
Citation: Li, H.; Ren, S.; Wang, W.;

Zhang, J.; Wang, X. A Low-Cost

High-Performance Montgomery

Modular Multiplier Based on

Pipeline Interleaving for IoT Devices.

Electronics 2023, 12, 3241. https://

doi.org/10.3390/electronics12153241

Academic Editor: Paolo Visconti

Received: 26 June 2023

Revised: 20 July 2023

Accepted: 25 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Low-Cost High-Performance Montgomery Modular
Multiplier Based on Pipeline Interleaving for IoT Devices
Hongshuo Li 1 , Shiwei Ren 1,2 , Weijiang Wang 1,2 , Jingqi Zhang 1 and Xiaohua Wang 1,*

1 School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China;
sparklee@bit.edu.cn (H.L.)

2 BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China
* Correspondence: xh_wong@bit.edu.cn; Tel.: +86-138-1026-1070

Abstract: Modular multiplication is a crucial operation in public-key cryptography systems such as
RSA and ECC. In this study, we analyze and improve the iteration steps of the classic Montgomery
modular multiplication (MMM) algorithm and propose an interleaved pipeline (IP) structure, which
meets the high-performance and low-cost requirements for Internet of Things devices. Compared to
the classic pipeline structure, the IP does not require a multiplexing processing element (PE), which
helps shorten the data path of intermediate results. We further introduce a disruption in the critical
path to complete an iterative step of the MMM algorithm in two clock cycles. Our proposed hardware
architecture is implemented on Xilinx Virtex-7 Series FPGA, using DSP48E1, to realize the multiplier.
The implemented results show that the modular multiplication of 1024 bits by 2048 bits requires
1.03 µs and 2.13 µs, respectively. Moreover, our area–time–product analysis reveals a favorable
outcome compared to the state-of-the-art designs across a 1024-bit and 2048-bit modulus.

Keywords: Montgomery modular multiplication; cryptosystems; pipeline; high performance; low
cost; hardware implementation

1. Introduction
1.1. Research Background

With the rapid advancement of communication technology, the Internet of Things (IoT)
represents a technological revolution that makes future computing and communications
different [1]. IoT devices, ranging from wearable devices and smartphones to wireless
sensors, offer a multitude of applications across various fields, including big data, business
analytics, and information sharing [2]. However, the diverse nature of IoT devices and the
vast amount of handled sensitive data pose challenges in terms of consumer privacy and
secure data transfer [3]. To address these concerns, the adoption of cryptography solutions
is imperative to ensure user authentication and data security. A public-key cryptography
system (PCS) plays a fundamental role in information security [4]. There are various PCS-
based communications protocols and sensitive applications (e.g., the transport layer security
(TLS) protocol [5]), which are widely used in Internet communications. Based on TLS and
HTTPS protocols, a cloud server is able to authenticate IoT devices. Additionally, in the IoT
field, blockchain is a popular public-key cryptography-based technology that prevents IoT
devices from attacks and synchronizes them [6]. However, due to limited resources, IoT
devices seek cheap and efficient implementations of PCS. Software implementations can
achieve basic PCS functions but suffer from limited memory, battery power, and computing
power [7,8]. Hardware implementations can solve computational burdens and limited
memory problems since they perform better and do not occupy the computational resources
of a central processor. Some existing works [9–11] are dedicated to the efficient hardware
implementations of PCS with low areas.

Modern PCSs are represented by Rivest—Shamir—Adleman (RSA), proposed in 1978 [12],
and elliptic curve cryptography (ECC), proposed by Miller [13] and Koblitz [14] in 1986.

Electronics 2023, 12, 3241. https://doi.org/10.3390/electronics12153241 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153241
https://doi.org/10.3390/electronics12153241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0009-3554-0510
https://orcid.org/0000-0003-3846-7573
https://orcid.org/0000-0002-1911-9832
https://orcid.org/0000-0003-4140-7029
https://doi.org/10.3390/electronics12153241
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153241?type=check_update&version=1

Electronics 2023, 12, 3241 2 of 17

ECC-based cryptography systems offer certain advantages over RSA, such as shorter key
sizes and faster decryption computation speeds. However, it is essential to note that RSA-
based cryptography systems still maintain their significance and find extensive usage in
various scenarios. For instance, RSA is widely employed in authentication mechanisms, like
the DHE-RSA and ECDHE-RSA algorithms within TLS version 1.3. Despite the emergence
of ECC, RSA remains extensively supported in many security applications because it has
simpler computational steps compared to ECC.

The computations of point multiplication in ECC and modular exponentiation in RSA
both require modular multiplications that significantly occupy most of the encryption and
decryption times. Considering the resource limitations of IoT devices, there is a growing
need for cost-effective solutions. Consequently, the design of an efficient modular multiplier
to accelerate the execution speed has become a crucial requirement. Montgomery modular
multiplication (MMM) [15] is a widely adopted solution that offers the capability to convert
modular operations into binary-shift operations, which makes it an attractive choice for
accelerating PCS computations in IoT devices at low costs.

1.2. Previous Work

Efforts have been made to optimize the performance and area utilization of MMM
hardware implementations. These works can generally be classified into two main categories.

The first one involves digit-serial implementations based on the high-radix form of
MMM. Ref. [16] proposed a classic low area-cost architecture with radix-8 MMM. However,
this architecture suffers from long carry-chains, resulting in long total latency. To solve this,
ref. [16] also employed booth encoding and the compression method, but there is still the
long critical path delay (CPD) issue. To further improve the performance, some state-of-
the-art works made efforts on different optimizations. Ref. [17] proposed a fixed-precision
MMM to reduce expensive multiplication on computing partial results. Booth encoding
and comprehensive scheduling are also involved in improving performance and achieving
scalable design. However, much logic designed for encoding and computing intermediate
results costs a lot of resources, which is not applicable to IoT devices. Ref. [18] made great
efforts to improve the parallelism of computing intermediate results based on full adders
(FAs) and only used carry–save adders (CSAs) on the final subtraction. Ref. [10] employed
fast adders, including CSAs, partial full adders, and carry look-ahead adders, to improve
performance based on proper scheduling. However, both [10,18] were limited in balancing
performance and resource efficiency. Ref. [19] proposed an iterative MMM based on a
comprehensive analysis of data dependency, encoding, and compression methods, which
contributes to improving performance a lot, but the area cost is also considerably high.
Ref. [20] used carry–select adders to shorten the total latency. However, it is important
to note that high-performance adders typically come with trade-offs, such as increased
area costs or a constrained radix, which may limit their flexibility. Ref. [21] focused on an
optimized redundant binary MMM representation that had the advantage of a small CPD
based on the proposed pipeline. The trade-off made by [21] involved the extra operation
cycles in converting the redundant binary representation to binary representation. Ref. [22]
proposed architecture using lookup tables (LUTs) to pre-compute the partial results and
showed that, in their design, using FA is more area-efficient than using CSA. Their work
may need more optimizations on the bottom layer of multiplication to achieve higher
performance. Ref. [23] introduced a radix-2 design with concise hardware architecture and
low area costs, but the total latency was also high.

The second category of works focused on scheduling the operations of MMM using
different multiplication algorithms, such as Karatsuba multiplication [11] and Toom–Cook
multiplication [24]. Despite their superior performance, area trade-offs need to be consid-
ered in [11,24] because of the added logic implemented in their multiplication algorithms.
Additionally, other works improved the performance by focusing on unconventional mul-
tiplication systems, like fast Fourier transform (FFT) [25], the residue number system
(RNS) [26,27], and the non-least positive (NLP) form [11]. However, it is worth noting

Electronics 2023, 12, 3241 3 of 17

that these multiplication systems require a significant amount of hardware resources, espe-
cially when dealing with large input sizes. Regarding [26,27], their systems have efficient
multiplication without carrying propagation, improving the processing speed of MMM
itself. Even so, the area cost of conversion between weighted binary numbers and residue
numbers is still high and results in low area efficiency overall. This category of work with
complex multiplication algorithms or systems is not suitable for IoT devices where the
resources are highly restricted.

Even though various works have focused on optimizing the multiplication operations
of MMM, there have been fewer inventive modifications made to the iteration steps of
the MMM algorithm itself. Among the mentioned works, almost all of them employed
the classic pipeline form of MMM introduced in [28] in 1999. Although [19] proposed
a different iterative MMM algorithm based on encoding and compression methods, the
basic bit-wise scanning steps have not changed. Several other works attempted to modify
the classic MMM pipeline to reduce the total clock cycles or increase the maximum clock
frequency. Ref. [29] modified the input data paths of each processing element, aiming
to enhance the pipeline structure. Ref. [30] relaxed the data dependency by reducing
the operands, leading to a new pipeline form. Ref. [9] introduced a separate iterative
MMM that needs pre-computation, making the calculation process more efficient. However,
refs. [9,29,30] did not modify the core iteration steps and needed extra resources with the
carry–save adders. Ref. [31] introduced inventive changes to both the data dependency and
the iteration steps of the MMM algorithm. Although this modification aimed to improve
the overall performance, it resulted in a considerable increase in the critical path length
due to the extended data paths.

Previous research studies have indeed emphasized adder performance optimizations
and the use of higher-performing multiplication algorithms. Adder optimizations have
involved compression and encoding methods as well as different addition systems, while
multiplication algorithm optimizations have primarily focused on scheduling classic itera-
tion steps of MMM. However, in our work, we aim to approach optimization differently.
We do not consider optimization methods, such as encoding, data compression, or data
preprocessing, as they do not yield significant benefits compared to algorithm optimization.
Instead, our motivation lies in optimizing the performance and reducing area costs by modi-
fying the classic iteration steps of the MMM algorithm. We also explore a new pipeline form
and comprehensive scheduling that is specifically tailored to hardware implementations.

1.3. Paper Contributions

In this paper, we present a high-performance, low-cost Montgomery modular multi-
plier based on the proposed interleaved pipeline of MMM. The main contributions of this
paper are as follows:

(1) We modify the iteration steps of the classic MMM algorithm and propose the
interleaved pipeline multiple-word radix-2k Montgomery multiplication (IP-MWR2k MM)
algorithm. This modification allows us to reduce the data path length of intermediate
results by eliminating the necessity of reusing processing elements (PEs). The execution
steps of the interleaved pipeline (IP) form are also presented in our work.

(2) To improve the operating frequency, we schedule an iterative step in the IP-MWR2k MM
algorithm to execute in two clock cycles. By doing so, the calculation of the coefficient Q[j]
in IP-MWR2k MM algorithm can be completed for one extra cycle of time instead of being
completed within one cycle. This can reduce the (CPD) and the overall computation time
of MMM.

(3) We provide a comprehensive hardware structure for our proposed algorithm,
including the design of each PE and the overall architecture. The implementation utilizes
DSP48E1 blocks on the Xilinx Virtex-7 FPGA series. Additionally, we performed a detailed
analysis of the performance and area costs, demonstrating that our approach achieves
superior performance in terms of area at a lower level.

Electronics 2023, 12, 3241 4 of 17

The remainder of this paper is organized as follows. Section 2 presents the preliminary
for radix-2 Montgomery multiplication, high-radix Montgomery multiplication, and the
pipeline form of high-radix MMM. Section 3 introduces the proposed IP-MWR2k MM
algorithm and its corresponding pipeline form. It also presents the hardware architecture
for each PE and the overall system. In Section 4, we analyze the performance and area cost
and provide a comparison of state-of-the-art implementations. Finally, we conclude this
paper in Section 5.

2. Preliminaries

This section provides an overview of the classic radix-2 Montgomery multiplica-
tion (R2MM) algorithm and classic multiple-word radix-2k Montgomery multiplication
(MWR2k MM) algorithm, covering their backgrounds and basic notations. This section also
analyzes the data dependency and limitations of the classic pipeline of the MWR2k MM
algorithm when implemented on hardware.

2.1. Radix-2 Montgomery Modular Multiplication Algorithm

The MMM algorithm has two forms based on the different radices of the multiplicand:
the R2MM form and the MWR2k MM form. The R2MM form only requires performing
an add operation as the multiplicand just needs to determine if the multipliers need to
be added to the result. This form is widely used in resource-limited systems due to
its simplicity. The MWR2k MM form performs actual multiplication because both the
multiplicand and multiplier are scanned over multiple bits. Under the requirement of
multipliers, the MWR2k MM form can reach higher performance than the R2MM form but
results in more resource utilization. Using DSP blocks on FPGAs is a convenient way to
meet the need for multipliers. Algorithm 1 presents the detailed pseudo-code for classic
R2MM.

Algorithm 1 Classic radix-2 Montgomery multiplication [15].

Input :X(multiplicand) = (xn−1, · · · , x1, x0)2, Y (multiplier), M (modulus), where both
Y and M are n bits

Output :S = X ·Y · 2−n mod M where 0 ≤ S < M
1: S = 0; {Initialization}
2: for i = 0 to k− 1 do
3: Q = (M + xi ·Y) mod 2;
4: S = (M + xi ·Y + Q ·M) >> 1;
5: end for
6: if S ≥ M then
7: S← S−M; {Last reduction}
8: end if
9: return S;

In Algorithm 1, S is the n-bit result of R2MM. Q is a variable to determine if M
needs to be added to step 4. Steps 3 and 4 are always performed within a loop and can be
implemented on hardware in a pipeline style. Nevertheless, S needs to be compared to M
and subtracted if it is greater than M in step 7. Thus, the pipeline must stall if we want to
use result S to perform R2MM continuously.

2.2. Multiple-Word Radix-2k Montgomery Modular Multiplication Algorithm

In [32], an optimized radix-2k MMM algorithm is provided without the final quotient
determination by simply adding a zero-value word on the most significant bit (MSB) of
the multiplicand X. Therefore, the pipeline does not need a stall and can perform MMM
continuously just after the results are calculated. Here, we provide a classic MWR2k MM
algorithm without the final subtraction, as shown in Algorithm 2, based on the MWR2k MM
algorithm proposed in [16].

Electronics 2023, 12, 3241 5 of 17

Algorithm 2 Classic multiple-word radix-2k Montgomery multiplication [16].

Input :X = (xk−1, · · · , x1, x0)2r , Y = (yg−1, · · · , y1, y0)2w , M = (mg−1, · · · , m1, m0)2w

M′ = −M−1 mod r, where 0 ≤ X, Y < 2M, k = (dn
r
e+ 1) and g = (d n

w
e+ 1)

Output :S = X ·Y · 2−rk mod M
1: S[0] = (S[0]g−1, · · · , S[0]1, S[0]0)2w = 0; {Initialization}
2: C[0] = (C[0]g−1, · · · , C[0]1, C[0]0, C[0]−1)2r+2 = 0; {Initialization}
3: for i = 0 to k− 1 do
4: Q[i]← (S[i]0 + xi ·Y) ·M′ mod 2r;
5: for j = 0 to g− 1 do
6: {C[i]j, S[i + 1]j} ← S[i]j + xi · yj + Q[i] ·mj + C[i]j−1; {Scan Y}
7: end for
8: S[i + 1]← {C[i]g−1, S[i + 1]} >> r; {Shift S}
9: end for

10: return S[k];

In Algorithm 2, M′ is the negative modular multiplicative inverse of the modulus
M and treated as a pre-calculated parameter because it is only determined by M, which
is a constant during the calculation of MWR2k MM. The initial precision of M is n bits.
However, during the computation, both Y and M have g = (d n

w e+ 1) words, where an
extra zero-value word is added, since the result S needs an extra word to obtain precision
extended to the correct value [16]. According to [32], X is also extended with an extra
zero-value word to avoid final subtraction. C needs to be considered when it comes to
MWR2k MM. It represents the carry bits that are propagated from the computation of one
word to the next word. C[i]j represents the jth word of C in ith loop. The concatenation of
vectors C and S is represented as {C, S}. S is calculated after scanning X once and shifting
r bits to the right.

2.3. Pipeline of the Classic MWR2k MM Algorithm

A classic pipeline form suitable for the multiple-word radix-2 Montgomery multiplica-
tion (MWR2MM) algorithm was mentioned in [28]. Based on the pipeline of MWR2MM,
the pipeline form under MWR2k MM can be obtained with a slight modification, as shown
in Figure 1.

For this classic high-radix pipeline (CHRP), a column represents one PE, which is one
pipeline stage (PS). A row represents one clock cycle (CC). Each PE has two calculation
states, A and B. A state represents the first clock period when the PE starts to calculate.
In this cycle, a PE does not require carrying bits C, and at the end of the cycle, the result
S[i + 1]0 of PE[i] cannot be obtained immediately. In the B state, PE[i] requires the carry
bit C[i] to compute S[i + 1]j at the end of (i + 2j + 1) CCs. Here, we note that the result
S[i + 1] of PE[i] is passed on to the next PE[i + 1] and the carry bits C[i] are passed to the
current PE[i]. According to the natural characteristics of the classic MWR2k MM algorithm,
the radix size r cannot exceed the word size w. Therefore, the number of PSs in CHRP
cannot exceed d g

2 e. Otherwise, more PEs may reduce performances on more CCs. This is
concluded from [16], where the performance is analyzed thoroughly with different numbers
of PSs and word sizes.

Since the number of PSs is limited, the upper limit of the processing speed of CHRP
design depends on the word size w and the performance of multipliers. Moreover, under
CHRP, reusing PEs is necessary to achieve high parallelism and improve computation
efficiency. However, the requirement for reusing PEs introduces the challenge of passing
the intermediate result S from the last PE to the first PE. This can lead to a high net delay
when implemented on hardware, potentially impacting the overall performance. One possible
approach to mitigate the net delay is to use buffers on the result S within the pipeline. By
inserting buffers, the net delay can be reduced, but this comes at the cost of additional CCs
and increased complexity in managing the flow of data. Finding the right balance between

Electronics 2023, 12, 3241 6 of 17

parallelism (in CCs) and frequency (in net delay) is indeed a trade-off that needs to be
considered. It requires careful optimization techniques to achieve the desired performance
while taking into account the available resources and other limitations.

A

B

B

A

B

B

B

B

B

B

A

B

PE0

Processing Element

PE1 PE2

x0

y0

m0

y1

m1

y2

m2

y3

m3

y4

m4

y5

m5

y0

m0

y1

m1

y2

m2

y3

m3

y0

m0

y1

m1

x1

x2

S[1]0

S[1]1

S[1]2

S[1]3

S[2]0

S[2]1

0

0

0

0

0

0

C
lo

ck
 c

y
cl

e

CC 0

CC 1

CC 2

CC 3

CC 4

CC 5

C[0]0

C[0]1

C[0]2

C[0]3

C[0]4

C[1]0

C[1]1

C[1]2 C[2]0

Figure 1. Classic pipeline of MWR2k MM.

3. Proposed Interleaved Pipeline Design

In this section, we introduce the proposed IP-MWR2k MM algorithm, which aims to
improve the performance and efficiency of the classic MWR2k MM algorithm by modifying
the iteration steps. Based on the IP-MWR2k MM algorithm, we present a novel pipeline
form, IP. This pipeline form takes advantage of the modified iteration steps and data
dependency to achieve better performance, since the long data path of reusing PEs is
avoided. Notably, we introduce an interruption in the critical path, which involves adding
a pipeline stage within a PE to compute the intermediate result S. This approach allows
for a higher operating frequency and faster computation. Furthermore, we present the
hardware architecture of PEs and the overall design of the MMM multiplier based on the
IP-MWR2k MM algorithm.

3.1. Proposed IP-MWR2kMM Algorithm

To modify the iteration steps of the classic MWR2k MM algorithm, we reverse the data
path of S[i + 1] and C[i] at PE[i] and propose a novel IP-MWR2k MM algorithm, as shown
in Algorithm 3.

The initial precision of M is n bits. Multiplicand X is extended with extra zero-value
words to omit the final reduction of S. Different from classic MWR2k MM, the number of
zero-value words added to the MSB of Y and M depends on the parity of d n

w e to ensure g
is even. Thus, we can always calculate S twice with two adjacent words when scanning X,
which contributes to simplifying the architecture of the pipeline. The lower (w− r) bits of a
w-bit word are represented as low{} and the higher r bits of a w-bit word are represented as
high{}. S is shifted on steps 20 to 26 and concatenated to the correct position with the help

Electronics 2023, 12, 3241 7 of 17

of checking the value of t. To understand Algorithm 3, we provide an execution example,
as shown in Figure 2, where n = 16, r = 2, and w = 4.

Algorithm 3 Proposed interleaved pipeline MWR2k MM.

Input :X = (xk−1, · · · , x1, x0)2r , Y = (yg−1, · · · , y1, y0)2w , M = (mg−1, · · · , m1, m0)2w

M′ = −M−1 mod r, where 0 ≤ X, Y < 2M, k = (dn
r
e+ 1) and

g =

{
(d n

w e+ 1), d n
w eis odd

(d n
w e+ 2), d n

w eis even

Output :S = X ·Y · 2−rk mod M
1: S[0] = (S[0]g−1, · · · , S[0]1, S[0]0)2w = 0; {Initialization}
2: C[0] = (C[0]g−1, · · · , C[0]1, C[0]0, C[0]−1)2r+2 = 0; {Initialization}
3: for i = 0 to k + g

2 − 2 do
4: if i < k then
5: Q[i]← (S[i]0 + xi ·Y) ·M′ mod 2r; {Calculate Q[i]}
6: end if
7: {t is the number of PSs}
8: if i < g

2 then
9: t← 2i;

10: else if g
2 ≤ i < k then

11: t← g− 2;
12: else
13: t← (k− 1) + g

2 − i;
14: end if
15: for j = 0 to t

2 do
16: {Scan X}
17: {C[j]t, S[j + 1]t} ← S[j]t + xj · yt + Q[j] ·mt + C[j]t−1;
18: {C[j]t+1, S[j + 1]t+1} ← S[j]t+1 + xj · yt+1 + Q[j] ·mt+1 + C[j]t;
19: {Shift S}
20: if t = 0 then
21: {low{S[j + 1]t+1}, S[j + 1]t} ← {S[j + 1]t+1, S[j + 1]t} >> r;
22: else if t = (g− 2) then
23: {S[j + 1]t+1, S[j + 1]t, high{S[j + 1]t−1}} ← {C[j]t+1, S[j + 1]t+1, S[j + 1]t};
24: else
25: {low{S[j + 1]t+1}, S[j + 1]t, high{S[j + 1]t−1}} ← {S[j + 1]t+1, S[j + 1]t};
26: end if
27: t← t− 2;
28: end for
29: end for
30: return S[k];

In Figure 2, we provide a high-level overview of the pipeline structure based on the
IP-MWR2k MM algorithm, where steps 17 and 18 are key computation steps represented
by the multiplication of xj and yt. The data dependency and results of every step are
discussed in the following subsection. X and Y are divided and expanded to k = 9 words
and g = 6 words, respectively. The upper bound t

2 of the inner loop is 0 (when i is 0),
1 (when i is 1 or 9), or 2 (when i is from 2 to 8), and is determined by steps 8 to 14 in
Algorithm 3. Within an inner loop, S is computed twice with two neighboring words of
Y. The core difference of the IP-MWR2k MM algorithm is that the scanning steps of X are
reversed. X is only scanned between different inner loops while the classic MWR2k MM
algorithm performs it in the outer loop.

Electronics 2023, 12, 3241 8 of 17

x0 y0 x0 y1

j = 2

x1 y0 x1 y1

x2 y0 x2 y1

x0 y2 x0 y3

j = 1

x1 y2 x1 y3

x2 y2 x2 y3

x0 y4 x0 y5

j = 0

x1 y4 x1 y5

x2 y5 x2 y5

x8 y0 x8 y1 x6 y4 x6 y5

x7 y4 x7 y5

x8 y4 x8 y5

x7 y2 x7 y3

x8 y2 x8 y3

i = 0

i = 1

i = 8

i = 9

i = 10O
u

te
r

lo
o

p

Inner loop

i = 2

j = 0j = 1

j = 0

Figure 2. Execution steps of IP-MWR2k MM (n = 16, r = 2, and w = 4).

3.2. Parallel Computation of the IP-MWR2kMM Algorithm

In this subsection, the proposed IP form is presented, along with an analysis of the
data dependency and computation efficiency. Figure 3 provides an illustration of the IP
structure.

A

A

B

B

A

PE0

B

x0 y0

m0

S[0]0

S[0]1

C[0]0
x0y1

m1

x1y0

m0

x1y1

m1

x2 y0

m0

x2 y1

m2

S[1]0

C[1]0

S[2]0

C[2]0

x0 y2

m2

x0 y3

m3

x1 y3

m3

x1 y2

m2

x0 y4

m4

x0 y5

m5

S[0]3

C[0]2

S[1]2

A

B

A

B

A

B

S[0]2

S[0]4

S[0]5

C[0]4

C[1]2

C
lo

ck
 c

y
cl

e

Processing Element

CC 0

CC 1

CC 2

CC 3

CC 4

CC 5

PE1 PE2

Figure 3. Proposed pipeline of IP-MWR2k MM.

Electronics 2023, 12, 3241 9 of 17

In Figure 3, each column represents a PE, which can be seen as a PS. The computation
of the inner loop, where i = 0 in Algorithm 3, is represented in CC0 and CC1, and only
PE[0] is active. When i = 1, the computation of the inner loop is represented in CC2
and CC3, where both PE[0] and PE[1] are active. Figure 3 also shows the detailed data
dependency and the transmission direction of the carry bits (C) and results (S) through
the PEs. There are two states of PE: A and B. When PE[i] is in the A state, it receives the
carry bits C passed from the previous PE[i− 1], as well as the result S from itself. For the B
state, PE[i] needs the result S transferred from the next PE[i + 1] and the carry bits C from
itself. Thus, the data dependency changes in every CC, resulting in the interleaved pipeline
architecture. The coefficient Q that is multiplied by M is computed on the fly, which means
that PE[0] is also responsible for calculating Q when in the A state.

Because of the data dependency of S, the architecture of IP is non-scalable and the
total number of PEs requires the following:

NIP =
g
2

(1)

Since a PE scans two neighboring words of Y and needs two CCs to scan an X word,
the total computation time TIP (measured in CCs) is as follows:

TIP = 2NIP + 2k− 2 = g + 2k− 2 (2)

Reviewing the CHRP and we can find its maximum total number of PEs is as follows:

NCHRP = d g
2
e (3)

Under this condition, the total computation time TCHRP (measured in CCs) is as
follows:

TCHRP = d k
NCHRP

e · g + g− 2 = g + d2k
g
e · g− 2 (4)

Comparing the total number of PEs with the computation times of CHRP and IP, we
find that the computation efficiency is the same in terms of the CCs and resources. However,
the reachable maximum frequencies of two pipeline forms are different because of the data
dependency of S. In our proposed IP form, the reuse of PEs is not a must, and the results S
are only passed between two neighbor PEs, while PEs must be reused in CHRP, resulting
in a long path of S being passed from the last PE to the first one. Another improvement of
IP is that when continuously performing MMMs, the final result can be passed directly to
the neighbor PEs to perform the next computation. In CHRP, PE[0] must wait to be idle if
d 2k

g e is not equal to 2k
g .

To improve the operating frequency, we break one CC into two to allow for separate
computations of xj · yt and Q[j] ·mt. This modification results in one state of the PE that
occupies two CCs instead of the original interleaved design shown in Figure 3. Hence,
benefits taken by this modification involve reducing the lengths of the carry chains when
computing the result S and, therefore, improving the overall computational speed of the
MMM.

3.3. Proposed Hardware Architecture
3.3.1. Processing Elements

PE[0] is different from other PEs as it needs to perform the computation of Q on the
fly, as shown in Figure 4, where the multipliers are implemented with DSPs on the Xilinx
Virtex-7 FPGA series.

Electronics 2023, 12, 3241 10 of 17

i_xj

i_y0

i_ma

i_mb

i_C

i_S

i_M
r

w

r

w

r+2

w

PE[0]

r+w+1

r

lower r bits
lower r bits

r

r o_Q[j]

o_S

Multiplier

Full Adder

 Multiplexer

 Register

Adder in DSP

o_C
w+2

Figure 4. Hardware architecture of PE[0].

An inner loop in Algorithm 3 is performed in four CCs instead of the original two CCs
within a PE because of the modification we made to compute xj · yt and Q[j] ·mt separately.
Situations of inputs i_ma and i_mb are shown in the following equations:{

i_ma ← xj

i_mb ← yt
or

{
i_ma ← Q[j]

i_mb ← mt
(5)

The computation result is {o_C, o_S}, which represents the updated values of {C[j]t,
S[j + 1]t}. In the modified pipeline design, PE[0] starts computing 5 CCs earlier than PE[1].
By adding an extra CC, we can compute xj · yt earlier because Q[j] needs two CCs to output
while the result S[j + 1]t only needs one CC. For an example, x0 · y0 is calculated at CC0
and (x0 · y0 + C[0]−1 + S[0]0) is calculated at CC1. At CC2, Q[0] is already computed and
(Q[0] ·m0 + x0 · y0 + C[0]−1 + S[0]0) is calculated, which is S[1]0. At CC3, (x0 · y1 + C[0]0 +
S[0]1) is calculated. S[1]1 is computed at CC4, and then PE[1] will be activated at CC5.

The other PEs have the same hardware architecture, but are simpler with only a DSP,
a full adder, a 2–1 multiplexer, and a register, as shown in Figure 5. These PEs all require
four CCs to compute a step within the inner loop in Algorithm 3.

i_ma

i_mb

i_C

i_S

r

w

r+2

w

PE[1]~PE[g/2-1]

r+w+1

r
o_S

Multiplier

 Multiplexer

 Register

Full Adder

Adder in DSP

o_C
w+2

Figure 5. Hardware architecture of PE[1] to PE[g
2 − 1].

3.3.2. Overall Architecture

Figure 6 depicts the overall architecture, where X, Y, and M are sequentially inputted
into shifting registers. The computation of Q is performed by PE[0] and subsequently fed
into another shifting register. We can recognize that the data only pass between neighbor
PEs and the last PE is not responsible for passing the result S to the first PE. Consequently,
the net delay is reduced, and the need for additional buffers to store S is eliminated.
Furthermore, the last PE needs an additional register to store S for one CC because C and S
are generated simultaneously but used in different CCs. The proposed architecture requires
more multiplexers compared to CHRP due to the PEs performing different computations
in different CCs. With the help of the concise architecture of PEs, all we need to control is

Electronics 2023, 12, 3241 11 of 17

the select port of the multiplexers and the shift of registers, which are only determined by
PE states.

i_ma

i_mb
i_S

i_C

i_M

i_xj

X shift register

0

o_C

o_S

o_Q[j]

Q shift register

Y shift register

M shift register

i_ma

i_mb
i_S

i_C

o_C

o_S

i_ma

i_mb
i_S

i_C

o_C

o_S

S0 S1 and S2 Sg-3, Sg-2 and Sg-1

i_X

i_Y

i_M

i_M

PE[0] PE[1] PE[g/2-1]

Figure 6. Overall architecture.

4. Implementation Results and Comparison

In this section, we conduct a comprehensive analysis of the timing, critical path, and
area costs of our proposed design. We present the implementation results for the 1024-bit
and 2048-bit modulus scenarios. Furthermore, we compare our design with existing works
to demonstrate its exceptional performance and superiority.

4.1. Performance and Area Analysis
4.1.1. Timing Analysis

In Figure 3, we separate one CC into two to implement a deep pipeline; thus, the total
computation time T′IP (measured in CCs) is as follows:

T′IP = 4NIP + 1 extra CC for PE[0] + 4k− 4 = 2g + 4k− 3 (6)

Despite the increase in total CCs, the original CPD of the proposed IP is reduced due
to the reduction of the long addition chain in (S[j]t + xj · yt + Q[j] ·mt + C[j]t−1) from three
additions to two. Moreover, the input bit width of the DSP48E1 module is 18 × 25 with a
sign bit. Since our design exclusively uses unsigned numbers, the effective bit width of the
inputs is 17 × 24.

The critical path of our hardware architecture depends on the radix r and word size w.
When the bit width of r is lower than 17 and w is lower than 24, the critical path is between
the output of xj · yt and the output of Q[j]. Optimizing this critical path is challenging
since it involves addition followed by multiplication. However, if r is still below 17 but w
is beyond 24, more than one DSP block should be employed to ensure the multiplication
of xj · yt computed within a single CC. In this case, the critical path arises in the path
of multiplication followed by the addition for i_ma and i_mb, with the carry bit being
propagated from one DSP to another. Nevertheless, the net delay in the computation of
Q[j] remains unaffected as it only requires the lower r bits of S[j]; the number of DSP blocks
required is one.

Furthermore, there is a great need to perform MMM operations continuously in PCSs
such as RSA and ECC. In this scenario, the average computation time for a single MMM
operation is reduced due to the uninterrupted execution of the pipeline. Given the times
(tMMM) that MMM need to perform, the average computation time T′IPA (in CCs) of one
MMM is shown as (7).

T′IPA =
tMMM · (4k + 1) + 4NIP − 4

tMMM
= (4k + 1) +

2g− 4
tMMM

(7)

Electronics 2023, 12, 3241 12 of 17

where T′IPA is near (4k + 1) when tMMM > (2g− 4), revealing that the more the MMM
performs, the fewer the total CCs. We adopt T′IPA as the evaluation of the clock cycles
required to perform one MMM operation in our implementation, because our IP form has
the property of calculating MMM continuously without any stall between every MMM op-
eration. So, T′IPA represents the actual performance when our design is used in applications
like point multiplication in ECC and modular exponentiation in RSA.

4.1.2. Area Analysis

The area of the proposed architecture can be evaluated by considering the number
of PEs, as shown in Equation (1). However, it is important to note that the resource
requirements within a single PE vary depending on the size of the radix r and the word
size w. Specifically, within a PE, the number (ADSP) representing the implemented DSPs
can be calculated as follows:

ADSP =

g
2
+ 2, if r ≤ 17 and w ≤ 24

g
2
· d w

24
e+ 2, if r ≤ 17 and w > 24

g
2
· d w

17
e+ 2. if 17 < r ≤ 24

(8)

Equation (8) shows the trade-offs that can be made in the area of DSPs and the
performance. The higher the radix is, the more computations are made within a CC, and
the total CC is reduced. However, the number of DSPs is increased at the same time. When
the radix r ≤ 17 and the word size w ≤ 24, as well as the multiplication of i_ma by i_mb, can
be implemented using a single DSP. In this case, the total number of DSPs required is g

2 + 2,
which is equal to the number of NIP + 2. It is also possible to cascade DSPs when w > 24
as long as r is less than or equal to 24. However, an important point to consider is that
the computational efficiency is reduced when r exceeds 24, because w ≥ r, and it would
require cascading multiple DSPs and adding the results of the DSPs to obtain the correct
value. Therefore, we can conclude from Equation (8) that when implementing designs with
DSPs, the condition radix r ≤ 17 and the word size w ≤ 24 have the smallest DSP area. We
implement r = 16 and w = 24 in our design to cut down the area.

The resource usage of a full adder is evaluated based on the number of LUTs it occupies.
A one-bit full adder has three inputs and two outputs, corresponding to two LUT3 resources
in an FPGA, equivalently, one LUT6 resource. The total number of LUT resources occupied
by the full adders, denoted as AaLUT , can be calculated in the following two cases:

AaLUT =

g · w

2
, if w− 2 ≤ r ≤ w

g · (r + 2)
2

, if r < (w− 2)
(9)

4.2. Results Comparison and Discussion

In the proposed hardware implementation of MMM, we used a radix r of 16 and a
word size w of 24. The design was implemented using Vivado 2022 on the Xilinx Virtex-
7 FPGA Series, with part number XC7V585TFFG1157-3. To provide a comprehensive
evaluation, we present the implementation results of four different modulus sizes: 256 bits,
512 bits, 1024 bits, and 2048 bits. These results are compared with other existing works in
Table 1.

Electronics 2023, 12, 3241 13 of 17

Table 1. Comparison of existing works implemented on FPGA.

Works Platform
Time Area ATP

(Area
× ms)Cycles Period

(ns)
Latency

(µs) LUT FF DSP BRAM36 SLICE Total **

256-bit modulus

[27] Virtex-7 - - 0.120 9210 - 248 0 2631 * 27,431 3.291
[9] Virtex-7 - 3.448 0.214 5500 - 0 0 1571 * 1571 0.336

ours Virtex-7 69 3.97 0.274 812 909 8 0 347 1147 0.314

512-bit modulus

[9] Virtex-7 - 3.448 0.448 9500 - 0 0 2714 * 2714 1.215
ours Virtex-7 133 4.07 0.541 1367 1951 13 0 576 1876 1.014

1024-bit modulus

[31] Virtex-2 1088 9.39 10.22 5356 - 0 0 1530* 1530 15.636
[30] Virtex-6 1287 3.92 5.05 - - 0 0 5158 5158 26.047
[25] Virtex-6 1052 3.80 4.00 6047 - 9 16.5 1757 5891 23.564
[18] Virtex-7 530 2.23 1.18 9304 7492 0 0 2504 2504 2.954
[17] Virtex-7 290 3.90 1.13 19,124 4638 0 0 5464 * 5464 6.174
[19] Virtex-7 264 3.00 0.79 17,661 3120 0 0 5046 * 5046 3.986
[10] Virtex-7 262 3.96 1.04 16,832 5165 0 0 4809 * 4809 5.001
[22] Virtex-7 257 17.54 4.50 16,531 3098 0 0 4723* 4723 21.253
ours Virtex-7 261 3.95 1.03 2845 3165 24 0 1100 3500 3.605

2048-bit modulus

[31] Virtex-2 2176 9.90 21.553 10,698 - 0 0 3056 * 3056 65.865
[25] Virtex-6 2036 3.88 7.90 7337 - 9 17.5 2083 6413 50.662
[18] Virtex-7 512 4.57 2.39 36,238 15,066 0 0 10,104 10,104 24.148
[17] Virtex-7 562 3.90 2.19 39,744 8942 0 0 11,355 * 11,355 24.867
[19] Virtex-7 520 3.40 1.77 32,170 6177 0 0 9191 * 9191 16.268
[10] Virtex-7 518 4.81 2.49 33,734 10,315 0 0 9638 * 9638 23.999
ours Virtex-7 517 4.13 2.13 5328 7551 45 0 2286 6786 14.454

* The number of SLICEs is estimated by LUTs and FFs. ** Total area is (BRAMs × 196 + DSPs × 100 + SLICEs).

In Table 1, the Cycles index represents the number of total execution clock cycles, and
Period denotes the clock period in nanoseconds (ns). The implementation performance
is measured by multiplying Cycles and Period, which is represented by the latency in
microseconds (µs). The evaluation of the total area takes into account three resource types:
SLICEs, DSPs, and BRAMs. To provide a unified standard for expressing the total area,
we used the SLICE equivalent cost (SEC) concept [33], which is represented by the Total
index in Table 1, marked by two asterisks. The SEC value represents the equivalent costs of
utilizing different types of resources and allows for a reasonable comparison of the total area
requirements between different works. The calculation of SEC is shown as Equation (10).

SEC = #BRAMs× 196 + #DSPs× 100 + #SLICEs (10)

where #BRAMs represents the number of BRAMs, #DSPs represents the number of DSPs,
and #SLICEs denotes the number of SLICEs. However, in some works, only the LUT and
FF numbers are provided. To convert the LUT and FF numbers to an approximate number
of SLICEs, we need to consider the architecture of the Xilinx Virtex-6 Series or Virtex-7
FPGA Series. A SLICE in the FPGAs consists of four LUTs, but it is important to note that
SLICEs may not be fully occupied in practical designs. Therefore, we use a coefficient of 3.5
as a divisor to estimate the number of SLICEs from the number of LUTs. The formula for
calculating the number of SLICEs is as follows:

#SLICEs =
#LUT

3.5
(11)

Electronics 2023, 12, 3241 14 of 17

where #LUT is the number of LUTs. The number under the index SLICE is marked with an
asterisk if it is measured by #LUTs, otherwise, it is the actual SLICE number provided in
the work.

In order to evaluate the trade-offs between the performance and area in a fair manner
and compare the different works, we utilize the area–time–product (ATP) metric:

ATP = SEC× Latency (12)

The ATP is calculated by multiplying the total processing latency by the total area (in
SEC). By comparing the ATP values of different works, we can assess the overall efficiency
and effectiveness of each design in terms of both performance and area utilization. In
addition, the comprehensive comparisons are shown in Figure 7.

Figure 7. Comparisons of existing works on FPGA [9,10,17–19,22,25,27,30,31].

Ref. [27] employed the residue number system in their design, achieving lower total
latency than ours, outperforming by 56%. However, their work utilized many DSP and
SLICE areas because of the extra logic area taken by their system, resulting in low area
efficiency. Our implementation improved by 85% in area and 90% in ATP. The area will
explode as the bit-width of the modulus increases, so their design is not suitable for a
system like RSA, which has a large modulus size. Ref. [9] outperforms ours by 21% in
latency, but we have an advantage of 26% in area and 6% in ATP for a 256-bit modulus.
The advantage of our ATP grows as the modulus size increases. We have an advantage of
16% in ATP for a 512-bit modulus. By this comparison, we can see that our computation
efficiency exists even for large modulus sizes.

Although the platform used in [31] may be considered outdated, it is still valuable
for comparison purposes due to its adoption of a new pipeline form. The architecture
in [31] shares a similar approach to ours in regard to passing intermediate results, but it
suffers from a long data dependency path, resulting in a significant increase in the number
of CCs required for computations. Despite the differences in platform frequencies, our
work has demonstrated a significant advantage in terms of the number of CCs, achieving a
76% improvement compared to [31]. Ref. [30] aimed to relax data dependencies through
reduced operands and proposed a new pipeline form. However, their implementation still
exhibited a high total area (in SEC) and total latency, indicating that their approach to the

Electronics 2023, 12, 3241 15 of 17

new pipeline design was ineffective. Compared to [30], our design significantly improves
the ATP by 86%.

The design presented in [25] is based on FFT and requires a significant amount of
BRAM resources. While FPGAs often have sufficient BRAM resources to accommodate
this overhead, the ATP of [25] is relatively inferior when considering SEC. Although our
design may have an advantage in terms of the platform, it is important to note our absolute
leading positions in both total latency and SEC. Latency is improved by 74% in the 1024-bit
modulus and by 73% in the 2048-bit modulus. In terms of SEC, our design achieves a 40%
improvement in the 1024-bit modulus configuration, while maintaining a slightly higher
SEC (by 5% in the 2048-bit modulus design) compared to [25].

The designs in [17,18] are all based on digit-serial MMM and utilize optimized adders
or encoding methods to complete the designs. Among them, ref. [18] stands out as a
competitive design, with a smaller ATP and total SEC compared to ours. However, we
maintain an advantage in terms of total latency. It is worth noting that the superior
performance in [18] under the 1024-bit modulus cannot be well inherited into the design of
the 2048-bit modulus. In the case of the 2048-bit modulus, we achieve a 10% advantage
in total latency, a 32% advantage in total SEC, and a 40% advantage in ATP over [18].
Compared to [17], we have advantages in total latency, SEC, and ATP. Specifically, for the
1024-bit modulus, we achieve an 8% advantage in total latency, a 35% advantage in SEC, and
a 41% advantage in ATP. For the 2048-bit modulus, we have similar total latency, but a 41%
advantage in ATP. In [19], the design excels in total latency for both the 1024-bit modulus
and 2048-bit modulus. However, our design takes the lead in ATP for both modulus sizes.
Furthermore, as the modulus size increases, our design maintains its advantage in terms of
SEC and ATP. For [10], our design has a similar total latency but a 25% advantage in area
for the 1024-bit modulus. For the 2048-bit modulus, our implementation outperforms 14%
in latency, 29% in area, and 39% in ATP. Compared to [22], we have an absolute advantage
in both latency and area, represented by an 83% advantage in ATP.

Indeed, comparing and selecting the best design for MMM can be challenging due
to the diverse structures and optimizations employed by the listed designs. Each design
incorporates different techniques, such as compression, encoding, modified pipelines, as
well as different multiplication algorithms. Given the available data, our design stands
out with the best ATP and low latency in the 2048-bit modulus scenario. Additionally, it
demonstrates our competitive performance in the 1024-bit modulus scenario. Generally,
our design shows notable strengths in terms of ATP and latency, making it a compelling
choice for Montgomery modular multiplication.

5. Conclusions

This paper proposes a high-performance and low-cost implementation of Montgomery
modular multiplication. The proposed interleaved pipeline form of MWR2k MM effectively
addresses the issue of long data dependency paths, thereby reducing delay. To further
enhance the clock frequency, we divided the iteration process in the MMM algorithm into
two CCs, effectively shortening the critical path and overall delay. As a result, the proposed
MMM algorithm can achieve an average completion time of 4k + 1 CCs. The multiplier
in our hardware architecture is implemented using DSP48E1 blocks in the Xilinx Virtex-7
FPGA Series. The processing elements in our design feature a simple control structure,
which enhances the ease of operation. The implementation results highlight the superior
ATP and overall performance of our proposed algorithm and pipeline form. This makes it
an attractive solution for IoT devices requiring high performance at a low cost. Moving
forward, our future work will aim to further improve performance and area efficiency by
leveraging digit-serial MMM and exploring additional optimizations with our proposed IP.
Since there are various IoT applications, the IoT chip architectures vary, both in size and
power consumption. Therefore, we may optimize the DSP logic into compatible fast-adder
logic to be more portable and flexible for different applications.

Electronics 2023, 12, 3241 16 of 17

Author Contributions: Conceptualization, methodology, and writing—original draft preparation,
H.L.; software and writing—review and editing, H.L. and S.R.; data curation and validation, H.L., S.R.
and J.Z.; visualization and project administration, H.L., X.W. and W.W.; supervision and investigation,
S.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Chongqing Natural Science Foundation under
grant cstc2021jcyj-msxmX1096.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data can be provided upon reasonable request to the corresponding
author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
PCS public-key cryptography system
TLS transport layer security
RSA Rivest—Shamir—Adleman
ECC elliptic curve cryptography
MMM Montgomery modular multiplication
LUT lookup table
FFT fast Fourier transform
RNS residue number system
NLP non-least positive
IP-MWR2k MM interleaved pipeline multiple-word radix-2k Montgomery multiplication
PE processing element
CPD critical path delay
R2MM radix-2 Montgomery multiplication
MWR2k MM multiple-word radix-2k Montgomery multiplication
MSB most significant bit
MWR2MM multiple-word radix-2 Montgomery multiplication
CHRP classic high-radix pipeline
PS pipeline stage
CC clock cycle
FSM finite state machine
FA full adder
CSA carry–save adder
IP interleaved pipeline
SEC SLICE equivalent cost
ATP area–time–product

References
1. Madakam, S.; Lake, V.; Lake, V.; Lake, V. Internet of Things (IoT): A literature review. J. Comput. Commun. 2015, 3, 56616.

[CrossRef]
2. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horizons 2015,

58, 431–440. [CrossRef]
3. Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294.
4. Koblitz, N.; Menezes, A.J. A survey of public-key cryptosystems. SIAM Rev. 2004, 46, 599–634. [CrossRef]
5. Rescorla, E. SSL and TLS: Designing and Building Secure Systems; Addison-Wesley Reading: Boston, MA, USA, 2001; Volume 1.
6. Huh, S.; Cho, S.; Kim, S. Managing IoT devices using blockchain platform. In Proceedings of the 2017 19th International Confer-

ence on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 19–22 February 2017; pp. 464–467.
[CrossRef]

7. Imteaj, A.; Thakker, U.; Wang, S.; Li, J.; Amini, M.H. A Survey on Federated Learning for Resource-Constrained IoT Devices.
IEEE Internet Things J. 2022, 9, 1–24. [CrossRef]

http://doi.org/10.4236/jcc.2015.35021
http://dx.doi.org/10.1016/j.bushor.2015.03.008
http://dx.doi.org/10.1137/S0036144503439190
http://dx.doi.org/10.23919/ICACT.2017.7890132
http://dx.doi.org/10.1109/JIOT.2021.3095077

Electronics 2023, 12, 3241 17 of 17

8. Thakor, V.A.; Razzaque, M.A.; Khandaker, M.R.A. Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices:
A Review, Comparison and Research Opportunities. IEEE Access 2021, 9, 28177–28193. [CrossRef]

9. Wu, R.; Xu, M.; Yang, Y.; Tian, G.; Yu, P.; Zhao, Y.; Lian, B.; Ma, L. Efficient High-Radix GF (p) Montgomery Modular Multiplication
Via Deep Use Of Multipliers. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 5099–5103. [CrossRef]

10. Pan, J.S.; Song, P.; Yang, C.S. Efficient digit-serial modular multiplication algorithm on FPGA. IET Circuits Devices Syst. 2018,
12, 662–668. [CrossRef]

11. Ding, J.; Li, S. A low-latency and low-cost Montgomery modular multiplier based on NLP multiplication. IEEE Trans. Circuits
Syst. II Express Briefs 2019, 67, 1319–1323. [CrossRef]

12. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
1978, 21, 120–126. [CrossRef]

13. Miller, V.S. Use of Elliptic Curves in Cryptography; Springer: Berlin/Heidelberg, Germany, 1986.
14. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
15. Montgomery, P.L. Modular multiplication without trial division. Math. Comput. 1985, 44, 519–521. [CrossRef]
16. Tenca, A.F.; Todorov, G.; Koç, C.K. High-radix design of a scalable modular multiplier. In Proceedings of the Cryptographic

Hardware and Embedded Systems—CHES 2001: Third International Workshop, Paris, France, 14–16 May 2001; Proceedings 3,
pp. 185–201.

17. Zhang, B.; Cheng, Z.; Pedram, M. High-radix design of a scalable montgomery modular multiplier with low latency. IEEE Trans.
Comput. 2021, 71, 436–449. [CrossRef]

18. Erdem, S.S.; Yanık, T.; Çelebi, A. A general digit-serial architecture for Montgomery modular multiplication. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2017, 25, 1658–1668. [CrossRef]

19. Zhang, B.; Cheng, Z.; Pedram, M. An Iterative Montgomery Modular Multiplication Algorithm With Low Area-Time Product.
IEEE Trans. Comput. 2022, 72, 236–249. [CrossRef]

20. Fatemi, S.; Zare, M.; Khavari, A.F.; Maymandi-Nejad, M. Efficient implementation of digit-serial Montgomery modular multiplier
architecture. IET Circuits Devices Syst. 2019, 13, 942–949. [CrossRef]

21. Zhang, Z.; Zhang, P. A Scalable Montgomery Modular Multiplication Architecture with Low Area-Time Product Based on
Redundant Binary Representation. Electronics 2022, 11, 3712. [CrossRef]

22. Kolagatla, V.R.; Desalphine, V.; Selvakumar, D. Area-time scalable high radix Montgomery modular multiplier for large modulus.
In Proceedings of the 2021 25th International Symposium on VLSI Design and Test (VDAT), Surat, India, 16–18 September 2021;
pp. 1–4.

23. Abd-Elkader, A.A.; Rashdan, M.; Hasaneen, E.S.A.; Hamed, H.F. Efficient implementation of Montgomery modular multiplier on
FPGA. Comput. Electr. Eng. 2022, 97, 107585. [CrossRef]

24. Gu, Z.; Li, S. A division-free Toom–Cook multiplication-based Montgomery modular multiplication. IEEE Trans. Circuits Syst. II
Express Briefs 2018, 66, 1401–1405. [CrossRef]

25. Dai, W.; Chen, D.D.; Cheung, R.C.; Koc, C.K. Area-time efficient architecture of FFT-based montgomery multiplication. IEEE
Trans. Comput. 2016, 66, 375–388. [CrossRef]

26. Mo, Y.; Li, S. Design of an 8192-bit RNS montgomery multiplier. In Proceedings of the 2017 International Conference on Electron
Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, 18–20 October 2017; pp. 1–2.

27. Ahsan, J.; Esmaeildoust, M.; Kaabi, A.; Zarei, V. Efficient FPGA implementation of RNS Montgomery multiplication using
balanced RNS bases. Integration 2022, 84, 72–83. [CrossRef]

28. Tenca, A.F.; Koç, C.K. A scalable architecture for Montgomery multiplication. In Proceedings of the CHES, Worcester, MA, USA,
12–13 August 1999; Volume 99, pp. 94–108.

29. Ibrahim, A.; Gebali, F.; Elsimary, H. New and improved word-based unified and scalable architecture for radix 2 Montgomery
modular multiplication algorithm. In Proceedings of the 2013 IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing (PACRIM), Victoria, BC, Canada, 27–29 August 2013; pp. 153–158.

30. Shieh, M.D.; Lin, W.C. Word-based Montgomery modular multiplication algorithm for low-latency scalable architectures. IEEE
Trans. Comput. 2010, 59, 1145–1151. [CrossRef]

31. Huang, M.; Gaj, K.; El-Ghazawi, T. New hardware architectures for Montgomery modular multiplication algorithm. IEEE Trans.
Comput. 2010, 60, 923–936. [CrossRef]

32. Orup, H. Simplifying quotient determination in high-radix modular multiplication. In Proceedings of the 12th Symposium on
Computer Arithmetic, Bath, UK, 19–21 July 1995; pp. 193–199.

33. Farzam, M.H.; Bayat-Sarmadi, S.; Mosanaei-Boorani, H.; Alivand, A. Hardware architecture for supersingular isogeny Diffie-
Hellman and key encapsulation using a fast montgomery multiplier. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2042–2050.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3052867
http://dx.doi.org/10.1109/TCSII.2022.3197314
http://dx.doi.org/10.1049/iet-cds.2017.0300
http://dx.doi.org/10.1109/TCSII.2019.2932328
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1109/TC.2021.3052999
http://dx.doi.org/10.1109/TVLSI.2017.2652979
http://dx.doi.org/10.1109/TC.2022.3154164
http://dx.doi.org/10.1049/iet-cds.2018.5182
http://dx.doi.org/10.3390/electronics11223712
http://dx.doi.org/10.1016/j.compeleceng.2021.107585
http://dx.doi.org/10.1109/TCSII.2018.2886962
http://dx.doi.org/10.1109/TC.2016.2601334
http://dx.doi.org/10.1016/j.vlsi.2021.12.006
http://dx.doi.org/10.1109/TC.2010.72
http://dx.doi.org/10.1109/TC.2010.247
http://dx.doi.org/10.1109/TCSI.2021.3062871

	Introduction
	Research Background
	Previous Work
	Paper Contributions

	Preliminaries
	Radix-2 Montgomery Modular Multiplication Algorithm
	Multiple-Word Radix-2k Montgomery Modular Multiplication Algorithm
	Pipeline of the Classic MWR2kMM Algorithm

	Proposed Interleaved Pipeline Design
	Proposed IP-MWR2kMM Algorithm
	Parallel Computation of the IP-MWR2kMM Algorithm
	Proposed Hardware Architecture
	Processing Elements
	Overall Architecture

	Implementation Results and Comparison
	Performance and Area Analysis
	Timing Analysis
	Area Analysis

	Results Comparison and Discussion

	Conclusions
	References

