.67% 2.08%
4 9.46% 1.47% 12.50% 0.78% 4 10.40% 3.70% 16.67% 2.08%
5 10.24% 0.00% 0.00% 0.00% 5 9.46% 0.00% 0.00% 0.00%

Mean 9.91% 3.77% 14.17% 2.24% Mean 10.05% 2.22% 10.00% 1.25%

0.0005

1 9.94% 10.00% 25.00% 6.25%

0.0005

1 10.37% 3.70% 16.67% 2.08%
2 9.92% 0.00% 0.00% 0.00% 2 9.70% 6.67% 16.67% 4.17%
3 10.03% 0.00% 0.00% 0.00% 3 10.22% 0.00% 0.00% 0.00%
4 10.40% 10.00% 25.00% 6.25% 4 10.40% 3.70% 16.67% 2.08%
5 9.46% 0.00% 0.00% 0.00% 5 10.06% 4.44% 20.00% 2.50%

Mean 9.95% 4.00% 10.00% 2.50% Mean 10.15% 3.70% 14.00% 2.17%

0.001

1 10.37% 10.00% 25.00% 6.25%

0.001

1 9.72% 3.70% 16.67% 2.08%
2 9.60% 22.22% 33.33% 16.67% 2 10.46% 0.00% 0.00% 0.00%
3 9.86% 0.00% 0.00% 0.00% 3 9.86% 3.70% 16.67% 2.08%
4 10.44% 0.00% 0.00% 0.00% 4 9.73% 3.70% 16.67% 2.08%
5 9.46% 0.00% 0.00% 0.00% 5 10.03% 4.44% 20.00% 2.50%

Mean 9.95% 6.44% 11.67% 4.58% Mean 9.96% 3.11% 14.00% 1.75%

0.005

1 10.03% 0.00% 0.00% 0.00%

0.005

1 10.11% 3.70% 16.67% 2.08%
2 10.14% 0.00% 0.00% 0.00% 2 10.33% 0.00% 0.00% 0.00%
3 10.22% 0.00% 0.00% 0.00% 3 9.86% 3.70% 16.67% 2.08%
4 10.40% 10.00% 25.00% 6.25% 4 9.73% 3.70% 16.67% 2.08%
5 9.79% 0.00% 0.00% 0.00% 5 10.10% 4.44% 20.00% 2.50%

Mean 10.12% 2.00% 5.00% 1.25% Mean 10.03% 3.11% 14.00% 1.75%

12

0.00001

1 57.81% 33.33% 33.33% 33.33%

16

0.00001

1 56.61% 58.33% 62.22% 64.81%
2 57.96% 100.00% 100.00% 100.00% 2 56.60% 66.55% 68.75% 67.71%
3 59.22% 33.33% 40.00% 30.00% 3 56.23% 50.51% 50.44% 50.67%
4 56.18% 60.00% 60.00% 60.00% 4 57.70% 41.00% 45.00% 38.33%
5 57.68% 39.83% 46.00% 41.67% 5 56.55% 45.19% 57.78% 47.22%

Mean 57.77% 53.30% 55.87% 53.00% Mean 56.74% 52.31% 56.84% 53.75%

0.00005

1 9.73% 0.00% 0.00% 0.00%

0.00005

1 60.28% 41.00% 46.00% 41.00%
2 9.82% 0.00% 0.00% 0.00% 2 59.55% 70.71% 75.00% 73.96%
3 10.00% 0.00% 0.00% 0.00% 3 57.40% 65.33% 66.67% 68.33%
4 58.26% 50.00% 50.00% 50.00% 4 9.44% 4.44% 11.11% 2.78%
5 61.87% 13.33% 10.00% 20.00% 5 9.46% 1.47% 12.50% 0.78%

Mean 29.94% 12.67% 12.00% 14.00% Mean 39.23% 36.59% 42.26% 37.37%
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Table A2. Cont.

SGDM

Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision

12

0.0001

1 10.20% 0.00% 0.00% 0.00%

16

0.0001

1 9.94% 2.78% 12.50% 1.56%
2 9.60% 22.22% 33.33% 16.67% 2 9.82% 2.78% 12.50% 1.56%
3 10.03% 0.00% 0.00% 0.00% 3 10.25% 3.51% 11.11% 2.08%
4 9.73% 0.00% 0.00% 0.00% 4 9.44% 4.44% 11.11% 2.78%
5 10.41% 0.00% 0.00% 0.00% 5 9.88% 2.78% 12.50% 1.56%

Mean 9.99% 4.44% 6.67% 3.33% Mean 9.87% 3.26% 11.94% 1.91%

0.0005

1 10.11% 10.00% 25.00% 6.25%

0.0005

1 10.01% 5.95% 12.50% 3.91%
2 9.93% 0.00% 0.00% 0.00% 2 9.82% 2.78% 12.50% 1.56%
3 9.74% 10.00% 25.00% 6.25% 3 9.91% 1.31% 11.11% 0.69%
4 9.98% 10.00% 25.00% 6.25% 4 9.73% 2.47% 11.11% 1.39%
5 9.88% 22.22% 33.33% 16.67% 5 9.93% 1.47% 12.50% 0.78%

Mean 9.93% 10.44% 21.67% 7.08% Mean 9.88% 2.80% 11.94% 1.67%

0.001

1 10.20% 0.00% 0.00% 0.00%

0.001

1 10.20% 1.47% 12.50% 0.78%
2 9.93% 0.00% 0.00% 0.00% 2 9.92% 2.78% 12.50% 1.56%
3 9.86% 0.00% 0.00% 0.00% 3 9.86% 1.31% 11.11% 0.69%
4 10.40% 10.00% 25.00% 6.25% 4 10.17% 1.31% 11.11% 0.69%
5 10.06% 13.33% 33.33% 8.33% 5 10.41% 0.00% 0.00% 0.00%

Mean 10.09% 4.67% 11.67% 2.92% Mean 10.11% 1.37% 9.44% 0.75%

0.005

1 10.37% 10.00% 25.00% 6.25%

0.005

1 9.94% 2.78% 12.50% 1.56%
2 10.14% 0.00% 0.00% 0.00% 2 9.92% 2.78% 12.50% 1.56%
3 9.91% 0.00% 0.00% 0.00% 3 9.96% 1.31% 11.11% 0.69%
4 9.73% 0.00% 0.00% 0.00% 4 9.82% 0.00% 0.00% 0.00%
5 9.93% 0.00% 0.00% 0.00% 5 9.95% 1.47% 12.50% 0.78%

Mean 10.02% 2.00% 5.00% 1.25% Mean 9.87% 1.99% 9.41% 0.91%

20

0.00001

1 57.32% 68.81% 69.58% 80.21%

24

0.00001

1 57.68% 39.83% 46.00% 41.67%
2 59.61% 62.78% 62.96% 63.89% 2 57.35% 45.93% 50.00% 46.30%
3 56.62% 61.48% 69.44% 59.26% 3 57.34% 43.46% 48.15% 41.48%
4 56.34% 41.94% 37.38% 50.00% 4 56.63% 28.00% 30.00% 31.67%
5 57.02% 2.27% 12.50% 1.25% 5 58.08% 69.74% 72.50% 76.04%

Mean 57.38% 47.46% 50.37% 50.92% Mean 57.42% 45.39% 49.33% 47.43%

0.00005

1 60.15% 48.24% 49.00% 60.33%

0.00005

1 60.55% 63.54% 70.00% 66.67%
2 61.36% 70.63% 71.13% 70.33% 2 60.09% 49.63% 51.85% 48.15%
3 59.93% 42.95% 53.33% 38.17% 3 59.16% 68.52% 76.85% 72.22%
4 60.65% 52.59% 56.61% 53.70% 4 58.80% 39.26% 47.22% 44.44%
5 9.79% 2.47% 11.11% 1.39% 5 58.76% 43.05% 52.33% 50.83%

Mean 50.38% 43.38% 48.24% 44.79% Mean 59.47% 52.80% 59.65% 56.46%

0.0001

1 9.72% 2.27% 12.50% 1.25%

0.0001

1 9.72% 1.47% 12.50% 0.78%
2 10.33% 0.00% 0.00% 0.00% 2 9.82% 2.78% 12.50% 1.56%
3 9.86% 2.02% 11.11% 1.11% 3 9.74% 2.47% 11.11% 1.39%
4 10.23% 1.06% 11.11% 0.56% 4 9.68% 0.00% 0.00% 0.00%
5 10.24% 0.00% 0.00% 0.00% 5 9.46% 1.47% 12.50% 0.78%

Mean 10.08% 1.07% 6.94% 0.58% Mean 9.68% 1.64% 1.64% 0.90%

0.0005

1 9.72% 2.27% 12.50% 1.25%

0.0005

1 10.37% 2.78% 12.50% 1.56%
2 9.70% 2.27% 12.50% 1.25% 2 9.92% 2.78% 12.50% 1.56%
3 9.91% 1.06% 11.11% 0.56% 3 10.22% 1.31% 11.11% 0.69%
4 9.68% 0.00% 0.00% 0.00% 4 9.73% 2.47% 11.11% 1.39%
5 9.79% 2.27% 12.50% 1.25% 5 9.73% 1.47% 12.50% 0.78%

Mean 9.76% 1.58% 9.72% 0.86% Mean 10.01% 2.16% 11.94% 1.20%

0.001

1 10.11% 3.26% 12.50% 1.88%

0.001

1 10.11% 2.78% 12.50% 1.56%
2 10.14% 3.26% 12.50% 1.88% 2 9.82% 2.78% 12.50% 1.56%
3 10.22% 2.90% 11.11% 1.67% 3 9.86% 1.31% 11.11% 0.69%
4 10.17% 1.06% 11.11% 0.56% 4 10.01% 1.31% 11.11% 0.69%
5 9.93% 1.19% 12.50% 0.63% 5 10.24% 0.00% 0.00% 0.00%

Mean 10.11% 2.33% 11.94% 1.32% Mean 10.01% 1.63% 9.44% 0.90%

0.005

1 10.37% 2.27% 12.50% 1.25%

0.005

1 9.73% 2.78% 12.50% 1.56%
2 10.46% 0.00% 0.00% 0.00% 2 10.17% 1.47% 12.50% 0.78%
3 9.81% 1.06% 11.11% 0.56% 3 10.78% 4.44% 11.11% 2.78%
4 10.17% 1.06% 11.11% 0.56% 4 9.94% 2.78% 12.50% 1.56%
5 10.03% 3.26% 12.50% 1.88% 5 9.86% 1.31% 11.11% 0.69%

Mean 10.17% 1.53% 9.44% 0.85% Mean 10.24% 1.84% 8.61% 1.03%

28

0.00001

1 57.46% 40.00% 40.00% 40.00%

32

0.00001

1 54.92% 43.17% 46.00% 43.33%
2 57.47% 50.00% 50.00% 50.00% 2 57.72% 39.31% 42.59% 45.19%
3 56.73% 40.00% 40.00% 40.00% 3 56.87% 42.59% 55.56% 37.04%
4 57.94% 20.00% 20.00% 20.00% 4 55.91% 42.00% 45.00% 40.00%
5 57.05% 13.33% 10.00% 20.00% 5 56.46% 43.10% 42.00% 47.50%

Mean 57.33% 32.67% 32.00% 34.00% Mean 56.38% 42.03% 46.23% 42.61%

0.00005

1 10.01% 10.00% 25.00% 6.25%

0.00005

1 60.60% 41.67% 51.11% 41.67%
2 60.19% 50.00% 50.00% 50.00% 2 60.71% 42.67% 48.33% 44.17%
3 60.61% 50.00% 50.00% 50.00% 3 65.97% 59.26% 68.52% 57.41%
4 59.38% 40.00% 40.00% 40.00% 4 59.06% 30.00% 27.50% 35.00%
5 60.15% 33.33% 30.00% 40.00% 5 59.31% 60.00% 61.00% 62.50%

Mean 50.07% 36.67% 39.00% 37.25% Mean 59.13% 46.72% 51.29% 48.15%
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Table A2. Cont.

SGDM

Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision Batch
Size LR Fold Val

Accuracy F1-Score Recall Precision

28

0.0001

1 10.03% 0.00% 0.00% 0.00%

32

0.0001

1 10.20% 0.00% 0.00% 0.00%
2 9.92% 0.00% 0.00% 0.00% 2 9.70% 2.78% 12.50% 1.56%
3 9.74% 10.00% 25.00% 6.25% 3 9.91% 1.31% 11.11% 0.69%
4 10.17% 0.00% 0.00% 0.00% 4 10.17% 1.31% 11.11% 0.69%
5 10.24% 0.00% 0.00% 0.00% 5 10.03% 3.95% 12.50% 2.34%

Mean 10.02% 2.00% 5.00% 1.25% Mean 10.00% 1.87% 9.44% 1.06%

0.0005

1 10.20% 0.00% 0.00% 0.00%

0.0005

1 10.20% 0.00% 0.00% 0.00%
2 9.93% 0.00% 0.00% 0.00% 2 9.82% 2.78% 12.50% 1.56%
3 9.86% 0.00% 0.00% 0.00% 3 10.22% 1.31% 11.11% 0.69%
4 9.73% 0.00% 0.00% 0.00% 4 10.40% 2.47% 11.11% 1.39%
5 10.10% 0.00% 0.00% 0.00% 5 10.06% 2.78% 12.50% 1.56%

Mean 9.96% 0.00% 0.00% 0.00% Mean 10.14% 1.87% 9.44% 1.04%

0.001

1 9.69% 0.00% 0.00% 0.00%

0.001

1 10.11% 2.78% 12.50% 1.56%
2 9.82% 0.00% 0.00% 0.00% 2 9.93% 2.78% 12.50% 1.56%
3 9.86% 0.00% 0.00% 0.00% 3 10.02% 4.44% 11.11% 2.78%
4 10.17% 0.00% 0.00% 0.00% 4 9.44% 4.44% 11.11% 2.78%
5 9.46% 0.00% 0.00% 0.00% 5 9.88% 2.78% 12.50% 1.56%

Mean 9.80% 0.00% 0.00% 0.00% Mean 9.88% 3.44% 11.94% 2.05%

0.005

1 9.94% 0.00% 0.00% 0.00%

0.005

1 9.72% 1.47% 12.50% 0.78%
2 10.17% 0.00% 0.00% 0.00% 2 10.17% 1.47% 12.50% 0.78%
3 10.22% 0.00% 0.00% 0.00% 3 9.86% 1.31% 11.11% 0.69%
4 9.92% 0.00% 0.00% 0.00% 4 9.94% 2.68% 12.42% 1.57%
5 9.46% 0.00% 0.00% 0.00% 5 9.86% 2.14% 10.21% 1.38%

Mean 9.94% 0.00% 0.00% 0.00% Mean 9.76% 1.86% 10.74% 1.12%
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