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Abstract: Human motion prediction involves forecasting future movements based on past observa-
tions, which is a complex task due to the inherent spatial-temporal dynamics of human motion. In
this paper, we introduced a novel framework, GGTr, which adeptly encapsulates these patterns by
integrating positional graph convolutional network (GCN) layers, gated recurrent unit (GRU) net-
work layers, and transformer layers. The proposed model utilizes an enhanced GCN layer equipped
with a positional representation to aggregate information from body joints more effectively. To
address temporal dependencies, we strategically combined GRU and transformer layers, enabling the
model to capture both local and global temporal dependencies across body joints. Through extensive
experiments conducted on Human3.6M and CMU-MoCap datasets, we demonstrated the superior
performance of our proposed model. Notably, our framework shows significant improvements in
predicting long-term movements, outperforming state-of-the-art methods substantially.

Keywords: human motion prediction; graph convolutional network; gated recurrent unit; transformers

1. Introduction

Human motion prediction, the task of forecasting future human movements based on
past observations, plays a critical role in various domains such as robotics, computer vision,
healthcare, and sports analysis. Accurately predicting human motion is instrumental for
facilitating effective human-robot collaboration [1,2], ensuring system security [3,4], analyz-
ing human behavior and emotions [5,6], and supporting sports performance analysis [7].
However, predicting human motion presents significant challenges due to the complexity
and diversity of human behaviors. First, human motion exhibits high variability and
uncertainty. This is evident at the 3D skeletal level, due to the diversity in human body
sizes, and at the movement level, due to individual idiosyncrasies. In scenarios with rapid
changes, such as sudden reactions or motions, it is exceedingly difficult for predictive
models to adapt quickly. Second, the interplay between different body parts and their
coordinated movements further complicates the task. For instance, a motion initiated by
one body part can propagate to other body parts in complex and often non-intuitive ways.

So, it becomes essential to capture both spatial and temporal features, as illustrated
in Figure 1. Numerous research efforts have been made to address the challenges of
modeling human motion. Traditional methods and machine learning methods such as
hidden Markov models (HMM) [8], Gaussian processes (GP) [9], and restricted Boltzmann
machine [10]. However, these methods may not fully capture the complex interdepen-
dencies and non-linear dynamics present in human motion. More recently, deep learning
approaches, such as convolutional neural networks (CNNs) [11], graph convolutional net-
works (GCN) [12–15], temporal modules such as recurrent neural networks (RNNs) [16–21],
and transformers [22–24] have been used. While existing RNN and deep learning-based
models have significantly improved the prediction performance, they still have limita-
tions. These methods often struggle to capture the dynamic and complex interactions

Electronics 2023, 12, 3305. https://doi.org/10.3390/electronics12153305 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153305
https://doi.org/10.3390/electronics12153305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12153305
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153305?type=check_update&version=1


Electronics 2023, 12, 3305 2 of 17

between different body parts. The relations among body joints cannot be simply modeled
by static spatial proximity; instead, they are influenced by various factors such as the
individual’s physical attributes, the current body state, and the motion context. Moreover,
these models frequently encounter challenges in effectively capturing both local and global
temporal dependencies.

Historical poses Prediction poses

Spatio-temporal 

Features 

Extraction

Figure 1. The process of human motion prediction. The historical sequences of human motion are
subjected to feature extraction in terms of both space and time. This involves the analysis of the
spatial configuration of the body, as well as the timing and sequence of these movements. The derived
spatial and temporal features constitute the foundation for building a comprehensive understanding
of the motion patterns.

To address these challenges, we proposed a novel approach for human motion predic-
tion that combines positional graph convolutional network (GCN) layers, gated recurrent
unit (GRU) network layers, and transformer layers, termed as GGTr. This combination
allows us to better capture the complex spatial-temporal patterns in human motion data.
In summary, the primary contributions of this paper include:

(1) The introduction of a novel GCN layer with positional representation, enabling better
aggregation of information from adjacent body joints;

(2) The strategic combination of GRU and transformer layers to capture both local and
global temporal dependencies across body joints;

(3) The conduction of extensive experiments on the Human3.6M and CMU-MoCap
datasets, demonstrating the effectiveness and advantages of our proposed frame-
work, our model shows significant improvements in predicting short-term movements.
Experiments reveal that our model significantly outperforms state-of-the-art methods .

The remainder of this paper is organized as follows: Section 2 reviews related work.
In Section 3, we first introduce some preliminary concepts and formalize the human motion
prediction problem and the overall framework of the spatial temporal network model. Then,
we discuss in detail the three model components to deal with the spatial and temporal
dependencies, separately. In Section 4, experiments were conducted on two large-scale
datasets, comparing the performance of the proposed method with baselines. Section 5
provides a summary and conclusion, as well as a discussion of future work.

2. Related Work

Human motion prediction is a challenging task due to the complexity and variability
of human movements. This complexity arises from the intricate interplay of various factors
such as the individual’s physical characteristics, the environment, and the task at hand.
Over the years, several approaches have been proposed to tackle this problem, each with
its own strengths and limitations.

Traditional methods primarily rely on data statistical approaches or prior knowledge,
such as Markov prediction models [8], Gaussian process dynamical models [9] and re-
stricted Boltzmann machine [10], which can only tackle simple human motion patterns.
Although these methods have achieved some success in certain scenarios, they still face
challenges in capturing complex spatial and temporal dependencies.
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Chiu et al. [25] used LSTM units to model the underlying structure of human motion
hierarchically, but did not adequately utilize spatial information of human motion data.
Martinez et al. [18] introduced a residual structure using GRU to model the velocity of
human motion sequences, Their model focused on short-term temporal modeling, ignoring
long-term dependencies and spatial structure. Jain et al. [17] combined LSTM and fully
connected (FC) layers in a structural RNN model to encode high-level spatio-temporal
structures in human motion sequences. Guo et al. [26] employed FC layers and GRU to
model local structures and capture long-term temporal dependencies, but they did not
take into account the interactions between different human body limbs. The transformer
model with a self-attention mechanism has been proved to be more effective than recurrent
networks in various domains [23,27,28]. It applies a multi-head attention mechanism
to directly learn dependencies between each pair of input and output positions without
any latency.

Graph convolutional networks (GCN) have become widely used for modeling the
underlying relationships of non-Euclidean data. Kipf et al. [29] proposed a layer-wise prop-
agation rule for nodes inspired by first-order approximation of spectral convolutions on
graphs. However, this approach is limited by the characteristics of the graph. Yuan et al. [30]
proposed a more flexible approach by learning node connectivity based on node neigh-
borhood. Velickovic et al. [31] introduced self-attention to determine the neighborhood
structure to be considered, providing more flexibility to the network. This approach has
been applied to action recognition [32] by using a GCN to capture the temporal and spatial
dependencies of human body joints via a graph defined on temporally connected kinematic
trees. These techniques have been applied to human motion prediction by building the
human pose as a graph and using GCN to encode the spatial connectivity of human joints.
Ma et al. [33] proposed two variants of GCN to extract spatial and temporal features. They
built a multi-stage structure where each stage contains an encoder and a decoder and, dur-
ing training, the model is trained with intermediate supervision to learn to progressively
refine the prediction. References [12,13,34] extended the graph of the human pose to multi-
scale the version across the abstraction levels of the human pose. However, as these models
aggregate body joint features based on an input adjacency matrix, the relation between
body parts is fixed and may limit the model’s ability to adapt to complex human motions.

The transformer [35] has become the dominant approach in natural language process-
ing (NLP). The key component of the transformer is a multi-head self-attention mechanism
that captures long-range dependencies. Building upon the success of the transformer
in various tasks [36–38], researchers have increasingly focused on exploring its potential
applications in 3D human motion prediction [22–24]. Cai et al. [22] employed a transformer-
based architecture with discrete cosine transform (DCT) to capture the long-range spatial
correlations and temporal dependencies in human motion dynamics. Another notable
advancement is the spatio-temporal transformer (ST-Trans) mechanism proposed by Ak-
san et al. [23], which effectively captures the spatio-temporal dependencies of decomposed
3D human motions. However, the ST-Trans method overlooks the importance of ensuring
consistency between spatial and temporal information, which is a crucial factor when deal-
ing with time-varying data. To address this limitation, a cross-transformer approach [24]
has been developed to explore effective interaction between spatial and temporal branches.
This approach is designed to learn the coherence of spatial and temporal information and
simultaneously enhance the model’s predictive capacity. Despite these advancements,
transformer-based methods may overlook local information when dealing with human
motion data, warranting further investigation into this aspect.

In summary, with the development of human motion prediction in recent years,
GCN/GRU/transformer-based architectures have been well explored and results have
significantly improved. In this paper, we proposed a new spatial-temporal graph convo-
lutional network framework to address the human motion prediction problem. We used
graph convolutional networks with a position-wise attention mechanism to capture the
spatial dependencies of the human body joints. A gated recurrent neural network with
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transformer layers was used to capture both local and global information of human motion
sequences in the temporal dimension.

3. The Proposed Framework

Problem Fromulation. In the realm of human motion prediction, the objective is
to forecast future human movements utilizing historical motion data. Specifically, these
historical motion data can be expressed as a time series within a 3D skeletal structure. This
structure can be denoted as G = (V, E), where V = {v1, v2, . . . , vM} represents a set of M
joints in the human body, and E is a set of edges that represent the physical connections
between these joints. The relationships between joints can be demonstrated by a symmetric
adjacency matrix A ∈ RM×M, where the i, j-th element, Aij, represents the biomechanical
correlation between joints vi and vj. This correlation is typically gauged by the physical
linkage or common motion patterns shared between two joints. Note that Aij = 0 if there is
no substantial correlation between the two respective joints. The historical motion data can
be represented in a sequence Z = (z1, z2, . . . , zτ) on the 3D skeletal structure, where each
zt ∈ RM×1 signifies the motion status of M joints at time t. With the above notations, we
can formally state the problem as follows.

Given the 3D skeletal structure G = (V, E) and the historical motion data Z =
(z1, z2, . . . , zτ), the aim was to formulate a model f that can accept a new sequence X =
(x1, x2, . . . , xT) of length T as an input and predict the motion status for the subsequent T′

time steps, denoted as:

Xpred = f (G; X|Z) = (xT+1, . . . , xT+T′). (1)

Moreover, during the training phase, we employed a sliding window of length T + T′

over the historical motion sequence Z to generate the training samples. These samples
serve to train the model f .

Overview. The conceptual framework of the proposed GGTr network, illustrated in
Figure 2, is primarily composed of three crucial components. The spatial graph convolu-
tional network (GCN) layers were designed to model the spatial correlation between the
human body joints graph. These layers were applied to the input representations of the
gated recurrent unit (GRU), which modeled the sequential temporal relations, also referred
to as local temporal dependencies. The framework also includes a transformer layer that is
specifically designed to directly apprehend the long-range or global temporal dependencies
within the motion sequence. The GRU and transformer layers work in tandem to capture
the temporal dependencies for each joint independently, albeit from distinct perspectives.
Subsequently, we delve into the spatial dependency modeling with the GCN, followed
by an explanation of how the GRU layer and the transformer layer function to capture
temporal dependencies, leading to a comprehensive summary of the complete framework.

3.1. Spatial Dependence Modeling

Acquiring the complex spatial dependence is a crucial problem in human motion
prediction. The traditional convolutional network (CNN) can grasp local spatial features,
but its application is primarily confined to Euclidean space, such as images or regular grids.
However, the human body essentially forms a graph, not a two-dimensional grid. A graph
is a structure composed of nodes and edges. In the context of human motion prediction,
nodes can represent joints in the human body, and edges can represent connections between
joints. Graphical models can effectively represent the complex relationships between
human joints, which is useful for human motion prediction. This means the CNN model
cannot reflect the complex topological structure of the human body and thus cannot
accurately capture spatial dependence. Recently, generalizing the CNN to the graph
convolutional network (GCN), which can handle arbitrary graph-structured data, has
received widespread attention.
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In the human motion prediction problem, if two body joints are connected or in close
proximity, their movements are likely to mutually influence each other. Thus, to capture
these spatial relationships, we employed the graph convolutional networks model proposed
in [29,31]. This model is used to transform and propagate motion information through the
graph structure. Specifically, given input motion information Xl ∈ RM×dl

on the structure,
where dl represents the input dimension, the output Xl+1 ∈ RM×dl+1

can be computed,
with dl+1 denoting the output dimension.

Xl+1 = σ(D̃−1/2 ÃD̃−1/2XlW l), (2)

where σ(.) is a non-linear activation function. In our work, we adopted ReLU (·), standing
for REctified Linear Unit, which is advantageous for its ability to speed up the convergence
of stochastic gradient descent compared to sigmoid and tanh functions. Ã = A + IM
is the adjusted adjacency matrix with IM as the M-dimensional identity matrix, and D̃
is the modified degree matrix, with D̃ii = ∑j Ãij. W l are the parameters to be learned.
For convenience, we represent the operation in Equation (2) as follows:

Xl+1 = GCN0(Xl , A). (3)

0

…
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Figure 2. The whole architecture of our suggested solution for motion prediction, which employs an
end-to-end framework. We encode human poses x1:T and feed them to GGTr. The GCN layer aids
in understanding spatial relationships among body joints within the human motion network. Fol-
lowing the GRU is a transformer layer, designed to grasp global temporal dependencies. Ultimately,
the transformer’s output is harnessed to predict future motion states.

In the aforementioned formulation, the operation relies solely on the human body
joints structure information, which is premised on the physical proximity between body
parts. However, the interplay between body joints can be significantly more intricate.
Various factors such as muscle constraints, physical capabilities, motion style, and ongoing
actions can impact the motion of body parts. Therefore, the information from neighboring
joints should not be aggregated equally to a given central joint when performing the aggre-
gation in Equation (2). Recently, GaAN [39] attempted to employ the attention mechanism
to model the complex relationships between graph nodes. Ideally, the aforementioned fac-
tors could be used to calculate the attention score, but these factors are not always available.
Furthermore, there may be other factors influencing the relations between joints that we are
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not aware of. Therefore, in this paper, we proposed learning a positional representation to
capture these factors for each joint. Specifically, for joints vi, vj, we aimed to learn two latent
positional representations hi, hj ∈ RM. We then modeled the pairwise relations between
any body joints as:

eij = a([Whi||Whj])

αij =
exp(LeakyReLU(a(hi, hj)))

∑M
k=1 exp(LeakyReLU(a(hi, hj)))

,
(4)

where a(.) is a relation score function modeled with dot product as follows:

a(hi, hj) = (Whi)
TWhj, (5)

where W is a transformation matrix to be learned. We further employed a mask to sparsify
the relation matrix α in order to reduce computational complexity:

mask(α) =

{
αij, if Ãij > 0
0, otherwise.

(6)

Subsequently, the GCN operation can be applied to the newly learned relation matrix
mask(α):

Xl+1 = σ(D̃−1/2
α α̃D̃−1/2

α XlW l), (7)

where α̃ = mask(α) + IM and D̃α is the degree matrix for α̃. For simplicity, we represent
the operation in Equation (7) as:

Xl+1 = GCNN(A, Xl). (8)

Instead of the operation in (2), the operation in (8) was used to capture the spatial
relations. This approach allowed us to learn a positional representation for each joint,
capturing various factors that influence their relationships. By using these learned repre-
sentations in combination with an attention mechanism and a sparsified relation matrix,
we can effectively model complex spatial relationships between different body joints and
improve the accuracy of human motion prediction.

3.2. Temporal Dependence Modeling

The gated recurrent unit (GRU) is a variant of a traditional RNN and can effectively
capture the semantic association between long sequences and alleviate the problem of
gradient vanishing or explosion. Its core structure can be divided into two parts for
analysis: update gate and reset gate, illustrated in Figure 3. To capture the temporal
dependency in human motion sequences, we adopted the gated recurrent unit (GRU) [40]
to process the sequence information.

For each time step, we maintained a hidden representation that served as the output
for the current step and influenced the information flow to the subsequent step. It is
important to note that the GRU operation was applied individually to each joint in the body,
and the parameters were shared for all joints. To incorporate spatial relations in human
motion while processing the sequence, we applied a modified graph convolutional network
(GCN) operation, as described in Equation (8), to the input representations of the GRU.
Specifically, at each time step t, with input xt and previous step’s hidden representations
ht−1, we applied the modified GCN operation:

x̃t = GCNN(A, xt)

h̃t−1 = GCNN(A, ht−1).
(9)
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For a body joint vi at time step t, the history observation xt[i] contains the dynamic
features for joint vi at t-th time step. The update gate and reset gate are denoted as follows:

zt = σ(Wz x̃t[i] + Uz h̃t−1[i] + bz)

rt = σ(Wr x̃t[i] + Ur h̃t−1[i] + br),
(10)

where Wz, Wr, Wh, Uz, Ur, bz, br are the trainable parameters.
We then calculated the candidate hidden state and the updated hidden state ht[i] as

follows:
h̃t[i] = tanh(Wh x̃t[i] + rt �Uh h̃t−1[i] + bh)

ht[i] = (1− zt)h̃t−1[i] + zt � h̃t[i],
(11)

where � denotes the element-wise multiplication, Uh,bh are the parameters to be learned,
and ht[i] serves as extracted features of joint vi at the next time step.

𝑐𝑡

𝜎

𝑟𝑡 𝑢𝑡

1-

𝑥𝑡

ℎ𝑡−1 ℎt

tanh

Reset 

gate
Update 

gate

Figure 3. Architectural elements in a GRU layer.

The above are the fundamental equations and steps of GRU. By controlling the update
and reset gates, GRU can dynamically update and adjust the hidden state based on different
patterns in the sequence, enabling it to better capture the local temporal information.
However, in the human body motion prediction problem, the temporal information may
not only be sequentially dependent. Hence, it is important to capture the global temporal
information for accurate human motion prediction. Thus, after processing with the GRU
layer, we adopted a transformer layer [35] to capture the global dependencies following
the GRU.

The transformer layer, similar to the GRU layer, was applied to each joint individually.
For joint vi, the output sequence (h1[i], . . . , hT [i]) from GRU was taken as the input for the
transformer. Figure 4 illustrates that a transformer layer consists of a multi-head attention
layer, a shared feed-forward neural work layer, and normalization layers between them.

Inputs of model. The input of the model is the spatial dependency embedding se-
quence of each joint. Let us consider the i-th joint’s spatial dependency embedding sequence
(h1[i], h2[i], . . . , hT [i]). Although the self-attention mechanism is effective in capturing hid-
den dependency relationships in the sequence, it fails to maintain location information.
Hence, we incorporated position encoding et as proposed by [35], between GRU and the
transformer layer. This choice was motivated by the ability of this approach to facilitate the
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model’s learning to attend to relative positions in a sequence. The new representations h′t[i]
were computed as follows:

h′t[i] = ht[i] + et, (12)

where et is defined as

et =

{
sin(t/100002i/dmodel ), if i = 0, 2, 4. . .
cos(t/100002i/dmodel ), otherwise.

(13)

Global Temporal 

Multi-Head Self-Attention

Add & Layer Normalize

Feed Forward

Add & Layer Normalize

ℎ𝑡
𝑡𝑟𝑎𝑛𝑠

Q          K        V

ℎ𝑡

Figure 4. Architectural elements in a transformer layer.

Temporal multi-head attention. In our model, we defined a matrix hvi ∈ RT×d by
arranging (h1[i], h2[i], . . . , hT [i]) in a row-wise manner across the temporal axis. The multi-
head attention mechanism is composed of several attention heads, which process the
input in parallel and whose outputs are then combined. This concept can be represented
mathematically as follows:

MultiHead(hvi ) = Concat(head1, . . . , heads)WO. (14)

This signifies that the output of multi-head attention is the concatenation of s single
head attention blocks, each one being projected with the matrix WO. Each single head
attention block, heads, can be given by:

heads = Attention(hvi )

= so f tmax(
QsKT

s√
dk

)Vs,
(15)

where WQ
s , WK

s , and WV
s denote the queries, keys, and values of the s-th single head

attention for joint vi, respectively. We obtained the Qs, Ks, and Vs by a linear projection
with WQ, WK, and WV :

Qs = hvi WQ
s , Ks = hvi WK

s , Vs = hvi WV
s , (16)

where WQ
s ∈ Rd×dk , WK

s ∈ Rd×dk , and WV
s ∈ Rd×dv are the trainable projection matrices for

the s-th attention head and are shared by all the joints.
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Feed-forward Layer. After the multi-head attention layer, the output states are then
processed by a feedforward neural network layer. This layer is identical for all joints, which
includes two linear transformations and a ReLU activation function in between:

FFN(X) = max(0, XW1 + b1)W2 + b2, (17)

where W1, W2 are the trainable parameters of the feed-forward neural network and b1 and
b2 are bias terms.

Residual connection and normalization. As shown in Figure 4, the residual connection
and normalization operators appear in each layer. The residual connection was introduced
to tackle the difficulty in training deep network optimization algorithms, and normalization
was applied to prevent overfitting. Given the embedded feature Zin, the process of the
residual connection and normalization layer is denoted as follows:

Z
′
in = LayerNorm(Zin + MultiHead(Zin))

hout = LayerNorm(Z
′
in + FFN(Z

′
in)),

(18)

where LayerNorm(.) denotes the normalization function.
Lastly, after each sub-layer in the transformer, such as the temporal multi-head at-

tention layer and the feed-forward network layer, a layer normalization operation and a
residual connection were applied. The final output of the transformer layer for joint vi can
be denoted as hvi

out ∈ RT×d.
In summary, this approach combines both the local and global temporal information

through the GRU and transformer layers, which can be highly beneficial for accurate
human motion prediction. The individual sequence of movements and the overall pattern
of movements are both considered, making this method a versatile and robust choice for
this task.

3.3. Loss Function

To train our model, we employed an end-to-end training technique. The mean position
per joint error (MPJPE) loss [41] function between the anticipated motion sequence and the
ground truth motion sequence was used to analyse the difference between the predicted
outcomes and the true pose, which is defined as follows:

L =
1

M× T

M

∑
i=1

T

∑
t=1
||x̂t[i]− xt[i]||22, (19)

where M is the number of joints in human pose, T is the number of time steps in the future
series, x̂t[i] is the predicted joint position at the t-th time step of the i-th joint, and xt[i] is
the corresponding ground truth.

We optimised the loss function using the improved Adam method (AdamW [42] ),
which mitigates the overfitting problem by adding a weight decay term and can significantly
improve the robustness of the model.

4. Experiments

In this section, we present experiments on two large-scale human motion capture
benchmark datasets (Human3.6M and CMU-MoCap) to demonstrate the effectiveness
of the GGTr network for human motion prediction. We first introduced the experimen-
tal settings, including datasets, baselines, and parameter settings. Then, we conducted
experiments to compare the performance of the GGTr with other baselines. Finally, we de-
signed comprehensive ablation studies to evaluate the impact of the essential architectural
components.
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4.1. Datasets

Human3.6M [41] is the largest existing human motion analysis database, consisting
of seven actors (S1, S5, S6, S7, S8, S9, and S11) performing 15 actions such as walking,
eating, smoking, discussing, and directions. Each pose includes 32 joints, represented
in the form of an exponential map. Following the data processing of [18], by converting
these into 3D coordinates, eliminating redundant joints, global rotation, and translation,
the resulting skeleton retains 17 joints that provide sufficient human motion details. These
joints include key ones that locate major body parts (e.g., shoulders, knees, and elbows).
We downsampled the frame rate to 25 fps and used S5 and S11 for testing and validation,
while the remaining five actors were used for training.

CMU-MoCap (Available at http://mocap.cs.cmu.edu/ accessed on 5 July 2023) is a
3D human motion dataset, released by Carnegie Mellon University, that used 12 Vicon
infrared MX-40 cameras to record the positions of 41 sensors attached to the human body,
describing human motion. The dataset can be divided into six motion themes, including
human interaction, interaction with environment, locomotion, physical activities and sports,
situations and scenarios, and test motions. We adopted the same data preprocessing method
as described in the literature [43], simplifying each human body and reducing the motion
rate to 25 frames per second. Furthermore, seven actions were selected from the dataset to
evaluate the model’s performance. No hyperparameters were adjusted on this dataset. We
used only the training and testing sets, with the splitting method consistent with common
practice in the literature [43].

4.2. Implementation Details

All experiments in this paper were implemented using the PyTorch deep learning
framework. The experimental environment was Ubuntu 20.04, utilizing an NVIDIA A100
GPU. During the training process, a batch size of 16 was used and the number of atten-
tion heads was set to 4. The number of GRU and transformer layers were both set to
1. The model was optimized using the AdamW optimizer. The initial learning rate was
set to 0.003, with a 5% decay every 5 epochs. Training was conducted for 800 epochs,
and each experiment was repeated three times to obtain an average result, ensuring a more
robust evaluation of the model’s performance. For the input motion prediction, a length
of 25 frames (1000 ms) was considered, and the prediction generated 25 frames (1000 ms).
The choice and configuration of related hyperparameters are summarized in Table 1.

Table 1. The choice and configuration of related hyperparameters.

Hyperparameter/Config Value

Optimizer AdamW
Base learning rate 5× 10−3

Weight decay 10−2

Batch size 16
Warmup epochs 5

Epochs 800

4.3. Evaluation Metrics and Baselines

The evaluation metrics employed in our study were consistent with those utilized in
existing algorithms [33,43]. The mean per joint position error (MPJPE) [41] was adopted as
the standard measurement, which computed the average Euclidean distance (in millime-
ters, mm) between the predicted joint 3D coordinates and the ground truth. In addition,
to further illustrate the advantages of the proposed method, a comparative analysis was
conducted with several state-of-the-art approaches [15,18,22,23,33,34,43].

Res. sup. [18] is an early RNN-based method. LTD [43], MSR [34], ST-DGCN [33],
and LCDC [15] utilize GCN-based methodologies. Meanwhile, LPJP [22] and STCT [23] em-
ploy transformer-based approaches. We compared the proposed method with all the above
approaches on the Human3.6M dataset, and with approaches [15,18,22,34,43] on CMU-
MoCap. By comparing the proposed method with these existing approaches, this study

http://mocap.cs.cmu.edu/
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aimed to demonstrate its effectiveness and highlight its advantages in terms of accuracy
and performance.

4.4. Experimental Results and Analysis

Human3.6M. Table 2 presents quantitative comparisons of our method and other
approaches in predicting short-term (80 ms, 160 ms, 320 ms, 400 ms) and long-term move-
ments (560 ms, 1000 ms) on the Human3.6M dataset. The final column provides the average
performance across all tested time intervals for 15 actions.

Table 2. Prediction of 3D joint positions on Human3.6M for all actions. The best results are marked
in bold.

Time(ms) 80 160 320 400 560 1000 80 160 320 400 560 1000

Action Walking Eating

Res. sup. [18] 29.4 50.8 76.0 81.5 81.7 100.7 16.8 30.6 56.9 68.7 79.9 100.2
LTD [43] 12.3 23.0 39.8 46.1 54.1 59.8 8.4 16.9 33.2 40.7 53.4 77.8

ST-Trans [23] 8.9 15.5 32.1 38.5 - - 9.4 21.1 36.4 42.3 - -
MSR [34] 12.2 22.7 38.6 45.2 52.7 63.0 8.4 17.1 33.0 40.4 52.5 77.1

ST-DGCN [33] 10.2 19.8 34.5 40.3 48.1 56.4 7.0 15.1 30.6 38.1 51.1 76.0
LCDC [15] 11.1 22.4 38.8 45.2 52.7 59.8 7.0 15.5 31.7 39.2 51.9 76.2

Ours 10.3 19.5 34.9 41.8 51.1 54.9 6.9 15.0 31.6 36.3 50.2 71.7

Action Smoking Discussion

Res. sup. [18] 23.0 42.6 70.1 82.7 94.8 137.4 32.9 61.2 90.9 96.2 121.3 161.7
LTD [43] 7.9 16.2 31.9 38.9 50.7 72.6 12.5 27.4 58.5 71.7 91.6 121.5

ST-Trans [23] 8.8 15.2 25.1 24.5 - - 7.9 25.7 39.9 47.5 - -
MSR [34] 8.0 16.3 31.3 38.2 49.5 71.6 12.0 26.8 57.1 69.7 88.6 117.6

ST-DGCN [33] 6.6 14.1 28.2 34.7 46.5 69.5 10.0 23.8 53.6 66.7 87.1 118.2
LCDC [15] 6.6 14.8 29.8 36.7 48.1 71.2 10.0 24.4 54.5 67.4 87.0 116.3

Ours 6.4 14.1 28.4 33.1 45.3 67.3 9.8 23.2 49.5 58.4 83.9 106.5

Action Directions Greeting

Res. sup. [18] 35.4 57.3 76.3 87.7 110.1 152.5 34.5 63.4 124.6 142.5 156.1 166.5
LTD [43] 9.0 19.9 43.4 53.7 71.0 101.8 18.7 38.7 77.7 93.4 115.4 148.8

ST-Trans [23] 10.2 17.8 42.5 48.6 - - 13.5 26.1 54.0 73.2 - -
MSR [34] 8.6 19.7 43.3 53.8 71.2 100.6 16.5 37.0 77.3 93.4 116.3 147.2

ST-DGCN [33] 7.2 17.6 40.9 51.5 69.3 100.4 15.2 34.1 71.6 87.1 110.2 143.5
LCDC [15] 6.9 17.4 41.0 51.7 69.1 99.1 14.3 33.5 72.2 87.3 108.7 142.3

Ours 6.9 17.0 39.2 48.4 66.4 94.6 13.4 39.3 69.4 81.6 103.3 137.6

Action Phoning Posing

Res. sup. [18] 38.0 69.3 115.0 126.7 141.2 131.5 36.1 69.1 130.5 157.1 194.7 240.2
LTD [43] 10.2 21.0 42.5 52.3 69.2 103.1 13.7 29.9 66.6 84.1 114.5 173.0

ST-Trans [23] 15.3 20.4 31.4 38.8 - - 10.6 22.8 57.6 73.7 - -
MSR [34] 10.1 20.7 41.5 51.3 68.3 104.4 12.8 29.4 67.0 85.0 116.3 174.3

ST-DGCN [33] 8.3 18.3 38.7 48.4 65.9 102.7 10.7 25.7 60.0 76.6 106.1 164.8
LCDC [15] 8.5 19.2 40.3 49.9 66.7 102.2 10.1 25.4 60.6 77.3 106.5 163.3

Ours 8.6 18.4 39.9 46.5 63.8 99.1 9.9 22.6 57.6 73.5 103.7 158.4

Action Purchases Sitting

Res. sup. [18] 36.3 60.3 86.5 95.9 122.7 160.3 42.6 81.4 134.7 151.8 167.4 201.5
LTD [43] 15.6 32.8 65.7 79.3 102.0 143.5 10.6 21.9 46.3 57.9 78.3 119.7

ST-Trans [23] 17.3 32.5 60.0 68.3 - - 8.5 22.9 47.8 66.8 - -
MSR [34] 14.8 32.4 66.1 79.6 101.6 139.2 10.5 22.0 46.3 57.8 78.2 120.0

ST-DGCN [33] 12.5 28.7 60.1 73.3 95.3 133.3 8.8 19.2 42.4 53.8 74.4 116.1
LCDC [15] 12.7 29.7 62.3 75.8 97.5 137.8 8.8 19.3 42.9 54.3 74.9 117.8

Ours 12.3 28.5 61.7 67.9 91.1 126.1 8.5 19.1 40.1 49.8 69.6 115.2
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Table 2. Cont.

Action Sitting Down Taking Photo

Res. sup. [18] 47.3 86.0 145.8 168.9 205.3 277.6 26.1 47.6 81.4 94.7 117.0 143.2
LTD [43] 16.1 31.1 61.5 75.5 100.0 150.2 9.9 20.9 45.0 56.6 77.4 119.8

ST-Trans [23] 9.2 32.7 58.8 65.9 - - 6.8 16.5 37.9 48.5 - -
MSR [34] 16.1 31.6 62.5 76.8 102.8 155.5 9.9 21.0 44.6 56.3 77.9 121.9

ST-DGCN [33] 13.9 27.9 57.4 71.5 96.7 147.8 8.4 18.9 42.0 53.3 74.3 118.6
LCDC [15] 14.1 28.0 57.3 71.2 96.1 147.3 8.4 18.8 42.0 53.5 74.5 117.9

Ours 13.8 26.1 55.3 65.3 94.2 141.9 8.1 17.6 38.3 48.7 72.8 110.8

Action Waiting Walking Dog

Res. sup. [18] 30.6 57.8 106.2 121.5 146.2 196.2 64.2 102.1 141.1 164.4 191.3 209.0
LTD [43] 11.4 24.0 50.1 61.5 79.4 108.1 23.4 46.2 83.5 96.0 111.9 148.9

ST-Trans [23] 9.2 20.5 59.8 62.2 - - 22.3 67.8 103.8 122.5 - -
MSR [34] 10.7 23.1 48.3 59.2 76.3 106.3 20.7 42.9 80.4 93.3 111.9 148.2

ST-DGCN [33] 8.9 20.1 43.6 54.3 72.2 103.4 18.8 39.3 73.7 86.4 104.7 139.8
LCDC [15] 8.7 20.2 44.3 55.3 73.2 105.7 19.6 41.8 77.6 90.2 109.8 147.7

Ours 8.5 19.7 44.6 50.0 68.6 101.5 17.6 38.3 73.5 84.1 103.5 135.8

Action Waiting Together Average

Res. sup. [18] 26.8 50.1 80.2 92.2 107.6 131.1 34.7 62.0 101.1 115.5 97.6 130.5
LTD [43] 10.5 21.0 38.5 45.2 55.0 65.6 12.7 26.1 52.3 63.5 81.6 114.3

ST-Trans [23] 7.5 13.7 27.7 46.2 - - 11.0 24.7 47.7 57.8 - -
MSR [34] 10.6 20.9 37.4 43.9 52.9 65.9 12.1 25.6 51.6 62.9 81.1 114.2

ST-DGCN [33] 8.7 18.6 34.4 41.0 51.9 64.3 10.3 22.7 47.4 58.5 76.9 110.3
LCDC [15] 9.1 19.8 36.3 42.7 50.5 61.2 10.4 23.3 48.8 59.8 77.8 111.0

Ours 9.1 19.2 36.1 39.8 48.4 57.7 10.0 21.8 46.8 55.1 74.4 105.4

Among the comparison methods, RNN-based techniques exhibited the poorest perfor-
mance, while transformer-based approaches outperformed GCN-based methods. Above all,
our method emerged as the top performer. The most significant improvements in the MPJPE
metric were observed with transformer-based techniques, highlighting their aptitude for
modeling 3D human motion dynamics and capturing global dependencies.

Specifically, existing methods generally performed well when predicting periodic and
simpler movements, such as “walking” and “eating”. However, their performance dropped
significantly when tasked with predicting more unpredictable and irregular movements like
“directions”, “posing”, and “purchases”. This indicates that these methods have difficulty
managing the dynamic changes and local–global dependencies inherent in human motion.

On the other hand, the algorithm proposed in our study demonstrated a high pre-
diction accuracy, even with highly complex, non-periodic, and irregular movements. Our
experimental results revealed that our proposed method surpasses most baseline methods
in short-term motion prediction, with even greater improvements noted in long-term pre-
diction. Our method delivered a superior performance in the 560 ms and 1000 ms MPJPE
metrics, an accomplishment attributable to GGTr’s ability to fully capture spatial correlation
and local–global temporal features, thereby bolstering the model’s prediction accuracy.

While our predictions for movements such as “walking” , “smoking” , “greeting” and
“waiting together” fell short compared to those of MSR [34], this nonetheless underscores the
sophisticated nature of transformer-based approaches. Looking ahead, we are committed
to further refining our model to enhance its performance.

Overall, our proposed method outperformed all the baseline models on average,
proving its superior performance in motion prediction. The outstanding performance
across both short-term and long-term human motion prediction highlights our model’s
effective capacity to capture both local and global temporal dependencies.

CMU-MoCap. To further validate the generalization of the proposed method, we com-
pared its performance with five existing algorithms [15,18,22,34,43] on the CMU-MoCap
dataset. The mean per joint position error was calculated for short-term and long-term
predictions. The experimental results are shown in Table 3, which includes the actions “bas-
ketball”, “basketball signal”, “directing traffic”, “jumping”, “soccer”, “walking”, and “wash
window”, as well as the average prediction error across all actions.
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Table 3. Prediction of 3D joint positions on CMU-MoCap for all actions. The best results are marked
in bold.

Time(ms) 80 160 320 400 560 1000 80 160 320 400 560 1000

Action Basketball Basketball Signal

Res. sup. [18] 29.5 53.1 91.2 106.0 128.7 157.4 14.6 22.1 39.1 46.6 60.0 89.9
LTD [43] 11.7 21.1 40.7 50.6 68.0 95.7 3.4 6.2 13.5 17.9 27.3 51.9
LPJP [22] 11.6 21.7 44.4 57.3 - 90.9 2.6 4.9 12.7 18.7 - 75.8
MSR [34] 10.3 18.9 37.7 47.0 62.0 86.3 3.0 5.6 12.5 16.6 25.5 50.0

LCDC [15] 9.6 17.6 35.4 44.4 60.0 88.4 2.6 4.7 10.4 13.9 21.9 46.2
Ours 9.5 17.5 32.5 41.5 56.8 88.4 2.5 4.6 11.5 13.1 20.6 45.8

Action Directing Traffic Jumping

Res. sup. [18] 21.8 38.8 70.5 85.3 110.3 165.1 30.2 53.0 89.4 103.9 125.6 160.5
LTD [43] 6.8 13.4 29.6 39.1 59.6 112.8 17.1 32.1 59.8 72.5 94.3 127.2
LPJP [22] 6.2 12.7 29.1 39.6 - 149.1 12.9 27.6 73.5 92.2 - 176.6
MSR [34] 6.1 12.6 29.4 39.2 50.5 114.6 15.2 28.9 56.0 69.1 92.4 126.2

LCDC [15] 5.0 10.0 23.4 31.4 49.3 99.6 12.8 26.1 54.6 68.5 91.8 126.1
Ours 5.0 9.9 22.4 30.9 48.6 93.9 13.1 27.2 53.6 67.8 89.8 116.9

Action Soccer Walking

Res. sup. [18] 26.5 47.0 81.5 96.2 117.9 139.1 14.6 22.9 36.1 40.9 51.1 69.5
LTD [43] 13.6 24.3 44.4 54.3 73.1 111.6 6.7 11.1 18.1 21.0 25.2 32.4
LPJP [22] 9.2 18.4 39.2 49.5 - 93.9 6.7 10.7 21.7 27.5 - 37.4
MSR [34] 10.9 19.4 37.4 47.0 65.3 101.9 6.4 10.3 16.9 20.1 25.5 36.8

LCDC [15] 10.3 19.0 36.8 45.7 62.3 96.9 6.3 10.4 16.1 18.6 23.3 33.6
Ours 9.8 19.0 35.3 44.6 59.7 92.7 5.8 10.2 15.4 17.3 22.9 33.2

Action Wash Window Average

Res. sup. [18] 19.3 31.8 56.1 66.0 83.6 125.9 22.4 38.4 66.2 77.8 96.7 129.6
LTD [43] 5.9 11.3 24.1 31.0 43.4 66.9 9.3 17.1 32.9 40.9 55.9 85.5
LPJP [22] 5.4 11.3 29.2 39.6 - 79.1 7.8 15.3 35.7 46.3 - 100.4
MSR [34] 5.4 10.9 24.5 31.8 45.1 70.2 8.2 15.2 30.5 38.7 52.3 83.7

LCDC [15] 4.8 9.5 22.0 29.0 42.5 68.9 7.3 13.9 28.4 35.9 50.1 80.0
Ours 4.8 9.5 20.3 28.0 41.3 67.4 7.2 14.0 27.3 34.7 48.5 76.9

Through quantitative evaluation, we clearly observe that our method effectively han-
dles various types of actions and consistently achieves a superior performance across all of
them. These empirical findings reinforce the superiority of our approach in human motion
prediction, both for short-term and long-term predictions. The consistent and significant
performance improvement over state-of-the-art methods on the dataset demonstrates the
robustness of our method.

Notably, as can be seen from Tables 2 and 3, our model performed well on the Hu-
man3.6m and CMU-MoCap datasets for prediction tasks up to 320 ms, and even better for
tasks above 320 ms. This intriguing performance pivot at 320 ms may represent a transition
point where prognostic difficulty shifts from short to long-term. We believe this is due to
our model’s capability to capture local and global time dependencies across body joints
through a strategic combination of GRU and transformer layers, effectively handling this
transition. Furthermore, this phenomenon could be tied to the inherent complexity of
human movement, especially when the prediction time exceeds 320 ms. This complexity
poses a challenge for models that rely on short-term prognosis. However, our model, thanks
to its specific structure and training procedure, seems to cope with this challenge more
effectively. In future work, we plan to delve deeper into this “prognostic barrier” at 320 ms,
aiming to better understand its underlying causes and how we can further improve our
model’s performance at this critical transition point. This understanding will potentially
enable us to optimize the dynamics of 3D joint position prediction.

4.5. Qualitative Comparison

To enhance our intuitive understanding and facilitate the evaluation of our model, we
provided a visualization of the motion prediction results. Figure 5 illustrates three examples
of predicted poses using our proposed method, alongside three other baseline methods.
The visualization results for the “phoning”, “discussion”, and “purchases” actions of the
Human3.6M dataset are presented in Figure 5. The first row in each subplot displays the
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ground truth pose sequences (in black), followed by the predicted poses (in blue). In other
words, each row presents the prediction results from one model.

Ground Truth

(Phoning)

Res . sup.

ms 200 400 1000560

MSR

LCDC

Ours

(a)

Ground Truth

(Discussion)

Res . sup.

ms 200 400 1000560

MSR

LCDC

Ours

(b)

Ground Truth

(Purchases)

Res . sup.

ms 200 400 1000560

MSR

LCDC

Ours

(c)
Figure 5. Qualitative analysis of the Human3.6M dataset: comparing phoning, discussion, and pur-
chases scenarios. (a) Phoning; (b) Discussion; (c) Purchases.

The visualization results indicate that our model is capable of adequately capturing
spatial dependencies and local–global temporal dependencies. It is noticeable that the
predictions generated by our method show higher similarity to the actual sequences and
better continuity between frames. For instance, in the case of subtler movements such
as “phoning”, our model successfully captures the long-distance temporal dependencies
concealed within the movement sequence, yielding superior long-term predictions. More-
over, in the “purchases” motion visualization, the movements between hands are more
coordinated. This illustrates our model’s proficiency in forecasting highly complicated
irregular movements and complex periodic motions.

4.6. Ablation Study

To critically assess the contribution of each component in our model, we performed a
set of ablation studies on the Human3.6M dataset. All architecture parameters were kept
constant to ensure a fair comparison of each module’s impact. These experiments focused
on assessing the impact of the graph convolutional network (GCNN), gated recurrent units
(GRU), and transformer layers (Tr) on the model’s performance. The experimental results
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are presented in Table 4. The optimal performance was achieved by integrating these
three components.

Table 4. The influence of the GCNN , GRU, and transformer layers (Tr) on the Human3.6M dataset,
on average, is notable. These three components of our model significantly contribute to its overall
accuracy. The best results are marked in bold.

Human3.6M,MPJPE (mm)
GCNN GRU Tr 80 160 320 400 560 1000

√ √
10.3 23.2 48.1 57.0 75.7 107.4√ √
10.2 22.7 47.5 56.2 75.3 107.0√ √
10.2 23.5 47.7 57.8 77.2 111.0√ √ √
10.0 21.8 46.8 55.1 74.4 105.4

GCNN : We used the original graph convolution module in place of the proposed
module. As shown in the first and third rows of Table 4, when this module is replaced,
prediction performance decreases. This result clearly indicates that there is critical spatially
relevant information hidden in the adjacent pose. When this information is ignored, it is
difficult for the model to capture time evolution trends, resulting in degraded performance.

GRU and transformer layers(Tr): The GRU unit, designed to capture local temporal
dependence, shows a remarkable performance, enhancing the accuracy of short-term pre-
dictions. The transformer layer exhibits exceptional ability in handling global temporal
dependence, which improves the accuracy of long-term predictions. We removed the
transformer layer directly from the proposed method. It can be seen that the long-term pre-
diction performance of the model was significantly reduced, and the short-term prediction
performance was also slightly reduced.

5. Conclusions

In this paper, we have proposed a novel framework for human motion prediction
that leverages the power of position-wise enhanced graph convolutional networks, gated
recurrent unit networks, and transformer layers. By strategically combining these networks,
our model effectively captures spatial information across body joints and temporally aligns
these dependencies, both locally and globally. The proposed framework has shown signifi-
cant improvements in predicting long-term movements, surpassing existing state-of-the-art
methods by a substantial margin. Experiments on the Human3.6M and CMU-MoCap
datasets provide evidence supporting the effectiveness of our proposed model. The efficacy
of our approach accentuates the potential of integrating advanced neural network archi-
tectures for improved understanding and prediction of complex human motion dynamics.
Future work will explore the integration of more sophisticated attention mechanisms and
deep learning architectures to further enhance prediction accuracy and efficiency.
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