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Abstract: Different devices in the smart home environment are subject to different levels of attack.
Devices with lower attack frequencies confront difficulties in collecting attack data, which restricts
the ability to train intrusion detection models. Therefore, this paper presents a novel method called
EM-FEDE (enhancement method based on feature enhancement and data enhancement) to generate
adequate training data for expanding few-shot datasets. Training intrusion detection models with
an expanded dataset can enhance detection performance. Firstly, the EM-FEDE method adaptively
extends the features by analyzing the historical intrusion detection records of smart homes, achieving
format alignment of device data. Secondly, the EM-FEDE method performs data cleaning operations
to reduce noise and redundancy and uses a random sampling mechanism to ensure the diversity of
the few-shot data obtained by sampling. Finally, the processed sampling data is used as the input to
the CWGAN, and the loss between the generated and real data is calculated using the Wasserstein
distance. Based on this loss, the CWGAN is adjusted. Finally, the generator outputs effectively
generated data. According to the experimental findings, the accuracy of J48, Random Forest, Bagging,
PART, KStar, KNN, MLP, and CNN has been enhanced by 21.9%, 6.2%, 19.4%, 9.2%, 6.3%, 7%, 3.4%,
and 5.9%, respectively, when compared to the original dataset, along with the optimal generation
sample ratio of each algorithm. The experimental findings demonstrate the effectiveness of the
EM-FEDE approach in completing sparse data.

Keywords: data enhancement; few-shot data; smart home; generative adversarial networks; intrusion
detection

1. Introduction

With the development of Internet of Things (IoT) technology, the application of smart
home scenarios is becoming increasingly widespread [1]. The number of smart home
devices connected to home networks rapidly increases, leading to a surge in network scale
and data traffic. These factors exacerbate security threats such as network attacks and
privacy breaches, presenting new security challenges [2]. Additionally, different types of
smart home devices differ in various aspects, posing unique security challenges for each
device. For example, smart locks may face security issues like password cracking and
fingerprint recognition attacks, while smart appliances may encounter concerns related to
electrical safety and control signal security.

There is currently a limited amount of research focusing on smart home security, with
most studies primarily concentrating on hardware design and passive defense measures.
For instance, the authors of [3] propose a method for privacy risk assessment and risk
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control measures to address privacy security concerns. The authors of [4] describe a prov-
able security authentication scheme to ensure the security of the smart home environment.
These studies, which are passive defense mechanisms, can improve the security of smart
homes to some extent, but they do not fully address all the security issues.

Intrusion detection, as a typical representative of active defense, is one of the critical
technologies for safeguarding the security of smart home systems [5]. It overcomes the
limitations of traditional network security techniques in terms of real-time responsiveness
and dynamic adaptability. Monitoring and identifying abnormal behavior in network
traffic enables timely detection and prevention of malicious attacks. Therefore, designing
an efficient intrusion detection model is of paramount importance in ensuring the security
of smart home systems. Traditional machine learning-based intrusion detection algorithms
are relatively straightforward to train, widely adopted, and demonstrate high efficiency and
reliability in practical applications [6,7]. On the other hand, intrusion detection algorithms
based on deep learning exhibit superior detection performance, but their exceptional
performance relies heavily on a significant amount of training data [8–10].

Currently, there is no comprehensive framework for research on smart home secu-
rity, and it still faces several challenges [11,12]. Due to the varying attack frequencies of
different devices in smart homes, there is an imbalance in collecting network traffic data,
with some devices having a deficient proportion of attack data compared to normal data.
The insufficient quantity of data makes it difficult to effectively train intrusion detection
models, resulting in a decline in their performance [13,14]. Therefore, this paper proposes
an enhancement method, EM-FEDE, applied to smart home intrusion detection in few-shot
scenarios. Firstly, the EM-FEDE method analyzes the historical intrusion detection records
of smart homes to determine whether there are features indicative of device types and data
types in the captured data and then adaptively extends the features to achieve format align-
ment of device data. Secondly, the EM-FEDE method performs data cleaning operations
to reduce noise and redundancy by removing duplicate entries and normalizing the data.
Furthermore, the method adjusts the random sampling mechanism to ensure the diversity
of the few-shot data obtained through sampling. Finally, the processed sampling data is
used as input for the CWGAN, a variant of GAN that improves data generation through
modifications in the loss function and optimization algorithms. The Wasserstein distance,
which measures the dissimilarity between two probability distributions, is employed by
CWGAN to calculate the loss between the generated data (fake data) and the real data.
Based on this loss, the CWGAN is adjusted, and the generator of the CWGAN outputs
effectively generates data. The main contributions of this paper are as follows:

• This paper proposes a feature enhancement module to improve the data quality in the
dataset by analyzing historical intrusion detection records of smart homes, adaptively
extending feature columns for the smart home devices dataset, and performing data
cleaning on the dataset;

• This paper proposes a data enhancement module to generate valid data to popu-
late the dataset using conditional Wasserstein GAN to realize the operation of data
enhancement for few-shot data;

• The effectiveness of the EM-FEDE method is evaluated using a typical smart home
device dataset, N-BaIoT. The performance of the original dataset and the expanded
dataset using the EM-FEDE method on each intrusion detection model is compared to
conclude that the classifier’s performance is higher for the expanded dataset than the
original dataset;

• The experiments demonstrate that expanding the dataset using the EM-FEDE method
is crucial and effective in improving the performance of attack detection. This work
successfully addresses the problem of few-shot data affecting the performance of
intrusion detection models.
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2. Related Works
2.1. Intrusion Detection Methods for Smart Homes

Intrusion detection methods for smart homes have gained significant attention in
recent years as a popular research direction in the field of smart homes, and many scholars
have conducted relevant research [15–17]. Many methods utilize sensors and network
communication functions within smart home devices to detect intrusions by monitoring
user behavior, device status, and other relevant data.

In 2021, the authors of [18] proposed an intrusion detection system that uses bidirec-
tional LSTM recursive behavior to save the learned information and uses CNN to perfectly
extract data features to detect anomalies in smart home networks. In 2021, the authors
of [19] proposed a two-layer feature processing method for massive data and a three-
layer hybrid architecture composed of binary classifiers in smart home environments to
detect malicious attack environments effectively. In 2022, the authors of [20] proposed
an intelligent two-tier intrusion detection system for the IoT. Using the feature selection
module combined with machine learning, both flow-based and packet-based, it can min-
imize the time cost without affecting the detection accuracy. In 2023, the authors of [21]
proposed an effective and time-saving intrusion detection system using an ML-based in-
tegrated algorithm design model. This model has high accuracy, better time efficiency,
and a lower false alarm rate. In 2023, the authors of [14] proposed a transformer-based
NIDS method for the Internet of Things. This method utilizes a self-attention mechanism
to learn the context embedding of input network features, reducing the negative impact of
heterogeneous features.

Even though numerous scholars have obtained commensurate outcomes pertaining to
the issue of smart home security, such research endeavors were executed with ample data
and did not consider the predicament of limited samples attributable to the shortage of
data emanating from various devices in smart homes. As a result, it is difficult for intrusion
detection models to assimilate the data feature, and the suggested models of the research
endeavors above are unsuitable for situations involving few-shot data.

2.2. GAN-Based Data Enhancement Methods

In machine learning and deep learning, the size of the dataset is a critical factor af-
fecting the performance of the model. However, obtaining large-scale labeled datasets
will require a large workforce and resources. Researchers have been exploring data en-
hancement techniques to expand the dataset and improve model performance. Among
these techniques, data enhancement methods using Generative Adversarial Networks
(GAN) [22] proposed by Ian J. Goodfellow et al. in 2014 have gained significant attention.
GAN-based data enhancement methods have shown promising results in enhancing the
performance of intrusion detection models by generating generated data that can be used
to supplement the limited labeled dataset.

GAN consists of a discriminator network and a generator network. The goal of the
discriminant network is to accurately determine whether a sample is from real or fake data.
The purpose of the generator network is to generate samples whose sources cannot be
distinguished by the discriminant network. In GAN, the Generator uses random noise Z as
input data, and its output is fake sample data G(z). The discriminator receives real sample
data x and fake sample data G(z) as inputs and obtains loss by determining whether the
data is real or fake by using the backpropagation algorithm to update the GAN parameters
based on the loss function.

In recent years, more and more research has applied GAN for data enhancement
to improve the performance and robustness of machine learning models. In 2021, the
authors of [23] proposed using the ACGAN model to solve the problem of the imbal-
anced distribution of 1D intrusion detection sample data, which improved the average
detection accuracy of some classification models. In 2021, the authors of [24] proposed
an improved DCGAN model with higher stability and sample balance to achieve higher
classification accuracy for a few samples. In 2022, the authors of [25] proposed a new gen-
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eration of methods that use a class of classification models to determine the authenticity of
facial images. This method improves cross-domain detection efficiency while maintaining
source-domain accuracy. In 2023, the authors of [26] proposed an attention-self-supervised
learning-aided classifier generative adversarial network algorithm to expand the samples
to improve the defect recognition ability of small sample data sets. In 2023, the authors
of [27] proposed a generative model for generating virtual marker samples by combining
supervised variational automatic encoders with Wasserstein GAN with a gradient penalty.
This model can significantly improve the prediction accuracy of soft sensor models for
small-sample problems.

Although scholars have made many achievements using GAN for data enhancement,
their applications are mainly carried out on images. In network security, there is still a lack
of research on data enhancement using GAN. In addition, the implementation of GANs
for data augmentation in the field of smart home intrusion detection has not been fully
explored, thereby limiting their potential to solve problems in this field.

3. EM-FEDE Method
3.1. Problem Analysis

Figure 1 shows a typical smart home environment. A diverse array of smart home
devices is linked to a gateway, which in turn is connected to the Internet via routers, and
the data collected by these devices is subsequently sent to terminals for user analysis.
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Figure 1. Smart home topology diagram.

Smart home devices differ in functionality and operational characteristics, exhibiting
distinct working hours and data throughput. Attackers take various factors into account,
such as device usage frequency and attack complexity, when exploiting vulnerabilities in
different types of devices. This leads to the devices being subjected to varying frequencies
of network attacks. The N-BaIoT dataset [28] of typical IoT devices shows the variance
in data throughput and traffic collected among different devices. As depicted in Figure 2,
a smart doorbell device (device1) and a smart camera device (device2) exhibit different
data throughput, with device1 having a lower data throughput. Consequently, the amount
of data collected by device1 is significantly less than that collected by device2 (338,599 vs.
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1,075,936). Moreover, the number of data points generated by different attack behaviors
also varies based on the attack frequencies of the devices. For instance, Figure 3 shows that
attack1 (a UDP attack by the Gafgyt botnet) and attack2 (a UDP attack by the Mirai botnet)
both utilize vulnerabilities to carry out DDoS attacks. However, attack2 is more effective
and straightforward, resulting in a higher frequency of occurrence. Therefore, attack1 has
far fewer data samples (255,111 vs. 1,229,999).
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Through the utilization of authentic datasets, information retrieval, and prior knowl-
edge, the present study presents an account of the operational and safety conditions of
various commonplace smart home devices in Table 1. The tabulation highlights that dis-
tinctive devices within the smart home setting exhibit assorted data throughput and attack
frequencies. Additionally, diverse categories of smart devices are susceptible to differing
attack behaviors, which results in a dissimilar amount of attack-related data. This situation
leads to marked discrepancies in the data collected between various devices and attack
types. For example, in the case of smart light bulbs, detecting and identifying attacks on
these devices effectively is challenging due to the limited amount of attack data available.
This scarcity of data is a result of the relatively low number of attacks that have been
observed on this particular type of device. On the other hand, for smart door lock devices
that experience a high frequency of attacks, more attack data is typically collected. How-
ever, there may still be instances of infrequent attack behaviors of a specific type (such as
DDoS attacks commonly observed on smart cameras). These infrequent attack behaviors
generate a small amount of attack data, which can be considered a sample size. As the
tally of interconnected smart home devices continues to increase, these disparities become
more prominent. Accordingly, during the process of flow data collection, specific devices
are often unable to generate sufficient attack data, which impairs the efficacy of intrusion
detection models. This limitation ultimately has a bearing on the overall security and
stability of the smart home environment. Therefore, addressing the challenge of few-shot
data resulting from a shortage of attack-related data is a critical research direction in the
field of smart home device network security.
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Table 1. Smart device working status table.

Devices Working Hours (h) Data Throughput Frequency of Attack

Router 24 Larger Higher
Gateway 20 Larger Higher

Light 14 Smaller Lower
TV 8 Larger Lower

Intelligent door lock 3 Smaller Lower
Floor sweeper 2 Smaller Lower

Washing machine 2 Smaller Lower
Smart camera 24 Larger Higher

We propose the EM-FEDE method, as depicted in Figure 4. The method consists
of three modules: the feature enhancement module, the data enhancement module, and
the intrusion detection module. The feature enhancement module is assigned the task of
processing the raw data by optimizing and filtering it. The data enhancement module
focuses on generating samples, thereby expanding the dataset by adding fake samples. The
intrusion detection module is responsible for identifying attacks and is trained using the
expanded dataset, resulting in an improved ability of the model to classify and recognize
various types of attacks. The EM-FEDE method employs symbols and their meanings, as
listed in Table 2.
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Table 2. Symbols used in the EM-FEDE method.

Symbols Description

R Historical intrusion detection records.

SearchF(x) Used to determine the existence of the device class and the data class
in x. It returns 1 if features are present and 0 otherwise.

Insert() Insert operation.
Class_Label(x) Obtain the corresponding class from the information in x.

ai The device class feature column.
bi The data class feature column.

LabelEncoding(x) The function is used for mapping during the process of
numericalization in x.

FE_Duplicate(x) The function is used for removing duplicate data in x.
FE_Normalization(x) The function is used for normalizing the data in x.

L 1-Lipschitz function.
Preal Real data distribution.
Pz Data distribution of input noise.

G(z) Fake sample data generated by the generator.

D(x) The probability that the discriminator determines that x belongs to
the real data.

Z Noise vector of the a priori noise distribution Pz.
∏
(

Preal , Pg
)

Joint probability distribution of real data and generated data.
Fake_data Generated data with label y_fake.

3.2. Feature Enhancement

This section focuses on the specific implementation of the EM-FEDE method in terms
of feature enhancement.

In Section 3.1, it was discussed that various smart home devices exhibit differing data
throughput and attack frequencies. Once the traffic data from these devices is captured, it is
typically stored in a pcap file format. The format of the pcap file is shown in Figure 5. While
the pcap file contains information such as timestamps, source addresses, and destination
addresses, it lacks the ability to indicate device and data classes, resulting in the inability
to label traffic. As a result, intrusion detection models that utilize supervised learning
methods cannot directly utilize this data for training purposes. This challenge is also
present in the N-BaIoT standard dataset, which includes eleven types of data collected
from nine types of IoT devices (including one type of normal data and ten types of attack
data). The dataset fails to provide feature columns that indicate the device class of each
sample and distinguish the data class. To address the challenge of being unable to use
raw data for training intrusion detection models and to improve data quality, this study
proposes the EM-FEDE method’s feature enhancement module. This module achieves
feature enhancement through R analysis, feature-adaptive expansion, and data cleaning,
thereby optimizing the data and indicating missing class features.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 23 
 

 

Table 2. Symbols used in the EM-FEDE method. 

Symbols Description 

R Historical intrusion detection records. 

�����ℎ�(�) 
Used to determine the existence of the device class and the data class in x. It returns 1 if 

features are present and 0 otherwise. 

Insert() Insert operation. 

�����_�����(�) Obtain the corresponding class from the information in x. 

ai The device class feature column. 

bi The data class feature column. 

�������������(�) The function is used for mapping during the process of numericalization in x. 

��_���������(�) The function is used for removing duplicate data in x. 

��_�������������(�) The function is used for normalizing the data in x. 

L 1-Lipschitz function. 

Preal Real data distribution. 

Pz Data distribution of input noise. 

G(z) Fake sample data generated by the generator. 

D(x) The probability that the discriminator determines that x belongs to the real data. 

Z Noise vector of the a priori noise distribution Pz. 

�(�����, ��) Joint probability distribution of real data and generated data. 

Fake_data Generated data with label y_fake. 

3.2. Feature Enhancement 

This section focuses on the specific implementation of the EM-FEDE method in terms 

of feature enhancement. 

In Section 3.1, it was discussed that various smart home devices exhibit differing data 

throughput and attack frequencies. Once the traffic data from these devices is captured, it 

is typically stored in a pcap file format. The format of the pcap file is shown in Figure 5. 

While the pcap file contains information such as timestamps, source addresses, and des-

tination addresses, it lacks the ability to indicate device and data classes, resulting in the 

inability to label traffic. As a result, intrusion detection models that utilize supervised 

learning methods cannot directly utilize this data for training purposes. This challenge is 

also present in the N-BaIoT standard dataset, which includes eleven types of data col-

lected from nine types of IoT devices (including one type of normal data and ten types of 

attack data). The dataset fails to provide feature columns that indicate the device class of 

each sample and distinguish the data class. To address the challenge of being unable to 

use raw data for training intrusion detection models and to improve data quality, this 

study proposes the EM-FEDE method’s feature enhancement module. This module 

achieves feature enhancement through R analysis, feature-adaptive expansion, and data 

cleaning, thereby optimizing the data and indicating missing class features. 

To address the inability to directly use the raw data for training intrusion detection 

models and improve data quality, this study proposes the feature enhancement module 

of the EM-FEDE method. It achieves feature enhancement through R analysis, feature-

adaptive expansion, and data cleaning. This process optimizes the data and enables the 

identification of missing class features. 

 

Figure 5. Common pcap file format. 

Magic(4B) Major(2B) Minor(2B) ThisZone(4B) SigFigs(4B)

SnapLen(4B) LinkType(4B)

Timestamp(4B) Timestamp(4B) Caplen(4B) Len(4B)

Data (including source address, destination address, etc.)…

Timestamp(4B) Timestamp(4B) Caplen(4B) Len(4B)

Data (including source IP address, destination IP address, etc.)…

……

Pcap Header

Packet Header

Packet Data

Figure 5. Common pcap file format.



Electronics 2023, 12, 3304 8 of 23

To address the inability to directly use the raw data for training intrusion detection
models and improve data quality, this study proposes the feature enhancement module
of the EM-FEDE method. It achieves feature enhancement through R analysis, feature-
adaptive expansion, and data cleaning. This process optimizes the data and enables the
identification of missing class features.

The following is the specific process of feature enhancement:
Step 1. The LF is used to indicate the device class, and the data class in R is determined

by Equation (1). If LF = 1, go to Step 3; if LF = 0, go to Step 2.

LF = SearchF(R); (1)

Step 2. If direct prior knowledge (E) is available regarding the class of device and
data, the device class feature (ai) and data class feature (bi) can be added to R through E.
In the absence of such knowledge, the captured traffic data is analyzed to gather relevant
information. As different attacks take place at different timestamps and distinct source IP
addresses represent unique device characteristics, the timestamp and source IP address are
treated as prior knowledge E. The device class feature (ai) and data class feature (bi) are
then added to R, utilizing E. The specific equations pertaining to this process are illustrated
in (2) and (3).

[ai, bi] = Class_Label(E), (2)

R = [R ∪ Insert(ai) ∪ Insert(bi)]; (3)

Step 3. Numerical, de-duplication, and normalization of R by Equations (4)–(6).

R = LabelEncoding(R), (4)

R = FE_Duplicate(R), (5)

R = FE_Normalization(R), (6)

In this step, we utilized Equation (4) to carry out numerical operations to convert
non-numerical data in R into numerical data for the purpose of training the model. To
tackle the problem of duplicate data, we applied Equation (5) to eliminate redundant data
and minimize its impact on the results during data analysis. Additionally, we normalized
the data using Equation (6) to ensure that all feature data was of the same magnitude and
reduce the influence of noise on the results;

Step 4. Divide the training set and the test set, and output.
Figure 6 illustrates the process of feature enhancement using the N-BaIoT dataset

as an example. The dataset contains data1 = {138.9020131, 72.11292822, . . ., 0}, where
138.9020131 represents the value of MI_dir_L5_weight, 72.11292822 represents the value
of MI_dir_L5_mean, 0 represents the value of HpHp_L0.01_pcc. There are 115 dimensional
features in data1, and the specific steps are as follows:

Step 1. There is no common feature used to indicate the device class and attack class
in N-BaIoT, LF = 0, so jump to Step 2;

Step 2. The N-BaIoT dataset contains prior knowledge E that enables us to determine
the device class and data class of the dataset. Based on Equations (2) and (3), we added
feature columns “device” and “Label”. Data1 corresponds to mirai_attacks syn attacks on
the Ecobee_Thermostat device. As a result, we obtain data1′ = {138.9020131, 72.11292822,
. . ., 0,”Ecobee_Thermostat”,”mirai_attacks syn”};

Step 3. The obtained data1′ contains non-numerical data, so it is numericalized by
Equation (3) to obtain data1’ = {138.9020131, 72.11292822, . . ., 0, 2, 8}, where 2 represents
the value of device, 8 represents the value of Label. Then the data1’ is de-duplicated and
normalized by Equations (4) and (5), and finally the data”’ = {0.3972691, 0.0116122, . . .,
0.380514, 2, 8} after feature enhancement is obtained;
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Step 4. Output the training set and test set.
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Figure 6. Dataset N-BaIoT feature enhancement process.

Feature enhancement is beneficial for reducing the superfluous information present in
the data by processing and transforming the original features. This leads to the normaliza-
tion of data, enhances its quality and usability, and provides a more dependable foundation
for subsequent data enhancement and intrusion detection.

3.3. Data Enhancement

This section presents a detailed account of the practical implementation of data en-
hancement utilizing the EM-FEDE method. The data enhancement framework is shown in
Figure 7.

Figure 7 is composed of three primary components. The first component is the input
section, where the original data is enhanced by feature enhancement and utilized as
input for the subsequent model training. The second component constitutes the CWGAN
section. It contains two key components: the generator and the discriminator. The generator
generates a variety of fake samples, while the discriminator is responsible for distinguishing
between real and fake samples. The third component is the output section, where the
generator produces diverse and authentic fake samples following iterative training of the
CWGAN. These samples are then integrated into the original dataset, resulting in the
enhanced dataset as the final output.
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Figure 7. Data enhancement framework.

To quantify the disparity between the real data distribution and the fake data distri-
bution, the EM-FEDE method employs the Wasserstein distance, which is expressed as
Equation (7):

Wasserstein(Preal, Pz) = infγ∼∏ (Preal,Pz)
E(x,y)∼γ[||x− y||], (7)

That is, for any joint probability distribution γ there exist edge probability distributions
Preal and Pg. Two sample points, x and y, can be sampled from the edge distribution, and
the value of the Wasserstein distance is a lower boundary on the expectation of the x and
y distances.

The Wasserstein distance is a metric that quantifies the dissimilarity between two
probability distributions. It is smaller when the distributions are more similar. Even if the
two distributions have no overlap, the Wasserstein distance can still be computed, unlike
the Jensen–Shannon divergence, which cannot handle this case. This property has been
leveraged by the EM-FEDE method, which incorporates the Wasserstein distance into the
loss function of the CWGAN. As a result, the neural network structure is improved, and
the objective function is represented by an equation:

LCWGAN = Ex∼Preal [D(x|y)]− Ez∼Pz [D(G(z|y))], (8)

where D∈L, x is the sample from the real data distribution, Preal, and y is the conditional
variable, i.e., the class characteristics of the data.

The following are the main steps of the data enhancement process:
Step 1. The training set in R, after undergoing the feature enhancement process, is

utilized as the training data for the CWGAN. The generator and discriminator, both of
which employ multilayer perceptron models, are defined as two neural network models.
Equation (8) is employed to determine the objective function of the EM-FEDE method;

Step 2. Training the discriminator. The process of training the discriminator is illus-
trated in Figure 8. It involves inputting a set of randomly generated fake_data samples and
real_data samples of sizes n and m, respectively, into the discriminator. The loss values of
both sets of data are computed using Equation (9) and subsequently used to update the
discriminator’s parameters:
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LossDiscriminator = maxLCWGAN = min(−LCWGAN)
= Ez∼Pz [D(G(z|y))]− Ex∼Preal [D(x|y)] ; (9)
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Step 3. Training the generator. The process of training the generator is illustrated
in Figure 9. The generator is trained by generating a d-dimensional noise vector Z with
label y as input, producing a set of fake_data samples of size n. These fake_data samples,
along with the real_data samples, are then input into the discriminator. The loss value for
this set of fake_data is computed using Equation (10), and the generator’s parameters are
updated accordingly.

LossGenerator = minCWGAN = −Ez∼Pz [D(G(z|y))]; (10)
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Step 4. The training process iterates Steps 2 and 3 repeatedly until the predetermined
number of iterations or loss of convergence is reached. Conversely, by generating a new set
of fake_data and returning R = [R ∪ fake_data].

Following the process of data enhancement, the imbalanced original dataset is enriched
with fake data, effectively ensuring a more even distribution of data across all classes within
the dataset.

In the EM-FEDE method, the computational cost of feature enhancement is negligible,
so its computational complexity depends mainly on the CWGAN part of the data enhance-
ment module. For the EM-FEDE method, the gradients of the generator and discriminator
need to be computed and updated. In each epoch, O(|gω| + |gθ|) floating-point opera-
tions are required (where gω is the gradient of the generator and gθ is the gradient of the
discriminator), and thus its overall complexity is O(|R|·(|gω| + |gθ|)·Ne)(where |R| is
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the training dataset and Ne is the total number of training times). Algorithm 1 gives the
detailed algorithmic flow of the EM-FEDE method.

Algorithm 1: EM-FEDE

Input: α = 0.0005, the learning rate; n = 50, the batch size; c = 0.01, the clipping parameter; ω0,
initial discriminator parameters; θ0, initial generator parameters; Ne = 1000, the training cycles.
Output: Expanded R
Process:
1. Calculate LF by Equation (1)
2. If LF = 0
3. Add feature columns that are helpful for classification to R through Equations (2)–(4)
4. Numerization, de-duplication, and normalization by Equations (5)–(7)
5. Divide the processed R into training sets and test sets
6. End if
7. While θ has not converged or epoch < Ne do
8. epoch++
9. Sample of m noise samples{z1, . . ., zn} ~ PZ a batch of prior data
10. Sample of m examples{(x1,y1), . . ., (xn,yn)} ~ Preal a batch from the real data
11. Update the discriminator D by ascending its stochastic gradient (gω)

12. gω = ∇ω

[
1
m

m
∑

i=1
fω(xi|yi)− 1

m

m
∑

i=1
fω(gθ(z i|yi))

]
13. ω = ω + α ∗ RMSProp(ω, gω)
14. ω = clip(ω,−c, c)
15. Sample of m noise samples{z1, . . ., zm} ~ PZ a batch of prior data.
16. Update the generator G by ascending its stochastic gradient (gθ)

17. gθ = −∇θ 1
m

m
∑

i=1
fω(gθ(z i|yi))

18. θ = θ − α ∗ RMSProp(θ, gθ)
19. End while
20. Generate sample data for each class through the generator to populate R
21. Train the expanded R on different classifiers to obtain various evaluation indicators

4. Results
4.1. N-BaIoT Dataset Description

The N-BaIoT dataset, released in 2018, consists of network traffic samples extracted
from nine real IoT devices, featuring normal traffic from these devices and five varieties
of attack traffic from the gafgyt and mirai botnet families. Figures 10 and 11 illustrate the
differences in the data distribution across different traffic types and devices.
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The N-BaIoT dataset comprises extracted functions derived from raw IoT network
traffic information. Upon receipt of each packet, a synopsis of the protocol and the host’s
behavior is computed with respect to the transmission of each packet. The contextual
information of the data packet is then represented by a set of statistical features that are
generated whenever a data packet arrives. Specifically, the arrival of each data packet
leads to the extraction of 23 statistical features from five distinct time windows, namely,
100 ms, 500 ms, 1.5 s, 10 s, and 1 min. These five 23-dimensional vectors are subsequently
concatenated into a single 115-dimensional vector.

The N-BaIoT dataset has been obtained in a real-world IoT setting, thus ensuring a
high level of authenticity and representativeness. It serves as a standardized dataset that
can be used by researchers to evaluate and enhance the efficacy of intrusion detection
systems for IoT devices.

4.2. Data Preprocessing

The normalization method used in Equation (6) is Min–Max normalization. The
specific formula for normalization is shown below:

xi =
xi − xmin

xmax − xmin
, (11)

where xi is the current feature, xmin is the minimum eigenvalue in the same dimension, and
xmax is the maximum eigenvalue in the same dimension.

To replicate the scarcity of data in smart home devices in the real world and to
guarantee that the dataset gathered from sampling includes samples from all categories,
this research employs stratified sampling. This method ensures that each sample has
an equal opportunity to be selected while maintaining the randomness of the samples.
Ultimately, 2860 data samples were randomly chosen from the dataset as representative
examples. The training and test data were then divided in a 7:3 ratio, and the sample
distribution of the training and test sets can be found in Table 3.

Table 3. Sample distribution of training and test sets.

Traffic Type Name Number of Training Sets Number of Test Sets

benign_traffic 1054 325
gafgyt_attacks combo 136 60
gafgyt_attacks junk 122 75
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Table 3. Cont.

Traffic Type Name Number of Training Sets Number of Test Sets

gafgyt_attacks scan 124 78
gafgyt_attacks tcp 97 56
gafgyt_attacks udp 91 51
mirai_attacks ack 76 42
mirai_attacks scan 83 40
mirai_attacks syn 76 42
mirai_attacks udp 73 49

mirai_attacks udpplain 70 40

4.3. Experimental Environment

In order to verify the feasibility of the model in this paper, experiments were conducted
in the experimental environment shown in Table 4.

Table 4. Experimental environment configuration.

Category Parameters

CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz
RAM 64 GB

Programming Tools Jupyter Notebook
Programming Languages Python3.8

Deep Learning Framework Pytorch1.8
Machine Learning Platform Weka3.9

Data Processing Library Numpy, pandas, etc.

4.4. Network Structure

The structural details of the CWGAN model designed in this article are presented in
Table 5. The structural details of the MLP and CNN classifiers are shown in Table 6.

Table 5. Model parameters of the generator and discriminator.

G/D Structure Size

Generator

Input layer 50
Hidden layer 1(Tanh()) 128
Hidden layer 2(Tanh()) 256
Hidden layer 3(Tanh()) 128
Output layer(Tanh()) 116

Discriminator

Input layer 116
Hidden layer 1(Tanh()) 128
Hidden layer 2(Tanh()) 128

Output layer 1

Table 6. Model parameters of the classifier.

Classifier Structure Size

MLP

Input layer 116
Hidden layer 1(Tanh()) 128
Hidden layer 2(Tanh()) 128

Output layer 11

CNN
Input layer 116

Conv1D(Relu()) 32
Pooling layer 32



Electronics 2023, 12, 3304 15 of 23

Table 6. Cont.

Classifier Structure Size

CNN

Conv1D(Relu()) 32
Pooling layer 32

Flatten 224
Dense 50
Dense 11

4.5. Results and Analysis

This study aimed to assess the effectiveness of the EM-FEDE method in enhancing
the intrusion detection classifier. To accomplish this, machine learning and deep learning
classification algorithms were employed to evaluate the dataset. The evaluation metrics
used in this study, namely Accuracy, Precision, Recall, and F1 Score, are widely accepted in
the field. The formulas for calculating each metric are provided below:

Accuracy =
TN + TP

TN + FP + FN + TP
, (12)

Precision =
TP

FP + TP
, (13)

Recall =
TP

FN + TP
, (14)

F1 Score = 2 ∗ Prescision ∗ Recall
Prescision + Recall

, (15)

where TP indicates the number of true positives; TN indicates the number of true negatives
in the sample; FN indicates the number of false negatives; and FP indicates the number of
false positives.

To test the effectiveness of the fake samples, the intrusion detection classifier was
trained on both the original training set and the training set enhanced by the EM-FEDE
method. Subsequently, the enhancement effect of the EM-FEDE method was evaluated by
assessing the comprehensive classification performance of the intrusion detection classifier
using the test set. Multiple sets of data were generated for experiments, each with different
ratios of fake samples, as documented in Table 7.

Table 7. Sample size at different generated sample ratios.

Dataset (Generated Sample Ratios) Number of Fake Samples Number of Samples after Expansion

x (Original sample size) 0 2002
2x 2004 4006 (2002 + 2004)
3x 4006 6008 (2002 + 4006)
4x 6118 8120 (2002 + 6118)
5x 8010 10,012 (2002 + 8010)
6x 10,012 12,014 (2002 + 10,012)
7x 12,014 14,016 (2002 + 12,014)
8x 14,016 16,018 (2002 + 14,016)
9x 16,018 18,020 (2002 + 16,018)

10x 18,009 20,011 (2002 + 18,009)

The distributions of the original data training set and the expanded training set are
shown in Figures 12 and 13, respectively, using a generated sample ratio of 5x as an example.
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The study conducted a comparison of multi-classification results between the original
dataset and the generated sample ratio of 5x, as presented in Table 8. We evaluate the
EM-FEDE method using various machine learning algorithms, where J48 is a decision
tree algorithm, Random Forest is the Random Forest algorithm, Bagging is an integrated
learning algorithm, PART is an algorithm that extracts rules in a dataset using incomplete
decision trees, KStar is an instance-based classification algorithm, KNN is the K Nearest
Neighbors algorithm, MLP is a Multi-Layer Perceptron Machine, and CNN is a Convolu-
tional Neural Network. The results demonstrated that J48, Random Forest, Bagging, PART,
KStar, KNN, MLP, and CNN showed an accuracy improvement of 16.4%, 4.9%, 10.7%, 9.2%,
4.9%, 4.4%, 3.1%, and 5.7%, respectively.
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Table 8. Comparison of multi-classification results between the original dataset of size x and the
mixed dataset with a generated sample ratio of 5x (the precision and F1 Score of some algorithms
are unknown (?), which is due to the presence of Nan values in the calculation of precision, i.e., a
denominator of 0). This scenario can occur when the algorithm fails to classify any sample into a
particular class or when it wrongly classifies all samples in that class.

Dataset Algorithm Accuracy Precision Recall F1 Score

N-BaIoT

J48 0.624 ? 0.624 ?
Random

Forest 0.755 ? 0.756 ?

Bagging 0.655 ? 0.655 ?
PART 0.673 ? 0.673 ?
KStar 0.789 0.699 0.701 0.699
KNN 0.768 0.773 0.768 0.771
MLP 0.811 0.711 0.706 0.708
CNN 0.712 0.726 0.673 0.698

N-BaIoT after
EM-FEDE

method processing

J48 0.788 0.788 0.788 0.788
Random

Forest 0.804 ? 0.804 ?

Bagging 0.762 ? 0.762 ?
PART 0.765 0.795 0.765 0.779
KStar 0.838 0.831 0.838 0.834
KNN 0.812 0.796 0.812 0.803
MLP 0.842 0.731 0.678 0.703
CNN 0.769 0.828 0.736 0.779

The evaluation of the experiments was carried out using various classification algo-
rithms, including KNN, KStar, Bagging, PART, J48, Random Forest, MLP, and CNN. The
evaluated results for datasets enhanced with different generated sample ratios are shown
in Figure 14.
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As shown in Figure 14, the utilization of the EM-FEDE method has improved the
accuracy of various classification algorithms. This improvement was observed when
expanding the dataset compared to the original dataset. Additionally, the optimal sample
ratio for achieving the best performance varies across different classification algorithms.
With an increase in the number of generated samples, the accuracy of each classification
algorithm gradually increases. The accuracy of J48 has increased from 62.39% (x) to 80.43%
(10x), RF has increased from 75.55% (x) to 81.73% (6x), PART has increased from 67.28%
(x) to 76.49% (5x), MLP has increased from 81.09% (x) to 84.45% (10x), CNN has increased
from 71.18% (x) to 77.05% (10x), KNN has increased from 76.8% (x) to 83.31% (4x), KStar
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has increased from 78.9% (x) to 85.24% (4x), and Bagging has increased from 65.5% (x) to
84.86% (2x).

However, when the generated sample ratio becomes too large, the accuracy of some
classification algorithms slightly decreases compared to a smaller generated sample ratio.
The accuracy of RF decreases from 81.73% (6x) to 76.44% (10x), PART decreases from 76.49%
(5x) to 65.91% (10x), KNN decreases from 83.31% (4x) to 81.32% (10x), KStar decreases from
85.24% (4x) to 81.94% (10x), and Bagging decreases from 84.86% (2x) to 73.98% (10x).

The accuracy of several classification algorithms such as RF, PART, KNN, KStar, and
Bagging initially improves as the number of generated samples increases until they reach
their optimal generated sample ratio, after which the accuracy decreases. This trend occurs
due to the presence of fake data, which can negatively affect the quality of the data. The
generator model aims to approximate the distribution of real data as closely as possible, but
if the quantity of fake data becomes too large, the generator model can experience mode
collapse. This phenomenon indicates that the fake data becomes excessively similar, and
increasing the data further no longer improves the classifier’s performance. Instead, it can
lead to a decrease in classification accuracy due to noise in the fake data.

In contrast, J48, MLP, and CNN exhibit a gradual increase in accuracy. J48, a machine
learning classifier based on feature partitioning, is typically sensitive to diversity and
complexity. MLP and CNN, as deep learning classifiers, possess stronger representational
and generalization capabilities. An increase in fake data leads to an increase in the training
data for classifiers. This increase provides more opportunities for the classifiers to learn
from different data distributions and features, leading to more complex and deeper levels
of feature representation. Consequently, the classifiers’ accuracy improves.

The variability in the best generated sample ratios is evident across different algo-
rithms, as illustrated in Figure 14. Table 9 presents the accuracy of said ratios, in contrast to
the original dataset, for various algorithms. The accuracy of J48, Random Forest, Bagging,
PART, KStar, KNN, MLP, and CNN improved by 21.9%, 6.2%, 19.4%, 9.2%, 6.3%, 7%, 3.4%,
and 5.9%, respectively. It is worth noting that the extended dataset demonstrated an overall
higher accuracy in comparison to the original dataset when scaled to the best generated
sample ratio of each algorithm.

Table 9. The accuracy of multi-classification is compared between the original data set and the mixed
data set with the optimal generation sample ratio of each algorithm.

Algorithm
Optimal Generation

Sample Ratio nx
(1 ≤ n ≤ 10)

Accuracy of the
Original Dataset

Accuracy of the Mixed
Dataset with the Optimal
Generation Sample Ratio

The Percentage
of Growth

J48 10x 0.624 0.843 21.9%
Random Forest 6x 0.755 0.817 6.2%

Bagging 2x 0.655 0.849 19.4%
PART 5x 0.673 0.765 9.2%
KStar 4x 0.789 0.852 6.3%
KNN 4x 0.768 0.833 7%
MLP 10x 0.811 0.845 3.4%
CNN 10x 0.712 0.771 5.9%

SMOTE [29] is an oversampling method that generates new samples to expand the
dataset based on the relationship between samples, and CGAN [30] is an extension of
GAN for conditional sample generation. This part of the experiment examined the impact
of different generated sample ratios on accuracy in J48 and Bagging for mixed datasets
created using SMOTE, CGAN, and the proposed method. Additionally, we compared it
with the same number of datasets containing only real data to prove the effectiveness of the
proposed method in this paper. The experimental results are shown in Figures 15 and 16.
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Based on the results presented in Figure 15, in our method, it is evident that the
accuracy of the enhanced dataset, which includes a combination of fake data and real data
at the generated sample ratios of nx (n = 2, 3, . . ., 10), is superior to that of an equivalent
number of instances from the original dataset. At lower generated sample ratios, the mixed
dataset exhibits significantly improved accuracy on J48 in comparison to an equivalent
number of instances from the real dataset. As the generated sample ratio increases, the
accuracy of the mixed dataset on J48 exhibits fluctuation, albeit within a small range, and
ultimately reaches a plateau. Although the mixed dataset continues to outperform the real
dataset in terms of accuracy on J48, its advantage diminishes as the generated sample ratio
becomes larger.

Regarding the CWGAN, at lower generated sample ratios nx (n = 2, 3, 4), the accuracy
of the mixed dataset in J48 slightly improves compared to the same number of instances of
the real dataset. However, for generated sample ratios of nx (n = 4, . . ., 10), the accuracy of
the mixed dataset at J48 is lower than that of the equivalent number of real datasets, and
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the performance of the real dataset is significantly better than that of the mixed dataset as
the generated sample ratio increases.

Regarding the SMOTE, at the generated sample ratio of nx (n = 2, . . ., 7), the accuracy
of the mixed dataset in J48 is significantly higher than that of the real dataset with the same
number of samples. At the generated sample ratio of nx (n = 8, 9, 10), the accuracy of the
hybrid dataset starts to decrease and is lower than the equivalent number of real datasets.

Based on the experimental results, we can conclude that the J48 algorithm has more
capacity for learning the supplementary feature information that is provided by the ex-
panded dataset. This attribute of the algorithm contributes to an improved understanding
of the dataset’s traits and patterns, thereby leading to an enhancement of the classifier’s
performance. In addition to this, the introduction of a small quantity of artificial data
has been observed to have a beneficial effect on the model’s ability to generalize, and it
can also serve to mitigate the effects of overfitting and noisy data. However, it should be
noted that there is a threshold beyond which the quantity of artificially generated data
becomes sufficient, and further increments of such data do not yield any improvement in
the accuracy of the intrusion detection model.

The results in Figure 16 show that the accuracy of the mixed dataset with generated
sample ratio nx (n = 2, . . ., 6) on the Bagging algorithm is better than that of the corre-
sponding number of real datasets in the method of this paper. However, for the generated
sample ratio nx (n = 7, . . ., 10), the accuracy of the mixed dataset is lower than that of
the corresponding number of real datasets. The experimental results reveal that the op-
timal generated sample rate for the Bagging algorithm using the method in this paper is
2x. Moreover, the accuracy of Bagging decreases and stabilizes as the generated sample
rate increases.

Regarding the CWGAN, the accuracy of the mixed dataset is higher than the same
number of instances of the real dataset for the generation sample rate nx (n = 2, 3, 5).
However, for the generating sample ratio of nx (n = 4, 6, . . ., 10), the accuracy of the mixed
dataset is lower than the accuracy of the same number of real datasets. The results indicate
that the best generated sample ratio for the Bagging algorithm using the CWGAN is 3x.

Regarding the SMOTE, the accuracy of the mixed dataset is higher for the generation
sample ratio nx (n = 2, . . ., 6) compared to the same number of instances of the real dataset.
For the generation sample ratio nx (n = 7, . . ., 10), the accuracy of the mixed dataset is
lower than the accuracy of the same number of instances of the real dataset. From the
experimental results, it can be concluded that the optimal generation sample ratio for
Bagging on SMOTE is 4x.

When the generated sample ratio nx (n = 7, . . ., 10) is too large, the accuracy of both
the methods in this paper, CWGAN and SMOTE on Bagging, is lower than the equivalent
number of real datasets. Despite the decrease in accuracy, the accuracy of this paper’s
method and SMOTE is still higher than that of the original dataset x. By comparing this
paper’s method, CWGAN, and SMOTE, it can be concluded that this paper’s method
exhibited better performance.

Based on our experimental results, we can conclude that utilizing fake data for data
enhancement can significantly enhance the accuracy of the classifier, particularly when
the expansion multiplier is small. However, the introduction of fake data may result in
noise, and its proportion increases with the expansion multiplier. This difference between
real and fake data can make it challenging to provide sufficient useful feature information,
which can, in turn, impede the ability of the model to learn the data features. Ultimately,
this can lead to a reduction in the accuracy of the classifier.

The SMOTE algorithm analyzes the minority class samples and manually synthesizes
new samples to add to the dataset based on the minority class samples. This technique
of generating new samples through oversampling helps prevent overfitting. However, it
may generate the same number of new samples for each minority class sample, resulting
in increased overlap between classes and the creation of samples that do not offer useful
information. The CGAN method improves the data generation process by incorporating
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additional information to guide the model. However, the training process of CGAN is
not very stable, and the quality of the generated data can vary. In contrast, the EM-
FEDE method proposed in this paper uses the CWGAN approach to generate data with
greater diversity. It also provides more informative samples and is more stable during
training, resulting in higher-quality generated data compared to CGAN. To summarize,
the effectiveness of the EM-FEDE method has been demonstrated, making it suitable for
training datasets for intrusion detection models. However, it is crucial to consider that the
optimal generated sample ratio may differ based on the particular algorithm and model in
use. To attain the highest level of accuracy and performance for a given intrusion detection
algorithm or model, it is essential to undertake a meticulous evaluation and selection of
the most fitting generated sample ratio. This selection and evaluation process is crucial to
guaranteeing optimal outcomes.

5. Discussion

The present article discusses the issue of few-shot data on smart home devices and
the challenges this poses for intrusion detection models. Specifically, the study highlights
how the security dataset collected from traffic information often lacks data, which limits
the performance of intrusion detection models. To address this issue, the article proposes a
method called EM-FEDE, which enhances the dataset and effectively mitigates the impact
of few-shot data on intrusion detection performance, improving security in smart home
environments. The study evaluates the performance of datasets enhanced with different
generated sample ratios and analyzes the effect of using enhanced datasets for intrusion
detection model training. Furthermore, the article examines the influence of different
generated sample ratios on classification performance for specific classification algorithms.
The results indicate that the optimal generated sample ratio may vary depending on the
algorithm and model used. Based on the obtained results, it can be concluded that the
proposed method shows promising performance in solving few-shot data. In addition to
intrusion detection, it can be applied to different domains, such as sentiment analysis tasks
where the samples of various sentiment categories are highly imbalanced and underwater
target recognition tasks where the samples are too small to train an effective model.

In this paper, the specific details regarding the optimal expansion multiplier and the
ratio of generated data to real data for various classification algorithms are not extensively
explored. Thus, future studies will focus on optimizing the intrusion detection model by
selecting more suitable classification algorithms to enhance detection accuracy. Addition-
ally, further research will be conducted to determine the appropriate enhancement factors
and ratios between generated and real data during the data enhancement process.
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