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Abstract: In today’s competitive market, sales forecasting of newly released and short-term products
is an important challenge because there is not enough sales data. To address these challenges, we
propose a sales forecasting model for new-released and short-term products and study the case of
mobile phones. The main approach is to develop an integrated sales forecasting model by training
the sales patterns and product characteristics of the same product category. In particular, we analyze
the performance of the latest 12 machine learning models and propose the best performance model.
Machine learning models have been used to compare performance through the development of
Ridge, Lasso, Support Vector Machine (SVM), Random Forest, Gradient Boosting Machine (GBM),
AdaBoost, LightGBM, XGBoost, CatBoost, Deep Neural Network (DNN), Recurrent Neural Network
(RNN), and Long Short-Term Memory (LSTM). We apply a dataset consisting of monthly sales data of
38 mobile phones obtained in the Korean market. As a result, the Random Forest model was selected
as an excellent model that outperforms other models in terms of prediction accuracy. Our model
achieves remarkable results with a mean absolute percentage error (MAPE) of 42.6258, a root mean
square error (RMSE) of 8443.3328, and a correlation coefficient of 0.8629.

Keywords: sales forecasting; short-term product; machine learning

1. Introduction

The current economic situation is characterized by intense competition, rapid product
development, and increased product differentiation, resulting in shorter product lifecycles
and greater volatility in sales patterns. These changes have significant implications for the
retail industry, which faces stronger requirements for sales forecasting. In the industry,
accurate sales forecasting is becoming increasingly important because if excessive sales
forecasting is made, malicious inventory will accumulate, and if under-sales forecasting
is made, the opportunity to increase profits will be lost. In particular, as the life cycle
of the product is getting shorter, sales forecasting immediately after release is becoming
very important. However, forecasting sales for newly released and short-term products is
challenging because of the limited availability of historical sales data, a major source of sales
forecasting. In particular, sectors such as electronics and fashion encounter challenges in
accurately forecasting sales due to high product diversity and limited sales history [1]. Even
with business expertise, predictions can still be influenced by cognitive and motivational
biases [2,3]. Additionally, while it is known that there is some kind of nonlinear mapping
relationship between sales series, it is difficult to explain it with a clear mathematical model.
For the above reasons, machine learning models are suitable for learning and predicting
quantitative data-based linear and nonlinear sales patterns.

While individual forecasting models of short-term products may face learning failures
and generalization errors due to limited amounts and diversity of data, integrated models
across short-term product groups can achieve stronger results. Given the shorter product
lifecycles of products like mobile phones [4], an integrated model for the product group is
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more appropriate. In particular, when the amount of data is limited, such as short-term
products, machine learning, which is less affected by data sets, should be considered
first rather than deep learning, which requires relatively much data [5]. Product sales
forecasting is influenced by various factors, and past sales are one of the factors that are
usually considered [6-8]. However, in order to build an integrated model for short-term
products, identifying the characteristics between products can also be an important factor.
Therefore, in this study, we develop an integrated sales forecasting model for mobile
phones, taking into account various data on product sales and context, including when to
introduce, specifications provided by manufacturers, and information on product sales.

Sales forecasting has been extensively explored by researchers, encompassing various
topics and methodologies. Notably, a range of methods for sales and demand forecasting
have been studied, with a recent emphasis on machine learning and deep learning models.
In one study, multiple linear regression and Support Vector Machine (SVM) were applied to
forecast sales in the German automobile market. The results demonstrated that the nonlin-
ear SVM model outperformed the linear regression model [9]. Another study investigated
traffic accidents and employed Linear Regression, Random Forest, Naive Bayesian, and
AdaBoost. Among these models, Random Forest yielded the best performance [10]. An
empirical study focused on predicting tourism demand for Hong Kong visitors using the
Lasso model, which was found to be valid for this purpose [11]. Another study analyzed
supply chain demand forecasts using nonlinear machine learning techniques, specifically
SVM and Recurrent Neural Network and demonstrated their superiority over traditional
statistical methods when applied to real Canadian foundry data [12]. Additionally, a study
predicted retail clothing sales using SVM and artificial neural networks, revealing that the
models based on artificial neural networks outperformed SVM [13]. Moreover, Support
Vector Regression was employed to forecast demand for Taiwanese mobile phones, further
highlighting its effectiveness [14].

Tree-based ensemble models have also been extensively explored in demand forecast-
ing. For example, Reference [15] presented gradient boosting models trained on different
aggregations of water consumption data, emphasizing the impact of spatial aggregation
on forecasting accuracy. The study also indicated that the incorporation of additional
explanatory variables can minimize forecasting errors. Similarly, GBM and LightGBM were
assessed for their utility in forecasting future sales and promotions, demonstrating decent
accuracy [16-18]. XGBoost, a widely used model in demand forecasting due to its strong
performance in sales forecasting for retail, was found to be a favorable choice [19]. The
performance of XGBoost surpassed other models in predicting gold rates [20]. Moreover,
XGBoost outperformed artificial neural networks and Support Vector Regression in ground-
water level prediction [21]. Horticultural sales forecasting benefited significantly from
machine learning, particularly with XGBoost’s dominant performance [22]. Furthermore, a
study compared four forecasting models for road accidents (K-Nearest Neighbor, Decision
Tree, AdaBoost, and Naive Bayes regression) and found that AdaBoost outperformed the
others [23]. To forecast sales of US-based retail companies, a hybrid model of XGBoost,
Random Forest (RF), and Linear Regression (LR) methodologies is proposed. The RF-
XGBoost-LR model, an integrated model, performed better than the RF, Artificial Neural
Network, gradient boosting, Adaboost, and XGBoost models [24].

Deep learning techniques have also been employed to address the limitations of tra-
ditional machine learning algorithms and capture nonlinear relationships. Deep neural
networks, which consist of more than two hidden layers and employ improved back-
propagation processes, have shown promising results in predicting automobile sales [25].
Another study confirmed that deep neural networks outperformed autoregressive models
in forecasting oil prices [26]. Advanced deep learning approaches have been successfully
applied to demand prediction and sales forecasting in the retail industry, showcasing their
high performance [27]. Feature selection in Long Short-Term Memory models proved
effective in electric load forecasting, highlighting the characteristics of time series data
forecasting [28]. Comparing the performance of machine learning and multi-layer per-
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ceptron algorithms in predicting demand for short-term and textile products, multi-layer
perceptron emerged as the dominant model [29]. A study verified the prediction of blood
demand through SVM and artificial neural networks and confirmed that artificial iden-
tity networks accurately predict actual demand [30]. A novel sales forecasting model is
proposed, integrating temporal convolutional networks (TCN) for the robust extraction of
deep temporal features, demonstrating superior performance compared to conventional
neural network models [31]. Directed Acute Graph Neural Network, consisting of a layer
of Convolutional Neural Networks and BiLSTM, showed high predictive performance
as a revenue prediction method for e-commerce [32]. A study leverages several machine
learning (ML) models, including recurrent neural network (RNN) models, such as LSTM
and Temporary Fusion Transformer, to present models for accurate sales forecasting for
restaurants. The results of the study confirmed that the RNN model shows the highest
performance when trends and seasonality are preserved [33]. A study utilizes RNN, LSTM,
and GRU models for precise power consumption prediction in IoT and big data settings, re-
vealing that the ensemble model combining the three models achieves the highest accuracy
rate of 98.43% [34]. There are also studies using SGTM neural-like structure, its modifica-
tions and non-iterative approaches for demand and sales forecasting. A study proposes a
new linear supervised learning predictor for health insurance cost prediction, utilizing Ito
decomposition and the Successive Geometric Transformation Model (SGTM). The results
demonstrate its superiority over existing approaches (common SGTM neural-like structure,
multi-layer perceptron, Support Vector Machine, adaptive boosting, linear regression) in
terms of speed, generalization, accuracy, and scalability for large datasets [35]. A stacking-
based GRNN-SGTM Ensemble Model is proposed for used car price prediction, and its
performance is found to outperform classical regression methods and neural network-based
approaches on an RMSE [36]. A novel non-iterative learning approach has been proposed
that combines a Random Vector Functional Link (RVFL) network with Ensemble Empirical
Mode Decomposition (EEMD) for crude oil price forecasting. Additionally, it is confirmed
that the proposed EEMD-based RVFL network outperforms other single algorithms and
ensemble methods in both forecasting accuracy and computational speed [37].

There are many prior studies on sales forecasts, but demand and sales forecast studies
are mainly conducted on mid- to long-term products that can collect sufficient past sales
data, such as electricity, automobiles, oil prices, and daily necessities. However, as previous
studies have been investigated, there are few new-released or short-term product sales
forecasting studies. There is a study that predicts the sales of new products through the
correlation coefficient of sales of similar products [38], but no study that developed a sales
forecasting model through machine learning or deep learning was found. To bridge this
gap, we define product-related and sales-related variables that understand sales patterns
for products belonging to the same product category and propose a sales forecasting model
by comparing the performance of 12 supervised machine learning algorithms using real
data from the Korean mobile phone market. We evaluate the model performance using
commonly used metrics in sales forecasting studies, such as Mean Absolute Percentage
Error (MAPE), Root Mean Squared Error (RMSE), and Correlation. Our results show
that the Random Forest model has the highest predictive power. Among the considered
linear, neural network, tree and nonlinear-based machine learning models, we also confirm
that tree-based models perform better for sales forecasting. We believe that our work will
provide valuable insights on a new basis that was not present in previous studies, especially
for forecasting sales of new-released and short-term products such as mobile phones.

The remainder of this paper is organized as follows: Section 2 covers variable defini-
tions and machine learning algorithms. Section 3 describes data collection, data statistics,
experiments, and the results of model performance comparisons. Finally, Section 4 presents
the conclusion.
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2. Methodology

This section describes the methodology employed in this study, encompassing the

meticulous definition of independent and dependent variables for sales forecasting and
presenting a comprehensive overview of 12 sales forecasting models.

2.1. Sales Forecasting Related Factors

Figure 1 illustrates the conceptual model for integrated sales forecasting adopted in

this study. Sales forecasting is influenced by a variety of factors, which can be categorized
into product-related and sales-related factors.

Product related factors —

Sales related factors —

Product attribute
specification

Brands

Price

Time of Sales Forecasting
introduction

Previous sales

Moving average
of sales

Relative difference
of sales

Figure 1. A conceptual framework of integrated sales forecasting for mobile phones.

2.1.1. Product Related Factors

Product attribute specification: Product attribute specifications play a crucial role
in shaping consumers’ perception of a product’s relevance to their personal needs.
Understanding consumer preferences across different lifestyles is essential since in-
dividuals prioritize their functional and hedonic needs to varying extents [39]. For
instance, when purchasing a tablet computer, customers consider factors such as the
operating system, battery life, screen size, and RAM level. Therefore, it is reasonable to
take into account attribute levels when forecasting sales [40]. In this study, we consider
14 attributes, including the operating system, display size (mm), display resolution
(ppi), CPU processor speed (GHz), number of processor cores, rear camera pixels
(MP), front camera pixels (MP), storage (GB), width (mm), length (mm), depth (mm),
weight (g), battery capacity (mAh), and RAM (GB).

Brands: Brand image plays a vital role in building brand equity, which encompasses
consumers’ overall perception and emotional response towards a brand, influencing
their behaviors. Marketers aim to shape consumers’ perceptions and attitudes towards
a brand through marketing activities. The goal is to establish a strong brand image in
consumers’ minds, stimulate their purchasing behavior, boost sales, maximize market
share, and develop brand equity [41].

Price: Price plays a significant role in consumer purchasing decisions and is equally im-
portant for providers [42]. Lower pricing can impact sales volume, as some providers
strategically price certain products low to attract the attention of consumers with
the intention of selling them other, higher-priced items. However, consumers may
question the quality of a product if the price is excessively low. Many consumers
prioritize value over the lowest price and are willing to pay a price that reflects the
worth of a product. Setting prices too low can create a perception among consumers
that a product is less satisfactory compared to similar products on the market [43].
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Time of Introduction: Products like mobile phones have short release cycles, making it
crucial to consider this factor when forecasting sales. Continuous releases of new mo-
bile phone models in the market create competition, trends, and consumer demand [4].
Technology products, including mobile phones, often experience high sales immedi-
ately after their release, followed by a rapid decline in the sales curve. Therefore, the
time elapsed since the product release is a significant factor in understanding the sales
pattern [44,45]. The value assigned to the months after release starts with 1 for the
month of release and incrementally increases by 1 for each subsequent month.

2.1.2. Sales Related Factors

Previous sales: In the manufacturing industry, the previous month’s sales have been
identified as a particularly influential parameter in sales forecasting [6]. This suggests
that the sales performance in the immediately preceding month plays a significant
role in predicting future sales. Furthermore, research conducted in this domain has
consistently shown that not only the previous month’s sales but also the sales figures
from the two to three months prior can impact the sales outcomes in the predicted
months [7,8].

Moving average of sales: Capturing the trend of sales is recognized as a crucial variable
in related studies. One commonly employed method to represent this trend is the use
of moving averages. It is a prevalent research practice to calculate the moving average
of sales over a period of two to three months [6,7]. By calculating the average sales
over this time window, the moving average provides a smoothed representation of
the sales trend, allowing for a better understanding and prediction of sales patterns.
Relative difference of sales: The majority of time series data commonly demonstrate
discernible vibration patterns that can either exhibit a decreasing or increasing trend.
These patterns are quantified as relative difference variables, which represent the
growth rates of sales over time. Such variables hold significant importance as primary
factors within sales forecasting models [46,47].

Therefore, a total of 24 predictor variables, comprising both sales-related and product-

related variables, are depicted in Table 1.

Table 1. List of the predictor variables.

Variable Description
X1 Display size (mm)
X2 Display resolution (ppi)
X3 Operate System
X4 CPU processor speed (GHz)
X5 Number of processor cores
X6 Rear camera pixels (MP)
X7 Front camera pixels (MP)
X8 RAM (GB)
X9 Storage (GB)
X10 Width (mm)
X11 Length (mm)
X12 Depth (mm)
X13 Weight (g)
X14 Battery capacity (mAh)
X15 Brand
X16 Release price (KRW)
X17 Time of introduction
X18 Previous 1 month'’s sales
X19 Previous 2 month’s sales
X20 Previous 3 month’s sales
X21 Previous 1-2 month’s moving average of sales
X22 Previous 1-3 month’s moving average of sales
X23 Relative difference between the previous 1 month’s sales and the previous 2 month’s sales
X24 Relative difference between the previous 1 month'’s sales and the previous 3 month’s sales
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2.2. Machine Learning Methods

This section describes 12 machine learning models applied in our study.

2.2.1. Ridge, Lasso Regression

Multiple linear regression models tend to overfit. The relationship between feature
values and label values was analyzed in more detail than necessary. This results in poor
generalization and poor prediction of new data. Ridge and Lasso are methods used to
overcome these shortcomings. The Ridge regression model is a method of estimating the
regression coefficient by minimizing the objective function by adding an L2 penalty term
to the sum of error squares in an existing regression expression [48]. The loss in Ridge
regression is defined as:

Lossridge (:B) = 2?:1 (]/i - X;B)z + /\2 'B]2 M
=

where B is the regression coefficient associated with the input parameters of the Ridge
model; x and y are the input and output, respectively, n is the number of samples in the
training dataset, and the hyperparameter A is the penalty parameter.

The Lasso regression model is a method in which the L1 Penalty term is added [49].
The loss in Lasso regression is defined as:

Los8j,550 (B) = Z?=1 (]/i - x;B)z + /\Z;|:B]| @
j=

where x and y are the input and output vector, respectively, # is the number of samples in
the training dataset, j is the regression coefficient, and A is the penalty parameter.

2.2.2. Support Vector Regression

Support Vector Machine (SVM) is a supervised learning model that solves computa-
tional problems that predict using a kernel. Specifically, the main objective of SVM is to
create the best decision boundaries to separate n-dimensional spaces into separate classes.
In SVM, the best decision boundary is called a hyperplane. The hyperplanes help improve
the predictive power of the model and reduce errors in prediction and classification [50].
Figure 2 shows the main structure of the SVM. y represents the model’s output, and b is
the bias term to be optimized based on the regularized function. K is the kernel function.
As shown in Figure 2, this is a small subset extracted from the training data by a related
algorithm consisting of SVMs. Additionally, the kernel is used to transform the data into
the necessary form through input. The SVM models use different types of kernel functions
such as linear kernel, Bessel kernel, and radial basis kernel. The most popular of these
kernel functions is the radial basis kernel with nonlinear characteristics.

input +

Figure 2. Main structure of Support Vector Machine.
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2.2.3. Random Forest Regression

Random Forest (RF) is a tree-based ensemble model used to construct predictive
models using objective functions as regression functions. The RF model uses data samples
to create multiple decision trees, calculate each tree, and vote to produce the best results [51].
Key functions of the RF include speed and flexibility that generate the relationship between
input and output functions. RF also handles large datasets more efficiently than other
machine learning techniques.

2.2.4. Gradient Boosting Regression

Gradient Boosting Machine (GBM) is a tree-based ensemble model, learning several
weak learners sequentially, learning the wrong residuals, updating weights and improving
errors. In particular, the gradient descent method is used as a method of updating the
weights. The process repeats unless the maximum number of trees is reached or the
response is improved [52].

2.2.5. AdaBoost Regression

AdaBoost or Adaptive Boost is a tree-based ensemble model, which is a machine
learning sequential ensemble technique used to randomly combine several weak learners
in a dataset to create powerful learners. Among all training data sets, each sample ob-
servation is weighted, identifying false predictions and weighing them to further assign
them to the next learner. The exact process repeats until the algorithm can correctly classify
the output [53].

2.2.6. XGBoost Regression

XGBoost is a tree-based ensemble model that uses the Base Learner as the decision tree
and learns in a way that compensates for the weaknesses of the previous model. Specifically,
XGBoost uses a boosting algorithm to continuously correct fitting effects; each tree grows
from the residuals of the previous tree and weights the ensemble output of all regression
trees to obtain predictions [54].

2.2.7. Lightgbm Regression

Lightgbm is a tree-based ensemble model that uses leaf-based segmentation rather
than tree-based segmentation. This creates a deep, asymmetric tree while continuously seg-
menting leaf nodes with maximum loss values without balancing the tree. This minimizes
the prediction error loss compared to the tree-based segmentation scheme [55].

2.2.8. CatBoost Regression

CatBoost is a tree-based ensemble model created to solve the overfitting problem of
existing boosting models. To this end, CatBoost learns after calculating the residual with
only a part of the learning data, and as a result, the model is rebuilt [56].

2.2.9. Deep Neural Network

Deep Neural Network (DNN) is a machine learning and deep learning method that
defines complex architectures for artificial neural networks (ANN). In ANN, artificial
neurons (nodes) that form a network by combining synapses change the binding strength
of synapses through learning, minimizing errors between predicted and actual values [57].
DNN is a learning method with two or more hidden layers in an ANN structure [58].
Figure 3 shows the main structure of the DNN with two layers. The y represents the
model’s output and / is the neurons. In practice, neural networks with two hidden layers
are widely used and have performed very well for time series data [59].
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Hidden layers

output

input -+

Figure 3. Main structure of Deep Neural Network with two layers.

2.2.10. Recurrent Neural Network

Recurrent Neural Network (RNN) is a neural network-structured algorithm that is
used for time-dependent or sequential data learning because it contains internal circulatory
structures. It is an algorithm that can express information as previous information is
accumulated in the current information by the internal circulation structure, and the
information can be constantly updated because the data are circulated [60]. Given x; as an
input, unit time ¢, its hidden state k;. It is then computed as Equation (3):

hy = tan h(Wy,-[h—1, x¢] + by) 3)
where W), and b, are parameters to be learned and tanh is a hyperbolic tangent function.

2.2.11. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a neural network-structured algorithm designed
to enable long/short-term memory by compensating for the shortcomings that existing
RNNSs cannot remember information far from the output. It is mainly used for time series
prediction and natural language processing. To solve dependency and vanishing gradient
problems, LSTM uses the cell state to adaptively adjust the amount of historical memory
and the new information currently available [61]. LSTM comprises two state vectors: unit
at time ¢, hidden state h; and cell state C;, and three gates: forget gate f;, input gate it, and
output gate o;. Each state and gate is computed as follows:

fi = o(We-lhy_1, %] + by) )
ir = o (Wi- -1, xi] + by) ®)
01 = o(Wo:[hy_1, %] + bo) ©)
Cr = tanh (Wq[hy_1, %] + by) @)
Ci=fixcro1+ir x g ®)

e = or x tanh(ct) ©)

where W and b are parameters to be learned and ¢ is a sigmoid function as an activation
function. The cell state ensures long-term dependence between data points in the input
sequence and allows the LSTM to be applied to long sequence data.

3. Experiments and Results

In this section, we present the experiments conducted and the results obtained from
the performance comparison analysis of the forecasting models. The methodology is
outlined in Figure 4. Initially, we collected the required data for analysis. Subsequently,
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descriptive statistics were examined for sales and other pertinent variables to enhance
our comprehension of the dataset. Following this, we applied feature normalization and
feature selection techniques to preprocess the data for modeling. These steps ensured the
appropriate scaling of input features and the inclusion of only the most relevant ones in
the analysis. Next, we employed the Leave-One-Out Cross-Validation (LOOCV) technique
to forecast values for the test dataset to find robust models. Additionally, this approach
is suitable as a sales forecasting scenario for cases where there is little sales data, such
as short-term and newly released products. Finally, the MAPE, RMSE, and Correlation
metrics compare the predicted value with the actual value to find the best-performing
forecasting model.

1. Data Collection & Descriptive statistics

266 sale-points
(7 months x 38 products)

e

2. Features Engineering
Feature Feature
Normalization |+ Selection

\Sg

> 3. Split Dataset for LOOCV

Iteration E j E j

#1~38 Train dataset Test dataset

L

'— 4. Train & Predict

12 Forecasting Models

\Sg

5. Performance Evaluation

Figure 4. Process for comparison performance analysis of the forecasting models.

3.1. Data Collection and Descriptive Statistics

In this study, we collected sales data for 38 mobile phones from January 2020 to
December 2021, specifically, the monthly sales data for 7 months after each mobile phone is
released. The sales data used in this study are provided by one of the three telecommunica-
tion companies in South Korea and include the monthly sales data for each mobile product.
Figure 5 illustrates the monthly sales trend for each mobile phone over the seven months
following its release. The graph includes 38 products, categorized as 22 Samsung-branded,
12 Apple-branded, and 4 LG-branded products. Each line represents a specific product.
Among the 38 mobile phones, five of them achieved monthly sales exceeding 40,000 units
at least once during the observation period. On the other hand, the remaining thirty-three
mobile phones had sales below this threshold. It is observed that the sales of mobile phones
generally exhibit an initial increase in the first three months after their release. However,
the growth rate gradually diminishes in the subsequent months. Additionally, we refrained
from removing outliers through outlier analysis to avoid excluding relatively high-selling
products. Additionally, since forecasting high-selling products is crucial, our model train-
ing includes sales datasets for all products. This comprehensive approach ensures that our
predictions encompass the entire sales spectrum, including high-performing products. In
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addition to the sales data, we also gathered 14 product attribute specifications for each
mobile phone. These specifications include details such as the brand and release price. The
release price data were obtained from the well-known mobile phone information website
“http:/ /www.cetizen.co.kr” accessed on 3 April 2023. Additionally, 14 detailed specifi-
cations for each product were collected from the official websites of Samsung, LG, and
Apple. The product specifications can be found on Samsung’s ‘https:/ /www.samsung.com’
accessed on 3 April 2023, LG’s ‘https://www.lge.co.kr” accessed on 3 April 2023, and
Apple’s ‘https:/ /www.apple.com” accessed on 3 April 2023.

80,000
- Apple_productl = Apple_product2
== Apple_product3 =#=Apple_productd
~@— Apple_product5 === Apple_product6
60,000 = Apple_product7 = Apple_product8
~4— Apple_product9 -~ Apple_product10
== Apple_product11l == Apple_product12
=#=LG_product13 =@-LG_productl4
2 ==LG_productl5 =LG_productl6
E 40000 e LG_product17 == Samsung_productl8
~@~Samsung_productl9 «#—Samsung_product20
==Samsung_product2] =#=Samsung_product22
-Samsung_product23 === Samsung_product24
20,000 - e Samisung _product25 Samsung_product26
~—Samsung_product27 ~i~Samsung_product28
Samsung_product29 Samsung_product30
N3 Samsung_product31 Samsung_product32
0 Samsung_product33 Samsung_product34

— = e —
- o = N =t - -

S 8 S < 'o 8 (o g 8 9 = '-:5 > Q@ 9 3 S 9 @' 8‘ 3 = -—.5 Samsung_product35 Samsung_product36
S8 8888 EgEEggE8aaggdaagaaaaaadg Samsung_product37 Samsung_product38
- R - - R - E-ER-E-E-E-E-E-E-E-E- - - > - .
LU o N o BN o R o BN o N o BN o BN o K o AN L o I o Sl &1 &l A a A A a a aa

ear-Mo‘nlh
Figure 5. Monthly Sales of each mobile phone.

In Table 2, we present the descriptive statistics of the X and Y variables used to forecast
sales for the 38 mobile phones released in Korea between January 2020 and December 2021.

Table 2. Descriptive statistics of X, Y variables.

Variable Characteristics Mean Std. Dev Min Max
Y continuous 14,184.68 16,156.55 100 79,158

X1 continuous 160.78 15.91 96.6 192.7
X2 continuous 407.97 77.73 246 536
X3 discrete - - - -
X4 continuous 2.65 0.44 14 3.09
X5 continuous 7.14 1.28 4 8
X6 continuous 55.95 37.35 8 168
X7 continuous 15.43 9.21 5 40
X8 continuous 6.27 3.08 2 12
X9 continuous 160.86 102.34 32 512
X10 continuous 155.45 11.75 122 169.5
X11 continuous 74.3 9.87 60.2 128.2
X12 continuous 8.21 1.53 6.9 16.1
X13 continuous 187.32 31.06 133 282
X14 continuous 3751.14 1007.93 1812 5000
X15 discrete - - - -
X16 continuous 976,829.73 485,853.42 199,100 1,760,000
X17 continuous 4 2 1 7
X18 continuous 12,617.78 15,749.29 0 79,158
X19 continuous 10,752.53 14,984.32 0 79,158
X20 continuous 8721.73 13,868.59 0 79,158
X21 continuous 10,873.87 15,032.38 0 74,744 .50
X22 continuous 8805.38 14,151.91 0 75,489.33
X23 continuous —0.16 0.81 —7.92 0.96

X24 continuous —0.16 0.87 —8.76 2.16
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3.2. Feature Engineering
3.2.1. Feature Normalization

Improper data normalization can negatively impact the performance of both Machine
Learning and Deep Learning models [62,63]. When variables possess varying magnitudes,
machine learning techniques may fail to accurately capture their influence on the dependent
variable. By applying the min—-max scaling method, the normalization of values can
effectively mitigate the impact of disparate magnitudes on the analysis results. This
normalization process ensures a more reliable representation of the variable’s influence,
regardless of their original scales.

X = Xmin

Xnormalization = (10)
Xmax — Xmin

3.2.2. Feature Selection

Feature selection is a valuable technique that reduces the number of features used
in model building, resulting in a more concise model that is quick to train, analyze, and
comprehend. To avoid subjective human intervention, many studies employ quantitative
methods for feature selection. Random Forest is a commonly used method for this purpose,
as demonstrated in several previous studies [64—66]. Typically, variables with feature
importance close to zero are eliminated [64]. In our study, we also employed Random
Forest for feature selection.

To analyze the feature importance using the Random Forest method, categorical
variables such as brand and operating system were converted into dummy variables.
Additionally, since the number of trees utilized affects the estimation of variable importance,
we performed the analysis with various numbers of trees (200, 500, 1000, and 2000) to
obtain robust results for variable importance [64]. The average value of feature importance
was calculated based on these different tree configurations. As depicted in Figure 6, the
analysis of feature importance led to the removal of variables with close to zero importance,
such as brand, number of processor cores, and operating system. Previous 1-2 months’
moving average of sales, rear camera pixels, release price, and CPU processor speed were
identified as variables of high importance. Consequently, the number of selected variables
was reduced to 21.
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Figure 6. Variable importance for mobile phone sales.

3.3. Demand Forecasting Models

In this study, we define the 12 models listed below for sales forecasting:
(1). Ridge regression;
(2). Lasso regression;
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(3). Support vector regression with non-linear kernel;

(4). Random forest regression;

(5). Gradient boosting regression;

(6). AdaBoost regression;

(7). Lightgbm regression;

(8). XGBoost regression;

(9). CatBoost regression;

(10). DNN with two hidden layers, Relu activation function and rmsprop optimizer;
(11). RNN with two hidden layers, Relu activation function and rmsprop optimizer;
(12). LSTM with two hidden layers, Relu activation function and rmsprop optimizer.

We utilized the 12 models mentioned above to compare their performance in sales
forecasting. The key hyperparameter settings employed in this study are presented in
Table 3. The hyperparameter “alpha” corresponds to the regularization intensity for
Lasso and Ridge, while the hyperparameter “cost” relates to SVM. For Random Forest,
GBM, AdaBoost, LightGBM, XGBoost, and CatBoost, the hyperparameter “number of
estimators” refers to the number of boosting trees. As for DNN, RNN, and LSTM, the
hyperparameter represents the number of neurons. We set candidate values to find the
optimal hyperparameters and selected the hyperparameters with the lowest RMSE and
MAPE for the test dataset.

Table 3. Hyperparameters for our experiments.

Model Hyperparameter Candidate Values Selected Value
Ridge alpha [0.1,0.3,0.5,0.7,09,1, 3, 5] 1
Lasso alpha [0.1,0.3,0.5,0.7,09, 1, 3, 5] 0.7
SVM cost [1000, 2000, 3000, 4000, 5000] 3000

Random Forest number of estimators [100, 300, 500, 700, 900] 300
GBM number of estimators [100, 300, 500, 700, 900] 100
AdaBoost number of estimators [100, 300, 500, 700, 900] 300
Lightgbm number of estimators [100, 300, 500, 700, 900] 300
XGBoost number of estimators [100, 300, 500, 700, 900] 500
CatBoost number of estimators [100, 300, 500, 700, 900] 300
DNN number of neurons [16, 32, 64, 128] 64
RNN number of neurons [16, 32, 64, 128] 32
LSTM number of neurons [16, 32, 64, 128] 32

3.4. Performance Comparison of Models
3.4.1. Leave-One-Out Cross Validation

To assess the forecasting performance and calculate the error rate of sales forecasting,
we employed Leave-One-Out Cross-Validation (LOOCYV) [67]. LOOCYV involves training
a model on all but one product and then evaluating the sales forecasting performance on
the excluded product using the trained model. This process is repeated for all products in
the dataset, ensuring comprehensive testing and minimizing randomness to obtain stable
results. In our study, as illustrated in Figure 7, we conducted 38 iterations corresponding to
the number of mobile phones and the error of the predicted values was computed. This
approach is appropriate because it trains and predicts data from the same category of
products when there is little sales data, such as short-term and newly released products.
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! ! Split train and test dataset
Iteration1 | Products1 I Product?2 | Product?3 | I Product#37 I Product#38 I
Iteration2 I Product?1 | Product#2 | Product?3 | I Product?37 I Product#38 I
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: : Train dataset : : Test dataset

Figure 7. Train and test datasets for product-specific LOOCYV validation.

3.4.2. Evaluation Metric

To evaluate the performance of the models, the evaluation metrics employed in this
study include Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE),
and Correlation. MAPE provides insights into the average absolute deviations in terms of
percentages, making it a suitable indicator for detecting marginal errors. Conversely, RMSE,
which relies on standard deviation, is particularly sensitive to values with significant errors
or outliers [68].

~

1001y — ¥

MAPE = (11)

Yi

(12)

n represents for the number of data indexes; y; and fj; are considered as actual sales, and
predicted sales.

Correlation is an indicator that analyzes the strength of the relationship between the
predicted value and actual value.

Correlation = M (13)

Oyoy
where cov is the covariance, ¢y, is the standard deviation of actual sales, and oy is the
standard deviation of predicted sales.

3.5. Predictive Performance

The scatterplot in Figure 8 depicts the relationship between actual sales and predicted
sales for the test data using LOOCV. The plot includes 266 sale points, representing 7 months
multiplied by 38 products. The purpose of this plot is to examine the correlation between
predicted and actual sales. Ideally, a forecast that closely aligns with actual sales would
follow the red line. Points below the red line indicate that predicted sales exceed actual
sales, while points above the red line indicate the opposite. Based on Figure 8c, the Support
Vector Model’s prediction reveals limitations in forecasting high-section sales. Additionally,
the DNN, RNN, and LSTM models exhibit inaccuracies in predicting high-section sales.
Specifically, these models tend to underestimate the actual values in the high sales range.
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Figure 8. Actual versus predicted sales of mobile phone using (a) Ridge regression, (b) Lasso
regression, (c¢) Support Vector regression, (d) Random Forest regression, (e) Gradient boosting
regression, (f) AdaBoost regression, (g) Lightgbm regression, (h) XGboost regression, (i) Catboost
regression, (j) DNN, (k) RNN and (1) LSTM.

To gain deeper insights into the variations in predictive performance among the top
three models, namely Random Forest, CatBoost, and AdaBoost, Figure 9 visually represents
the actual sales and predicted sales generated by these models. It is evident from the figure
that the Random Forest model outperformed the other two models across all sales ranges,
demonstrating superior accuracy in sales forecasting.
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Figure 9. Scatter plot of measured sales and predicted sales with Random Forest, CatBoost, AdaBoost.
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3.6. Comparison of Models

After forecasting sales using 12 machine learning models, the results were compared
and evaluated based on RMSE, MAPE, and Correlation. The total ranking was calculated
by summing the rankings for each metric, with lower rankings indicating a more dominant
model. A lower MAPE and RMSE corresponded to a higher ranking, while a larger
Correlation also led to a higher ranking.

The evaluation of the test dataset was compared and analyzed using machine learning
models, as presented in Table 4. The Random Forest model demonstrated the best perfor-
mance with an MAPE of 42.6258, RMSE of 8443.3328, and correlation of 0.8629. Conversely,
the lowest-performing model was LSTM, with an MAPE of 326.1333, RMSE of 15,673.6825,
and correlation of 0.3229. The Random Forest model consistently outperformed other mod-
els across all evaluation indicators. It exhibited performance similar to the second-place
CatBoost model based on MAPE, showcased an error reduction rate of approximately 3.6%
compared to the Ridge model based on RMSE, and achieved the highest correlation, with a
slight 2.2% difference from the second-place CatBoost model.

Table 4. Performance results of sales forecasting models for test dataset.

. Rank Rank Rank for Total

Model MAPE RMSE Correlation for MAPE for RMSE Correlation Ranking
Ridge 245.0623 9747.8058 0.8045 9 7 7 23
Lasso 116.9212 20,346.4701 0.5842 8 12 9 29
SVM 54.9216 12,307.4523 0.7904 6 8 8 21
Random Forest 42.6258 8443.3328 0.8629 1 1 1 3
GBM 54.8821 9643.082 0.8163 5 5 5 15
AdaBoost 46.5266 9354.7838 0.8285 3 4 3 10
Lightgbm 58.7273 9689.4442 0.8052 7 6 6 19
XGBoost 51.0913 9274.0941 0.8242 4 3 4 11
CatBoost 42.922 9201.2448 0.8434 2 2 2 6
DNN 293.7084 13,265.2662 0.4306 10 9 10 29
RNN 310.3341 13,835.2733 0.3706 11 10 11 32
LSTM 326.1333 15,673.6825 0.3229 12 11 12 35

We confirm that the Random Forest model exhibits the highest prediction performance
as an integrated prediction model but further review the prediction accuracy according
to the brand. As shown in Table 5, all performance evaluation indicators showed high
predictive performance in the order of Samsung brand products, Apple brand products,
and LG brand products. To compare the forecasting accuracy between brands, based on
Samsung brand products, Apple brand products had a relatively high error rate of 35.9%,
RMSE, 36.6%, and a correlation of 3.5%, while LG brand products had a relative error rate
of 82%, RMSE, 48.9%, and a correlation of 63.8%.

Table 5. Performance results for Random Forest forecasting models by brand.

Brand MAPE RMSE Correlation
Samsung 35.2090 7075.6550 0.8952
Apple 47.83854 9665.8200 0.8634
LG 64.07153 40,535.66 0.3241

4. Conclusions

In the case of products with short-term lifecycles, such as mobile phones and new
products, sales data collection is limited, making it difficult to predict sales. However,
accurate sales forecasting is one of the important factors that maximize the company’s
profits, so it is a problem to be solved. This study proposes an integrated model that trains
product-related and sales-related variables that can understand sales patterns and product
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specifications for the same product category. To this end, the optimal model was identified
and developed by comparing and evaluating the performance of 12 machine learning
models using 38 mobile phone sales data in the Korean market between 2020 and 2021
to identify the best performance models. The following observations were found in the
analysis of forecasting models considering product and sales-related variables:

e  For the mobile phone sales forecasting case, the previous 1-2 month’s moving av-
erage of sales for sales-related variables, and rear camera pixels, release price, and
CPU processor speed for product-related variables were identified as variables that
significantly affect sales.

e The Random Forest model outperformed other models in sales forecasting, with
the lowest-performing model, LSTM, exhibiting a significantly higher relative error
percentage of 665% for MAPE and 86% for RMSE compared to Random Forest.

e  The overall ranking order of the models, from best to worst performance, was as
follows: Random Forest > CatBoost > AdaBoost > XGBoost > GBM > LightGBM >
SVM > Ridge > Lasso > DNN > RNN > LSTM. Tree-based models (Random Forest,
GBM, AdaBoost, LightGBM, XGBoost, CatBoost) outperformed neural network (DNN,
RNN, LSTM) and linear (Ridge, Lasso) and SVM models.

e  Consistent with previous studies [5], deep learning models such as DNN, RNN, and
LSTM demonstrated lower performance than machine learning models when working
with relatively small datasets.

e  The Random Forest model, with the highest prediction performance, exhibited varying
accuracy for each brand. The order of high accuracy was Samsung brand products >
Apple brand products > LG brand products.

The analysis results of this study have the following important implications for compa-
nies engaged in sales forecasting of products with short lifecycles, such as mobile phones:

e  Significant performance differences observed between the best and worst performance
models highlight the need for informed decision making. Employing an unsuitable
model can result in significant forecasting errors that accumulate over time, adversely
impacting the entire supply chain. Thus, businesses should meticulously evaluate the
specific characteristics of their sales data, consider the strengths and weaknesses of
each model, and select the most suitable model aligned with their specific requirements
and objectives.

e  We believe that companies that produce short-term products can optimize the supply
chain strategy by applying the Random Forest model or analysis process proposed by
our study.

e  The variation in predictive performance by brand may be attributed to differences in
sales patterns resulting from brand-specific marketing strategies, including promotions
and price policies [69,70]. To enhance forecasting accuracy, collecting additional data
on promotion timing, price fluctuations, and advertising timing to reflect brand-
specific marketing strategies would be beneficial.

Both directions to enhance model performance warrant further research. Firstly, as-
sessing the impact of outlier processing on forecasting accuracy is crucial, as outliers can
significantly influence results. Secondly, exploring the implementation of more advanced
models, such as SGTM neural-like structures, modifications, and non-iterative approaches,
holds promise for improving the overall forecasting performance. Furthermore, exploring
the generalizability of our proposed forecasting approach is intriguing. A study report
increased online sales of electronics during the COVID-19 pandemic [71], while others
indicate a decrease in sales volume [72]. As research on the pandemic’s impact on sales is
ongoing, analyzing our model’s predictive results before and after the COVID-19 pandemic
could provide valuable insights to academia. This analysis would contribute to a better un-
derstanding of the model’s effectiveness under varying market conditions. Future research
endeavors could focus on validating the findings in diverse markets, taking into account
the unique characteristics of different product lifecycles. Additionally, conducting studies
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that involve the collection and analysis of daily or weekly sales data would contribute to a
more comprehensive understanding of sales forecasting and should be a subject of interest
for future investigations.
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