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Abstract: This paper presents a new speech-enhancement approach based on an enhanced empirical
wavelet transform, considering the time and scale adaptation of thresholds for individual component
signals obtained from the used transform. The time adaptation is performed using the Teager energy
operator on the individual component signals, and the scale adaptation of thresholds is performed
by the modified level-dependent threshold principle for the individual component signals. The
proposed approach does not require an explicit estimation of the noise level or a priori knowledge of
the signal-to-noise ratio as is usually needed in most common speech-enhancement methods. The
effectiveness of the proposed method has been assessed based on over 1000 speech recordings from
the public Librispeech database. The research included various types of noise (among others white,
violet, brown, blue, and pink) and various types of disturbance (among others traffic sounds, hair
dryer, and fan), which were added to the selected test signals. The score of perceptual evaluation of
speech quality, allowing for the assessment of the quality of enhanced speech, and signal-to-noise
ratio, allowing for the assessment of the effectiveness of disturbance attenuation, are selected for the
evaluation of the resultant effectiveness of the proposed approach. The resultant effectiveness of
the proposed approach is compared with other selected speech-enhancement methods or denoising
techniques available in the literature. The experimental research results show that the proposed
method performs better than conventional methods in many types of high-noise conditions in terms
of producing less residual noise and lower speech distortion.

Keywords: adaptive thresholds; enhanced empirical wavelet transform; denoising; speech enhancement;
Teager energy operator

1. Introduction

Noise has been a problem since the first sound recording devices, such as the Edison
phonograph, were developed. These devices recorded voices and other sounds. Unfortu-
nately, while listening to the recordings after information acquisition, one could always
observe various unpleasant disturbances occurring in them. Some were caused by the
environment, and others (e.g., crackling) were the result of very poorly technologically
advanced devices [1]. By the end of the 20th century, technological advances had mini-
mized the mechanical factors of devices causing an obvious signal disturbance. Despite
this, noise is still present in modern audio systems, albeit at a low level. All recordings,
even those made in hermetic rooms, contain some background noise that is picked up
by the microphone. Contemporary microphones have high sensitivity, which results in
better clarity and accuracy of the recorded information [2]. Another factor that causes noise
in an audio recording is that each part of the recording equipment (e.g., a microphone,
amplifier, or mixer that processes the recorded signal) adds a certain electronic noise. Its
occurrence in the recording is the result of electric fluctuations that occur as a result of the
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chaotic movement of charge in electronic components [3]. One of the types of such noise
is thermal noise [4]. In addition, disturbance can also be caused by low-level magnetic
and electrostatic fields in and around buildings from supply circuits. The method to limit
this is to use shielded cables with appropriately designed insulation, most often with XLR
connectors [5].

Noise reduction is still under investigation in modern audio engineering. The devel-
opment of semiconductor technology has contributed to the progress of miniaturization,
which, in the area of computer technology, has allowed for the collection of more infor-
mation and faster processing. Currently, recordings of audio signals can be made using
a wide range of available devices. The choice of a specific tool is made mainly in terms
of the purpose of registrations and considering the conditions under which the registra-
tion is carried out. Presently, disturbances affecting the useful signal can have various
characteristics. In an open space, inexpedient sounds can be road and industrial noises,
while indoors, air conditioning, household appliances, office machines, or other general-use
devices can be noise sources. It happens that the sounds that make daily life easier can also
be treated under certain conditions as a disturbance degrading the signal, e.g., loud music.
In particular, this problem can be noticed in the currently widely developed voice recogni-
tion and monitoring systems, where additional noises can have a negative impact on the
correctness of detection, verification, identification, or recognition. Hence, it is important to
use various speech-enhancement (noise-reduction) techniques. In the context of speech or
speaker recognition based on the pattern recognition process that separates analysis from
recognition, speech enhancement already has great potential. Speech enhancement can also
be used in coding and with a variety of devices such as audio prostheses.

Considering the processing domain, traditional speech-enhancement methods can be divided
into three categories, namely time [6–10], frequency [11–14] and time–frequency [15–18] domain
methods. Despite the significant development of speech-enhancement techniques [19–25]
from particular categories in recent years, there is still a problem of obtaining a high-quality
speech signal with high noise attenuation. Typically, if a method maintains high noise
attenuation properties, such a method does not always provide a significant improvement
in speech quality. On the other hand, many methods with the potential to significantly
increase the quality of speech do not allow high attenuation of the noise signal. The
abovementioned problem significantly worsens in the case of highly noisy speech signals.
Therefore, considering the presented problems, it can be seen that in recent years there
has been a growing tendency to solve speech-enhancement problems using machine-
learning methods [26–29], in particular using various deep-learning techniques [30–34].
However, machine-learning approaches, compared to traditional speech-enhancement
techniques, often require significant computational capabilities of the hardware on which
the approach is implemented, and it is necessary to create a representative dataset that
includes possible numerous real-world cases. It is worth noting that despite the creation
of a representative training and validation dataset, the over-fitting of the appropriate
model can still occur, which cannot be generalized. Therefore, methods of traditional
speech enhancement are still being developed, regardless of machine-learning methods.
Hence, the paper presents a new traditional method of speech enhancement based on
a new high-efficiency decomposition technique for non-stationary noisy signals, i.e., an
enhanced empirical wavelet transform [35], which, in combination with the Teager energy
operator [36], allows the high suppression of the noise signal (based on the signal-to-noise
ratio (SNR) [37]) and allows for a significant improvement in the quality of speech (based
on the perceptual evaluation of speech quality (PESQ) measure [38]), especially in the case
of a highly noisy signal of speech. The proposed approach does not require an explicit
estimation of the noise level or a priori knowledge of the signal-to-noise ratio, as is usually
needed in most common speech-enhancement methods. The presented approach was
verified and compared with other available approaches in the literature. Verifications of the
proposed approach in the paper were carried out on recordings from one microphone. It is
worth noting that the proposed approach has the possibility of multidimensional analysis,
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and thus, it is possible to apply/extend the proposed approach to the analysis of speech
signals from many microphones.

2. Proposed Approach

In the proposed approach shown in Figure 1, the processed speech signal x(t) is
first decomposed into a maximum of N component signals xEEWTk (t) using the enhanced
empirical wavelet transform (EEWT) [35]. Each component signal xEEWTk (t) is successively
processed according to the following steps:

1. Determination of Teager Energy Operator xTEOk (t) [36];
2. Mask construction Mk(t) based on xTEOk (t);
3. Mask processing M′k(t);
4. Determination of the time–space adaptation of thresholds λ′k(t) based on M′k(t);
5. Realization of soft thresholding x′EEWTk (t) considering λ′k(t) for the component

signal xEEWTk (t).

In the last step, the individual processed signals x′EEWTk (t) are summed, as a result of
which an enhanced speech signal x′(t) is obtained.
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Figure 1. Diagram of the proposed speech-enhancement approach.

2.1. Enhanced Empirical Wavelet Transform (EEWT)

The EEWT algorithm can be represented in the following steps.

1. The use of fast Fourier transform (FFT) to determine the spectrum of the analyzed
signal.

2. The calculation of the upper envelope of the analyzed signal using the l-th order
statistical filter (OSF). In the enhanced method [35] (in relation to the conventional
empirical wavelet transform (EWT) [39]), the envelope is used to identify the trend of
spectrum variation. The number of order l is determined according to the relationship:

l = bntap ·
L
fs
c, (1)

where ntap is the filter order scaling parameter (ntap = 70 was adopted in the
research—see Section 2.6), L is the length of the analyzed signal, and fs is the sampling
frequency of the analyzed signal.

3. The determination of spectrum frequency peaks from the designated envelope and
the selection of useful ones based on the following criteria: (a) the width of a flat top
cannot be shorter than the order statistics filter size; (b) the most representative flat
top in the neighbor ones is picked out; (c) the useful flat tops do not appear in the
downtrend of the analyzed signal spectrum.

4. The calculation of the spectrum segmentation boundaries based on the flat tops
obtained in Step 3.
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5. The construction of the empirical scaling function and empirical wavelet as in the EWT
method [39], and the decomposition of the analyzed signal into component signals.

Steps 1–4 allow for the segmentation of the spectrum of the analyzed signal. To seg-
ment the spectrum, the segmentation boundaries must be determined. For this purpose, the
spectrum is normalized to the range [0; π] and is divided into up to N intervals (if the num-
ber of useful flat tops Nu is smaller than the predefined number of component signals N,
then the analyzed signal is decomposed into Nu of component signals). The predefined
number of component signals N of 32 was adopted in the research—see Section 2.6. The
individual interval boundaries are designated as ωk, where ω0 = 0 and ωmin(N,Nu) = π.

Each sub-range is marked as
min(N,Nu)⋃

k=1
Λk = [0; π]. The boundary determination is based

on flat tops described in Step 3. Each boundary is the minimum between subsequent flat
tops in the analyzed signal spectrum. If the flat tops are designated as FTk, then:

ωk = arg min
(

f̂ (ω)
)

ω∈(FTk ,FTk+1)

, (2)

where f̂ (ω) is the analyzed signal spectrum.
Step 5 allows for the construction of the empirical wavelets, allowing for the extraction

of individual component signals as described in [39]. For specific intervals, an empirical
scaling function Φk is constructed described by (3) and an empirical Meyer wavelet Ψk
described by (4) [39]:

Φk =


1 if |ω| ≤ ωk − τk

cos
[

π
2 υ
(

1
2τk

(|ω| −ωk + τk)
)]

if ωk − τk < |ω| < ωk + τk

0 otherwise
, (3)

Ψk =


1 if ωk + τk ≤ |ω| ≤ ωk+1 − τk+1

cos
[

π
2 υ
(

1
2τk+1

(|ω| −ωk+1 + τk+1)
)]

if ωk+1 − τk+1 < |ω| < ωk+1 + τk+1

sin
[

π
2 υ
(

1
2τk

(|ω| −ωk + τk)
)]

if ωk − τk ≤ |ω| ≤ ωk + τk

0 otherwise

, (4)

where υ(t) can be described as:

υ(t) =
{

t4(35− 84t + 70t2 − 20t3) if 0 < t < 1
0 otherwise

. (5)

For the defined empirical wavelet, the τk can be selected in many ways and determines the
appropriate width of the spectrum segment. One of the simplest choices is τk proportional
to ωk, so τk = ζωk, where 0 < ζ < 1.

The approximate coefficients are the scalar product of the processed signal and the
empirical scaling function:

Wε
x(0, t) = 〈x, Φ1〉 =

∫
x(τ)Φ1(τ − t)dτ. (6)

The detail coefficients are the scalar product of the processed signal and the empirical
wavelet:

Wε
x(k, t) = 〈x, Ψk〉 =

∫
x(τ)Ψk(τ − t)dτ. (7)
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For the defined approximation coefficients and detail coefficients, signal decomposition
defined by empirical wavelet transform can be described as:

xEEWTk (t) =
{

Wε
x(0, t) ∗Φ1(t) if k = 0

Wε
x(k, t) ∗Ψk(t) if k = 1, 2, . . . , min(N, Nu)

. (8)

In the research, the software provided by the authors of the paper [40] was used to prepare
the enhanced EWT method. A method that allows for the calculation of the upper envelope
of the analyzed signal using the specific order statistical filter was added to the available
software. In addition, based on the obtained envelope, a method was added that allows for
the determination of spectrum frequency peaks and selection of useful ones based on the
criteria characteristic of EEWT.

2.2. Teager Energy Operator (TEO)

For the time–space-adapted threshold construction, the Teager energy operator (TEO) [36]
is used, which for the k-th component signal xEEWTk (t) (in the discrete domain for sampling
moments ti) is given the following relationship:

xTEOk (ti) = xEEWTk (ti) · xEEWTk (ti)− xEEWTk (ti+1) · xEEWTk (ti−1). (9)

The use of the Teager energy operator allows for the increase of the ability to recognize a
speech signal from a disturbance (noise) signal.

2.3. Mask Construction

The mask construction for the k-th component signal is performed by smoothing the
signal xTEOk (t) (obtained with the Teager energy operator (TEO)) and then is normalized.
Thus, the initial construction of the mask Mk(t) is given by the relationship:

Mk(t) =
xTEOk (t) ∗ hk(t)

max
(∣∣xTEOk (t) ∗ hk(t)

∣∣) , (10)

where hk(t) is the impulse response for a second-order Butterworth low-pass filter (infinite
impulse response (IIR) filter).

2.4. Mask Processing

The time-scale adaptation of thresholds should be adjusted to the speech waveform;
therefore, the difference between the local maxima should be reduced. The processing
result should provide a compromise between noise attenuation and speech distortion. Thus,
the pre-calculated mask is processed according to the relationship:

M′k(t) =

{(
|Mk(t)|−Sk

max(|Mk(t)|−Sk)

)γ
if Sk < Sthres

0 if Sk ≥ Sthres
, (11)

where Sk is the parameter called offset and is determined as the abscissa of the maximum
of the amplitude distribution H of the corresponding mask Mk(t), and is estimated over
the analyzed frame:

Sk = abscissa[H(Mk(t))], (12)

γ is a parameter that affects the compromise between noise attenuation and speech dis-
tortion (γ = 0.125 was adopted in the research—see Section 2.6); Sthres is a parameter
that affects the ability to discern speech from silence (Sthres = 0.041 was adopted in the
research—see Section 2.6).
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2.5. Thresholding

As part of the thresholding, the level-dependent threshold is first determined in
accordance with the dependence:

λk = σk
2 log L

log2(k + 2)
, (13)

where k = 0, 1, 2, . . . , min(N, Nu), σk = MADk/0.6745 is the noise level, L is the length of
the analyzed signal, MADk is the median absolute deviation value for xEEWTk (t).

In the next step, based on the level-dependent threshold λk and the processed mask M′k(t),
the time–space adaptation of thresholds λ′k(t) is determined according to the dependence:

λ′k(t) =

{
Γλk(1−M′k(t)) if Pk

P < Pthres

λk(1−M′k(t)) if Pk
P ≥ Pthres

, (14)

where Pk is the power of the k-th component signal xEEWTk (t), P is the power of the
processed speech signal x(t), Pthres is the level-dependent threshold λk scaling trigger
(Pthres = 0.170 was adopted in the research—see Section 2.6); Γ is the scaling parameter of
the level-dependent threshold λk (Γ = 4.837 was adopted in the research—see Section 2.6).

In the last step, soft thresholding [41] is performed for individual k-th component
signals xEEWTk (t) based on the determined time–space adaptation of thresholds λ′k(t).

2.6. Final Processing

To obtain an enhanced speech signal x′(t), the individual processed k-th component
signals x′EEWTk (t) are summed according to the relationship:

x′(t) =
min(N,Nu)

∑
k=0

x′EEWTk (t). (15)

It is worth noting that the set of hyperparameters adopted in the research for proposed
approach—

[
ntap, N, Sthres, γ, Pthres, Γ

]
—is the result of the optimization process carried out

using Monte Carlo analysis for a subset of the selected test signal database with added
“white” noise with different SNRu values. The optimization process was focused on maxi-
mizing speech quality. The optimization process included many combinations of hyperpa-
rameters randomly selected from the space bounded by a hyperplane: [10, 3, 0, 0.125, 0.01, 1]
and [500, 100, 1, 3, 0.3, 5]. The effectiveness of the proposed approach will likely increase if
different types of disturbances are included in the optimization process. Nevertheless, by
comparing the proposed approach with the adopted hyperparameter values with other
speech-enhancement methods available in the literature, better effectiveness is obtained.

3. Materials

In the carried-out research, the well-known, publicly available Librispeech [42] database
was used as a source of clean speech. The Librispeech database is a large-scale corpus of
read speech in English with 1000 h of recordings. Its structure is divided into separate
subsets, which, by default, are used to train, develop, and evaluate automatic speech recog-
nition systems (“train”, “dev”, and “test” sets, respectively). Due to the extensive collection
of recordings in the Librispeech database, only the test subset was used in the experiments,
or more precisely the “test-clean” set. This collection contains a total of approx. 2600 speech
files, the duration of which ranges from 1 to 35 s (a total of over 5 h of recordings), while
approx. 400 recordings are equal to or shorter than 3 s, 800 recordings are equal to or shorter
than 4 s, 1000 recordings are equal to or shorter than 5 s, and 2000 recordings are equal to
or shorter than 10 s. Initial experiments were shown that consider that each of the methods
of speech enhancement or noise reduction described in this paper is time-consuming, even
on a limited, selected subset of the Librispeech database (“test-clean”). Therefore, it was
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decided to use a smaller but representative number of recordings and speakers from the
subset of the “test-clean” set, in which recordings with a duration of no longer than 5 s
(exactly 1093 speech files; 1 h of recordings) in total, including each of (i.e., 40) speakers
from the “test-clean” set), were used. Speech files selected in this way from the Librispeech
database were used as a reference set of clean speech, to which were added various types
of selected noises and ambient sounds. Speech files prepared in such a way, containing
noise, were used as the input data for each of the tested methods of speech enhancement or
noise reduction.

4. Results and Discussion

The research used the database of speech signals described in Section 3. For the
assumed database of test speech signals, the following types of noise [43] were added
successively: white, pink, blue, violet, and brown. The following types of disturbances:
traffic noise, fan, a hair dryer (ambient sounds recordings from own resources) with
SNRu values equal to 20 dB, 10 dB, 0 dB, −10 dB, −20 dB, where SNRu is unprocessed
signal-to-noise ratio determined according to the relationship:

SNRu = 10 log
∑L

i=1

{
(xclean(ti))

2
}

∑L
i=1

{
(xnoise(ti))

2
} , (16)

where xclean(ti) is the non-distorted (clean) speech signal, xnoise(ti) is the added noise
(disturbance) signal, ti is the sampling moments, L is the length of the analyzed signal.
Color noise is generated by taking uniform white noise and filtering with a coloring filter
to obtain the desired noise spectrum with a power spectral density function given by:

S( f ) =
L( f )
| f |α

, (17)

where α is a real number in the interval [−2, 2] and L( f ) is a positive, slowly varying or
constant function. Pink noise (α = 1) has equal energy per octave and the power spectral
density of pink noise decreases 3 dB per octave. Blue noise (α = −1) has a power spectral
density that increases by 3 dB per octave. Violet noise (α = −2) has a power spectral density
that increases by 6 dB per octave. Brown noise (α = 2) has a power spectral density that
decreases by 6 dB per octave.

For individual considered noisy speech signals, the process of speech enhancement
was implemented using the proposed approach and selected methods of noise reduction or
speech enhancement available in the literature, i.e., Karhunen–Loeve transform (KLT)—a
generalized subspace approach of KLT [44,45], SSboll—spectral subtraction [13,46], WT-
TEO—wavelet speech enhancement based on time-scale adaptation [47], NR—noise re-
duction using spectral gating [48,49], H-SVD—noise-reduction technique based on Hankel
matrix and singular value decomposition [50], EEMD-SVD—noise-reduction technique
based on ensemble empirical mode decomposition and singular value decomposition [51].

For the individual speech-enhancement results obtained by the considered methods
for the considered noisy speech signals, two measures were determined, i.e., the signal-to-
noise ratio (SNR) [37] assessing the ability to suppress noise (disturbance) by the considered
methods, and the perceptual evaluation of speech quality (PESQ) score [38] assessing the
quality of the processed speech signal. The PESQ score was determined using the available
Python library [52], and the SNR was calculated according to the relationship [37]:

SNR = 10 log
∑L

i=1

{
(xclean(ti))

2
}

∑L
i=1

{
(x′(ti)− xclean(ti))

2
} , (18)
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where xclean(ti) is the clean signal without added noise, and x′(t) is the result of the
considered methods of speech enhancement or noise reduction.

Figure 2a shows a comparison of the effectiveness of the considered methods for the
selected speech signal with the “white” noise with the value of SNRu = 0 dB in the time
domain. Based on the presented selected signals in the time domain, it can be seen that
the best representation of the original signal (e.g., by comparing the envelope signals) is
obtained for the proposed approach as well as for KLT and SSbol.

(a) time domain

2

4

0

f
[k

H
z
]

clean EEWT-TEO

KLT SbollS WT-TEO

NR H-SVD EEMD-SVD

6

8

0.0 1.0 2.0 3.0
t [s]

3.5

noisy

2

4

0

f
[k

H
z
]

6

8

0.0 1.0 2.0 3.0
t [s]

3.50.0 1.0 2.0 3.0
t [s]

3.5

2

4

0

f
[k

H
z
]

6

8

(b) time–frequency domain

Figure 2. The comparison of the effectiveness of the considered methods for the selected speech
signal with the “white” noise with the value of SNRu = 0 dB in the time (a) and the time–frequency
(b) domain.

Figure 2b shows a comparison of the effectiveness of the considered methods for
the selected speech signal with the “white” noise with the value of SNRu = 0 dB in the
time–frequency domain with the use of spectrograms. Based on the presented selected
spectrograms, it can be seen that the best recreation of signal features in the time–frequency
domain is obtained for the proposed approach. This property is especially important
for the speech recognition process [53–57] in which deep learning is used. In such a
process, algorithms can learn from features that are not always relevant to the listener.
Thus, obtaining a high PESQ/SNR and recreation of the appropriate envelope cannot
always be sufficient. Hence, a new approach has been proposed, which also allows for the
reconstruction of important features in the time–frequency domain, thanks to which the
use of such a block at the beginning of the signal chain in the speech recognition process
allows for a significant increase in the accuracy of speech recognition in a situation when
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the speech signal is noisy or disturbed, which is the subject of a separate publication. The
use of other selected speech-enhancement methods in the process of speech recognition
based on deep learning, in most cases deteriorated recognition, is due to the removal of
features that do not have to be important from the point of view of the listener, but are
important from the point of view of the deep-learning system.

Figures 3–7 show a comparison of the distribution of PESQ and SNR results for the
proposed approach and other considered methods for analyzed speech signals, considering
“white”, “violet”, “brown”, “blue”, and “pink” noise, respectively. The distribution of the
obtained results is presented using the boxplot. Due to the readability of the presented
research results, the mean value for individual boxplots is not plotted, because it almost
always fluctuated around the median or coincided with the median.

Figure 3. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with “white” noise.
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Figure 4. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with “violet” noise.

Figures 8–10 show a comparison of the distribution of PESQ and SNR results for the
proposed approach and other considered methods for analyzed speech signals, considering
disturbances such as traffic sounds, hair dryer, and fan. The distribution of the obtained
results is presented using the boxplot. Due to the readability of the presented research
results, the mean value for individual boxplots is not plotted, because it almost always
fluctuated around the median or coincided with the median. Table 1 shows the maximum
and median values of PESQ score for individual considered cases. Table 2 shows the
maximum and median values of the SNR for individual considered cases.
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Figure 5. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with “brown” noise.

Based on the research results presented in Figures 3–10 regarding the PESQ score, it
can be seen that the proposed approach provides the best global enhancement of speech
quality for various types of noise and various types of disturbances (ambient sounds). The
greatest effectiveness of the proposed approach is visible for the SNRu at the level from
20 dB to 0 dB.

Based on the research results presented in Figures 3–10 regarding the SNR, it can
be seen that the proposed approach provides the best noise (disturbance) attenuation for
the analyzed speech signals for various types of noise and various types of disturbances
(ambient sounds). In the case of this parameter, the high efficiency of the proposed approach
is evident for both a low and a high SNRu value. Additionally, it is worth noting that
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the dispersion of the research results for the proposed approach is small in the case of
SNR, i.e., the resultant mean value, median value, lower and upper quartile, and the
minimum and maximum value excluding outliers, and almost coincides with the adopted
axis scale considering the dispersion for each analyzed speech enhancement or noise-
reduction methods. On this basis, it can be concluded that the high noise (disturbance)
attenuation ability will be maintained with a high probability for various types of other
noises (disturbances). In the case of other considered methods, the dispersion is much more
noticeable, which indicates significantly changeable effectiveness.

Figure 6. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with “blue” noise.
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Figure 7. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with “pink” noise.

The highest efficiency is understood as maintaining the highest median value and the
mean value of PESQ and SNR for various types of disturbing signals with different SNRu
values. In the case of SNR, both the aforementioned median and mean values as well as the
other statistical parameters (e.g., minimum and maximum value) are the highest among all
the methods considered in the research. In the case of PESQ, other methods have sometimes
obtained higher maximum PESQ values (e.g., SSboll for “pink” noise with SNRu = −20 dB)
or higher minimum PESQ values (e.g., KLT for “white” noise with SNRu = −10 dB).
This situation means that sometimes, as a result of the noise (disturbance) attenuation,
the speech quality can be distorted from the listener’s point of view, or sometimes it is
observable to obtain a speech signal of better quality for other methods than the proposed
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approach. It is worth noting that extending the process of optimization of hyperparameters
(see Section 2.6), considering other selected noises, could make better speech-enhancement
results for the proposed method in selected cases for noise other than “white” noise, where
other methods provided better results (e.g., “pink”).

Figure 8. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with ambient sound like “traffic sounds”.
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Figure 9. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with ambient sound like “hair dryer”.
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Figure 10. The distribution of PESQ and SNR results for the proposed approach and other considered
methods for analyzed speech signals with ambient sound like “fan”.
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Table 1. The maximum and median values of PESQ score for individual considered cases.
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“white”
noise

20 3.90 2.00 4.01 3.50 3.81 2.55 2.28 2.97 1.42 2.82 2.57 2.96 1.44 1.51
10 3.00 1.91 2.89 2.61 2.71 2.57 1.91 2.31 1.44 2.01 1.93 1.96 1.47 1.40
0 2.24 1.50 1.77 1.90 2.18 2.24 1.55 1.71 1.21 1.37 1.45 1.63 1.48 1.24
−10 1.86 1.46 1.24 1.61 1.68 1.87 1.48 1.36 1.22 1.10 1.27 1.31 1.27 1.19
−20 1.49 1.60 1.20 1.39 1.40 1.31 1.42 1.19 1.07 1.05 1.18 1.05 1.08 1.16

“violet”
noise

20 4.45 1.94 3.93 3.97 3.65 2.58 2.51 3.29 1.51 2.68 3.03 2.74 1.46 1.57
10 3.78 1.75 2.49 3.23 3.20 2.56 2.09 2.79 1.40 1.69 2.36 2.28 1.43 1.46
0 3.10 1.60 1.86 2.49 2.65 2.57 1.64 2.23 1.24 1.30 1.81 1.87 1.47 1.26
−10 2.05 1.53 1.44 1.68 1.88 1.84 1.48 1.54 1.22 1.15 1.29 1.53 1.23 1.26
−20 1.70 1.50 1.27 1.50 1.25 1.20 1.51 1.32 1.18 1.10 1.26 1.08 1.09 1.19

“brown”
noise

20 4.50 1.50 3.01 4.36 3.81 2.55 2.97 4.11 1.20 1.71 3.14 2.73 1.44 1.71
10 4.50 1.50 2.03 4.28 3.87 2.68 2.94 4.02 1.20 1.34 3.13 2.73 1.44 1.70
0 4.00 1.53 1.51 3.74 3.30 2.34 2.13 3.20 1.23 1.15 2.65 2.37 1.12 1.50
−10 3.45 2.05 1.20 2.58 2.85 1.17 3.00 2.37 1.42 1.09 1.78 1.97 1.06 1.84
−20 2.20 1.80 1.14 1.69 1.76 1.11 1.37 1.42 1.25 1.03 1.26 1.32 1.08 1.23

“blue”
noise

20 4.00 2.00 3.77 3.70 3.59 2.42 2.29 3.06 1.31 2.77 2.77 2.48 1.40 1.50
10 3.78 2.13 2.96 3.22 3.25 2.70 2.13 2.83 1.36 1.98 2.33 2.28 1.49 1.47
0 2.50 1.75 1.87 2.07 2.31 2.36 1.53 1.87 1.28 1.35 1.58 1.69 1.43 1.21
−10 1.83 1.66 1.41 1.67 1.75 2.05 1.41 1.40 1.32 1.16 1.32 1.35 1.26 1.17
−20 1.52 1.51 1.27 1.20 1.66 1.27 1.51 1.23 1.21 1.10 1.08 1.24 1.08 1.19

“pink”
noise

20 4.42 1.91 3.45 4.28 3.78 2.83 2.81 3.35 1.28 1.96 3.22 2.72 1.53 1.69
10 3.10 1.70 2.03 2.91 2.93 2.66 2.09 2.37 1.28 1.37 2.16 2.06 1.46 1.44
0 2.00 1.47 1.47 1.75 1.91 2.49 1.57 1.63 1.14 1.16 1.39 1.51 1.28 1.23
−10 1.55 1.49 1.70 1.42 1.62 1.19 1.52 1.24 1.17 1.19 1.14 1.27 1.08 1.20
−20 1.33 1.43 1.69 1.17 1.65 1.17 1.36 1.15 1.05 1.05 1.06 1.11 1.08 1.11

traffic
sounds

20 4.17 1.35 3.07 3.84 3.40 2.58 2.76 3.22 1.18 2.08 2.96 2.43 1.47 1.70
10 2.89 1.44 2.07 2.79 2.47 2.65 2.24 2.31 1.23 1.51 2.14 1.88 1.52 1.58
0 1.92 1.38 1.56 1.85 1.72 1.83 1.61 1.52 1.14 1.18 1.43 1.37 1.14 1.27
−10 1.40 1.30 1.90 1.40 1.26 1.52 1.51 1.27 1.11 1.13 1.15 1.10 1.09 1.15
−20 1.47 1.27 1.60 1.44 1.28 1.33 1.60 1.26 1.08 1.13 1.12 1.10 1.07 1.13

hair
dryer

20 4.00 1.36 2.96 3.70 3.60 2.71 2.64 3.05 1.14 2.12 2.71 2.56 1.49 1.58
10 2.80 1.33 1.96 2.38 2.54 2.60 1.91 2.12 1.13 1.41 1.78 1.90 1.45 1.37
0 1.91 1.31 1.34 1.74 1.79 1.90 1.54 1.59 1.11 1.13 1.36 1.41 1.40 1.23
−10 1.62 1.85 1.90 1.58 1.41 1.90 1.63 1.42 1.16 1.21 1.16 1.15 1.39 1.13
−20 1.36 1.35 1.44 1.25 1.51 1.60 1.31 1.22 1.08 1.10 1.07 1.11 1.18 1.09

fan

20 3.56 1.33 2.79 3.25 3.17 2.54 2.41 2.69 1.11 1.91 2.49 2.30 1.43 1.59
10 2.52 1.32 1.96 2.37 2.36 2.50 1.89 1.95 1.12 1.41 1.74 1.77 1.41 1.39
0 1.95 1.37 1.54 1.90 1.97 2.05 1.71 1.55 1.13 1.17 1.42 1.49 1.30 1.30
−10 1.45 1.32 1.11 1.33 1.36 1.60 1.30 1.26 1.12 1.04 1.13 1.13 1.26 1.13
−20 1.30 1.24 2.05 1.24 1.17 1.92 1.24 1.18 1.09 1.12 1.10 1.06 1.28 1.09
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Table 2. The maximum and median values of the SNR for individual considered cases.
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“white”
noise

20 22.43 5.00 21.72 19.56 13.07 4.75 11.47 17.18 0.25 17.32 13.73 9.23 0.62 1.51
10 19.38 1.12 17.36 18.32 13.47 3.13 11.14 15.29 −2.05 11.78 13.69 8.84 −2.51 −1.20
0 16.49 0.83 15.12 10.89 11.63 5.54 6.29 11.63 −1.68 9.78 8.69 8.99 −0.60 0.02
−10 5.14 0.13 4.46 1.50 3.20 3.50 −0.81 1.11 −1.58 0.78 −1.60 −0.25 −2.94 −3.86
−20 0.14 −0.84 −1.71 −1.30 −1.04 −1.04 −1.97 −3.63 −3.19 −4.05 −7.16 −5.96 −7.20 −8.32

“violet”
noise

20 27.63 6.06 25.07 23.65 13.10 2.21 11.25 19.82 1.28 19.45 13.80 8.25 −3.44 −2.42
10 21.08 2.84 19.56 20.44 12.01 2.30 11.41 15.48 −1.20 14.17 11.04 7.74 −2.90 −1.64
0 22.76 2.08 15.81 18.94 12.16 6.04 2.70 14.71 −1.95 10.35 11.06 8.63 −1.81 −2.18
−10 13.82 0.23 4.42 6.51 6.53 4.19 −1.24 7.36 −3.53 1.39 4.00 2.01 −4.75 −6.06
−20 1.91 0.43 0.36 1.16 0.21 −1.37 −2.08 0.14 −1.33 −1.29 −0.97 −4.15 −6.16 −8.34

“brown”
noise

20 25.02 3.11 20.63 18.73 12.57 3.86 10.20 18.31 0.05 11.59 16.01 7.85 −3.35 −2.23
10 14.98 −0.02 12.41 10.44 13.82 4.11 11.72 12.64 −3.61 6.24 9.92 9.44 −4.11 −0.04
0 5.25 0.00 3.40 3.03 10.00 −0.83 6.95 2.59 −2.34 −2.16 1.35 7.24 −8.78 −1.08
−10 2.10 −3.28 1.83 −0.27 10.00 −1.29 0.29 −3.26 −5.54 −7.01 −6.93 5.69 −8.88 −7.47
−20 −1.04 −5.16 −1.78 −9.58 −0.61 −10.08 0.00 −6.49 −7.55 −9.95 −11.68 −3.00 −12.89 −7.00

“blue”
noise

20 24.93 6.39 23.84 24.09 10.39 0.70 9.50 18.33 1.37 18.49 14.94 6.06 −4.30 −3.88
10 18.20 5.58 18.03 19.23 11.76 2.93 10.73 14.13 2.70 13.42 11.97 7.88 −1.72 −0.19
0 15.02 1.99 12.14 10.40 8.34 2.30 1.65 9.32 −0.65 7.58 7.10 5.68 −1.99 −1.58
−10 9.98 2.08 5.35 4.01 4.06 3.77 −2.92 4.91 −0.15 1.20 1.02 0.02 −4.65 −6.85
−20 0.48 0.01 −0.30 0.02 −1.16 −2.40 −3.25 −0.81 −1.54 −2.00 −3.62 −5.60 −7.19 −9.03

“pink”
noise

20 25.02 2.18 23.40 21.33 13.50 2.44 11.25 19.21 −1.12 14.89 17.77 8.41 −3.30 −2.14
10 15.02 0.82 14.04 12.92 13.34 5.65 10.99 12.84 −1.32 8.83 11.69 9.22 −0.84 0.90
0 4.01 −0.90 3.38 2.84 7.00 −0.79 5.71 2.05 −3.02 −0.82 0.76 4.92 −8.15 −1.87
−10 3.75 −0.87 0.55 0.94 4.73 −1.53 2.12 −1.54 −3.68 −5.44 −3.86 1.93 −8.59 −2.90
−20 2.07 0.00 0.03 −2.78 1.42 −2.84 1.47 −2.98 −4.05 −8.31 −10.22 −2.58 −10.24 −2.39

traffic
sounds

20 25.27 2.44 21.62 21.49 13.69 5.29 12.86 20.62 0.02 17.66 18.80 9.06 −1.94 −0.68
10 15.01 2.15 13.07 11.96 12.08 4.96 11.56 12.74 −0.24 9.71 11.17 8.13 −1.84 −0.82
0 11.10 4.07 7.99 7.01 10.04 3.33 8.23 8.26 0.81 4.20 4.57 7.01 −2.90 −1.13
−10 2.93 0.00 −0.28 0.12 1.39 −0.90 0.09 0.36 −2.40 −3.74 −3.93 0.00 −4.76 −4.71
−20 1.77 0.23 −0.23 −4.52 −0.23 −0.23 −0.23 −1.56 −3.51 −8.88 −11.78 −3.10 −10.42 −2.19

hair
dryer

20 25.23 1.07 22.49 21.65 13.59 2.46 12.48 18.91 −1.65 16.87 17.80 8.60 −4.34 −1.91
10 17.24 1.65 14.47 12.08 12.07 4.27 9.10 13.42 −0.91 9.27 10.62 7.99 −2.31 −1.35
0 11.10 2.27 7.69 4.86 8.07 4.71 4.11 7.23 −0.97 3.63 2.79 6.01 −3.01 −1.50
−10 6.41 −0.20 −0.20 −0.32 1.66 −2.55 −1.29 −0.20 −0.39 −3.04 −5.02 −2.16 −7.35 −5.16
−20 2.21 1.37 0.73 −1.56 0.09 −1.59 0.17 −2.70 1.19 −2.80 −10.32 −4.99 −6.56 −4.93

fan

20 24.77 0.86 22.35 18.94 13.24 2.25 12.50 18.38 −1.77 15.10 16.01 8.16 −3.37 −2.16
10 15.00 1.04 12.76 10.59 10.78 2.30 7.84 11.89 −1.09 7.36 10.09 6.96 −2.53 −1.60
0 10.96 2.27 8.04 5.23 8.39 3.44 4.94 7.46 −0.56 3.37 2.49 5.60 −3.79 −1.50
−10 2.78 −0.14 0.27 −0.42 2.45 −1.44 −0.24 −0.25 −3.85 −0.98 −4.40 −1.20 −4.29 −3.90
−20 0.53 0.62 0.53 −4.77 0.68 0.53 0.53 −1.43 −2.89 −3.26 −12.89 −5.57 −8.27 −4.27
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5. Conclusions

The paper presents speech enhancement based on the enhanced empirical wavelet
transform and the Teager energy operator. The new proposed approach is less sensitive
to large disturbances compared to traditional algorithms and can significantly reduce
noise as well as other disturbing signals (ambient sounds). The research results show
that the proposed method is good at overall better speech quality, especially in the case
of low SNR values for different color noise and different types of disturbance (ambient
sounds). At the same time, it should be noted that the proposed method, apart from
the general enhancement of the speech quality, in most cases provides the greatest noise
(disturbance) reduction for each of the considered types of noise and types of disturbance,
even in the case of a significant contribution of disturbance. Additionally, it is worth noting
that the dispersion of the research results for the proposed approach is small in the case
of SNR, i.e., the resultant mean value, median value, lower and upper quartile, and the
minimum and maximum value excluding outliers, and almost coincides with the adopted
axis scale considering the dispersion for each analyzed speech enhancement or noise-
reduction methods. On this basis, it can be concluded that the high noise (disturbance)
attenuation ability will be maintained with a high probability for various types of other
noises (disturbances). In the case of other considered methods, the dispersion is much more
noticeable, which indicates significantly changeable effectiveness.

The proposed approach does not require an explicit estimation of the noise level
or a priori knowledge of the signal-to-noise ratio as is usually needed in most common
speech-enhancement methods. The proposed approach allows for the reconstruction
of important features in the time–frequency domain, thanks to which the use of such
a block at the beginning of the signal chain in the speech recognition process allows
for a significant increase in the accuracy of speech recognition in a situation when the
speech signal is noisy or disturbed (e.g., the proposed approach can be used in a radio-
illumination decision support system for the captain of a ship in distress situations for
better identification and understanding of speech when calling for help and contacting
maritime emergency services [58,59]). An effective speech recognition process in difficult
enhancement conditions using the proposed approach and deep-learning methods is the
future direction of research.

Author Contributions: Conceptualization, P.K.; methodology, P.K.; software, P.K. and W.J.; validation,
W.J.; formal analysis, P.K.; investigation, P.K. and W.J.; resources, P.K. and W.J.; data curation, P.K.
and W.J.; writing—original draft preparation, P.K.; writing—review and editing, P.K.; visualization,
P.K.; supervision, W.J.; project administration, W.J.; funding acquisition, P.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by statutory funds of the Faculty of Control, Robotics and
Electrical Engineering of the Poznan University of Technology.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to University policy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Recording History. Available online: http://www.recording-history.org (accessed on 1 January 2022).
2. Lindos Electronics. Available online: http://http://www.lindos.co.uk/ (accessed on 1 January 2022).
3. Shapley, G.J. Sound of Failure: Experimental Electronic Music in Our Post–Digital Era; University of Technology: Sydney, Aus-

tralia, 2012.
4. Yang, Y.; SooCho, J.; Lee, B.; Kim, S. A Sound Activity Detector Embedded Low-Power MEMS Microphone Readout Interface for

Speech Recognition. In Proceedings of the 2019 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), Lausanne, Switzerland, 29–31 July 2019 ; pp. 1–6. [CrossRef]

5. Schneider, M. Electromagnetic interference, microphones and cables. AES J. Audio Eng. Soc. 2005, 6339.
6. Gannot, S.; Burshtein, D.; Weinstein, E. Iterative and sequential Kalman filter-based speech enhancement algorithms. IEEE Trans.

Acoust. Speech Signal Process. 1998, 6, 373–385. [CrossRef]

http://www.recording-history.org
http://http://www.lindos.co.uk/
http://doi.org/10.1109/ISLPED.2019.8824939
http://dx.doi.org/10.1109/89.701367


Electronics 2023, 12, 3167 20 of 21

7. Vaseghi, S.V. Advanced Digital Signal Processing and Noise Reduction; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008.
8. Kim, J.B.; Lee, K.; Lee, C. On the applications of the interacting multiple model algorithm for enhancing noisy speech. IEEE Trans.

Acoust. Speech Signal Process. 2000, 8, 349–352. [CrossRef]
9. Dendrinos, M.N.; Bakamidis, S.G.; Carayannis, G. Speech enhancement from noise: A regenerative approach. Speech Commun.

1991, 10, 45–57. [CrossRef]
10. Loizou, P.C. Speech Enhancement: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2013.
11. Ephraim, Y.; Malah, D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE

Trans. Acoust. Speech Signal Process. 1984, 32, 1109–1121. [CrossRef]
12. Jax, P.; Vary, P. Artificial bandwidth extension of speech signals using MMSE estimation based on a hidden Markov model. In

Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’03), Hong Kong,
China, 6–10 April 2003; Volume 1. [CrossRef]

13. Boll, S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 1979,
27, 113–120. [CrossRef]

14. Kwan, C.; Chu, S.; Yin, J.; Liu, X.; Kruger, M.; Sityar, I. Enhanced speech in noisy multiple speaker environment. In Proceedings
of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, China, 1–6 June 2008; pp. 1640–1643 . [CrossRef]

15. Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: Cambridge, MA, USA, 2009.
16. Virag, N. Single channel speech enhancement based on masking properties of the human auditory system. IEEE Trans. Acoust.

Speech Signal Process. 1999, 7, 126–137. [CrossRef]
17. Sun, C.; Zhu, Q.; Wan, M. A novel speech enhancement method based on constrained low-rank and sparse matrix decomposition.

Speech Commun. 2014, 60, 44–55. [CrossRef]
18. Sun, C.; Xie, J.; Leng, Y. A Signal Subspace Speech Enhancement Approach Based on Joint Low-Rank and Sparse Matrix

Decomposition. Arch. Acoust. 2016, 41, 245–254. [CrossRef]
19. Xian, Y.; Sun, Y.; Wang, W.; Naqvi, S.M. A Multi-Scale Feature Recalibration Network for End-to-End Single Channel Speech

Enhancement. IEEE J. Sel. Top. Signal Process. 2021, 15, 143–155. [CrossRef]
20. Wood, S.U.N.; Rouat, J. Unsupervised Low Latency Speech Enhancement With RT-GCC-NMF. IEEE J. Sel. Top. Signal Process.

2019, 13, 332–346. [CrossRef]
21. Chakrabarty, S.; Habets, E.A.P. Time-Frequency Masking Based Online Multi-Channel Speech Enhancement With Convolutional

Recurrent Neural Networks. IEEE J. Sel. Top. Signal Process. 2019, 13, 787–799. [CrossRef]
22. Lavanya, T.; Nagarajan, T.; Vijayalakshmi, P. Multi-Level Single-Channel Speech Enhancement Using a Unified Framework for

Estimating Magnitude and Phase Spectra. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1315–1327. [CrossRef]
23. Tu, Y.H.; Du, J.; Lee, C.H. Speech Enhancement Based on Teacher-Student Deep Learning Using Improved Speech Presence

Probability for Noise-Robust Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 2080–2091. [CrossRef]
24. Ming, J.; Crookes, D. Speech Enhancement Based on Full-Sentence Correlation and Clean Speech Recognition. IEEE/ACM Trans.

Audio Speech Lang. Process. 2017, 25, 531–543. [CrossRef]
25. Kim, M.; Shin, J.W. Improved Speech Enhancement Considering Speech PSD Uncertainty. IEEE/ACM Trans. Audio Speech Lang.

Process. 2022, 30, 1939–1951 . [CrossRef]
26. Saleem, N.; Khattak, M.I.; Ahmad, S.; Ali, M.Y.; Mohmand, M.I. Machine Learning Approach for Improving the Intelligibility of

Noisy Speech. In Proceedings of the 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST),
Islamabad, Pakistan, 14–18 January 2020; pp. 303–308 . [CrossRef]

27. Choudhury, A.; Roy, P.; Bandyopadhyay, S. Review of Various Machine Learning and Deep Learning Techniques for Audio
Visual Automatic Speech Recognition. In Proceedings of the 2023 International Conference on Intelligent Systems, Advanced
Computing and Communication (ISACC), Taza, Morocco, 26–27 October 2023; pp. 1–10 . [CrossRef]

28. Casey, O.; Dave, R.; Seliya, N.; Sowells Boone, E.R. Machine Learning: Challenges, Limitations, and Compatibility for Audio
Restoration Processes. In Proceedings of the 2021 International Conference on Computing, Computational Modelling and
Applications (ICCMA), Brest, France, 14–16 July 2021; pp. 27–32 . [CrossRef]

29. Ayhan, B.; Kwan, C. Robust Speaker Identification Algorithms and Results in Noisy Environments. In Advances in Neural
Networks; Huang, T.; Lv, J.; Sun, C.; Tuzikov, A.V., Eds.; Springer: Cham, Switzerland, 2018; pp. 443–450.

30. Rehr, R.; Gerkmann, T. SNR-Based Features and Diverse Training Data for Robust DNN-Based Speech Enhancement. IEEE/ACM
Trans. Audio Speech Lang. Process. 2021, 29, 1937–1949 . [CrossRef]

31. Zhang, Q.; Nicolson, A.; Wang, M.; Paliwal, K.K.; Wang, C. DeepMMSE: A Deep Learning Approach to MMSE-Based Noise
Power Spectral Density Estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1404–1415 . [CrossRef]

32. Takeuchi, D.; Yatabe, K.; Koizumi, Y.; Oikawa, Y.; Harada, N. Real-Time Speech Enhancement Using Equilibriated RNN. In
Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Virtual, 4–9 May 2020; pp. 851–855 . [CrossRef]

33. Zhu, Q.S.; Zhang, J.; Zhang, Z.Q.; Dai, L.R. A Joint Speech Enhancement and Self-Supervised Representation Learning Framework
for Noise-Robust Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, 1927–1939 . [CrossRef]

34. Shifas, M.P.; Zorila, C.; Stylianou, Y. End-to-End Neural Based Modification of Noisy Speech for Speech-in-Noise Intelligibility
Improvement. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2022, 30, 162–173 . [CrossRef]

http://dx.doi.org/10.1109/89.841217
http://dx.doi.org/10.1016/0167-6393(91)90027-Q
http://dx.doi.org/10.1109/TASSP.1984.1164453
http://dx.doi.org/10.1109/ICASSP.2003.1198872
http://dx.doi.org/10.1109/TASSP.1979.1163209
http://dx.doi.org/10.1109/IJCNN.2008.4634017
http://dx.doi.org/10.1109/89.748118
http://dx.doi.org/10.1016/j.specom.2014.03.002
http://dx.doi.org/10.1515/aoa-2016-0024
http://dx.doi.org/10.1109/JSTSP.2020.3045846
http://dx.doi.org/10.1109/JSTSP.2019.2909193
http://dx.doi.org/10.1109/JSTSP.2019.2911401
http://dx.doi.org/10.1109/TASLP.2020.2986877
http://dx.doi.org/10.1109/TASLP.2019.2940662
http://dx.doi.org/10.1109/TASLP.2017.2651406
http://dx.doi.org/10.1109/TASLP.2022.3180676
http://dx.doi.org/10.1109/IBCAST47879.2020.9044553
http://dx.doi.org/10.1109/ISACC56298.2023.10084209
http://dx.doi.org/10.1109/ICCMA53594.2021.00013
http://dx.doi.org/10.1109/TASLP.2021.3082702
http://dx.doi.org/10.1109/TASLP.2020.2987441
http://dx.doi.org/10.1109/ICASSP40776.2020.9054597
http://dx.doi.org/10.1109/TASLP.2023.3275033
http://dx.doi.org/10.1109/TASLP.2021.3126947


Electronics 2023, 12, 3167 21 of 21

35. Hu, Y.; Li, F.; Li, H.G.; Liu, C. An enhanced empirical wavelet transform for noisy and non-stationary signal processing. Dig.
Signal Process. 2017, 60, 220–229. [CrossRef]

36. Kaiser, J. On a simple algorithm to calculate the ’energy’ of a signal. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, Albuquerque, NM, USA, 3–6 April 1990; Volume 1, pp. 381–384. [CrossRef]

37. Deller, J.; Hansen, J.; Proakis, J. Discrete-Time Processing of Speech Signals; Wiley-IEEE Press: Hoboken, NJ, USA, 2000.
38. Rix, A.; Beerends, J.; Hollier, M.; Hekstra, A. Perceptual evaluation of speech quality (PESQ)-a new method for speech quality

assessment of telephone networks and codecs. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings (Cat. No.01CH37221), Salt Lake City, UT, USA, 7–11 May 2001; Volume 2, pp. 749–752.
[CrossRef]

39. Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [CrossRef]
40. Carvalho, V.R.; Moraes, M.F.; Braga, A.P.; Mendes, E.M. Evaluating five different adaptive decomposition methods for EEG signal

seizure detection and classification. Biomed. Signal Process. Control 2020, 62, 102073. [CrossRef]
41. Donoho, D.; Johnstone, I. Ideal Spatial Adaptation via Wavelet Shrinkage. Biometrika 1994, 81, 425–455. [CrossRef]
42. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An ASR corpus based on public domain audio books. In

Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
Australia, 19–24 April 2015; pp. 5206–5210. [CrossRef]

43. Michael; Li, E.X.D. scivision/Soothing-Sounds: Src/Layout, Black Format, Type Anno. 2021. Available online: https://zenodo.
org/record/5574886 (accessed on 1 January 2022).

44. Hu, Y.; Loizou, P. A generalized subspace approach for enhancing speech corrupted by colored noise. IEEE Trans. Speech Audio
Process. 2003, 11, 334–341. [CrossRef]

45. Scheibler, R.; Bezzam, E.; Dokmanic, I. Pyroomacoustics: A Python Package for Audio Room Simulation and Array Processing
Algorithms. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15–20 April 2018; pp. 351–355. [CrossRef]

46. Djahnine, A. Suppression-of-Acoustic-Noise-in-Speech-Using-Spectral-Subtraction. 2021. Available online: https://github.com/
AissamDjahnine/Suppression-of-Acoustic-Noise-in-Speech-Using-Spectral-Subtraction- (accessed on 1 January 2022).

47. Bahoura, M.; Rouat, J. Wavelet Speech Enhancement Based on Time-Scale Adaptation. Speech Commun. 2006, 48, 1620–1637.
[CrossRef]

48. Sainburg, T.; Thielk, M.; Gentner, T.Q. Finding, visualizing, and quantifying latent structure across diverse animal vocal
repertoires. PLoS Comput. Biol. 2020, 16, e1008228. [CrossRef]

49. Sainburg, T. timsainb/noisereduce: V1.0. 2019. Available online: https://zenodo.org/record/3243139 (accessed on 1 January
2022). [CrossRef]

50. Yang, Y.; Rao, J. Robust and Efficient Harmonics Denoising in Large Dataset Based on Random SVD and Soft Thresholding. IEEE
Access 2019, 7, 77607–77617. [CrossRef]

51. Yang, Z.X.; Zhong, J.H. A Hybrid EEMD-Based SampEn and SVD for Acoustic Signal Processing and Fault Diagnosis. Entropy
2016, 18, 112. [CrossRef]

52. PESQ (Perceptual Evaluation of Speech Quality). Wrapper for Python Users. Available online: https://pypi.org/project/pesq/
(accessed on 1 January 2022).

53. Emiru, E.D.; Li, Y.; Xiong, S.; Fesseha, A. Speech Recognition System Based on Deep Neural Network Acoustic Modeling for Low
Resourced Language-Amharic. In Proceedings of the 3rd International Conference on Telecommunications and Communication
Engineering (ICTCE), Tokyo, Japan, 9–12 November 2019; pp. 141–145. [CrossRef]

54. Cecko, R.; Jamrozy, J.; Jesko, W.; Kusmierek, E.; Lange, M.; Owsianny, M. Automatic Speech Recognition and its Application to
Media Monitoring. Comput. Methods Sci. Technol. CMST 2021, 27, 41–55. [CrossRef]

55. Jesko, W. Vocalization Recognition of People with Profound Intellectual and Multiple Disabilities (PIMD) Using Machine
Learning Algorithms. In Proceedings of the Interspeech 2021, Brno, Czech Republic, 30 August–3 September 2021; pp. 2921–2925.
[CrossRef]

56. Ravanelli, M.; Parcollet, T.; Plantinga, P.; Rouhe, A.; Cornell, S.; Lugosch, L.; Subakan, C.; Dawalatabad, N.; Heba, A.; Zhong, J.;
et al. SpeechBrain: A General-Purpose Speech Toolkit. arXiv 2021, arXiv:2106.04624.

57. Pan, J.; Liu, C.; Wang, Z.; Hu, Y.; Jiang, H. Investigation of deep neural networks (DNN) for large vocabulary continuous speech
recognition: Why DNN surpasses GMMS in acoustic modeling. In Proceedings of the 2012 8th International Symposium on
Chinese Spoken Language Processing, Hong Kong, China, 5–8 December 2012; pp. 301–305. [CrossRef]

58. Banaszek, A.; Lisaj, A. The Concept of Intelligent Radiocommunication System for Support Decision of Yacht Captains in distress
situations with use of neural network computer systems. Procedia Comput. Sci. 2022, 207, 398–407. [CrossRef]

59. Banaszek, A.; Lisaj, A. Advanced methodology for multi-way transmission of ship data treatment from mechanical-navigational
technical state sensors with using computational neural network computer systems. Procedia Comput. Sci. 2022, 207, 388–397.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.dsp.2016.09.012
http://dx.doi.org/10.1109/ICASSP.1990.115702
http://dx.doi.org/10.1109/ICASSP.2001.941023
http://dx.doi.org/10.1109/TSP.2013.2265222
http://dx.doi.org/10.1016/j.bspc.2020.102073
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1109/ICASSP.2015.7178964
https://zenodo.org/record/5574886
https://zenodo.org/record/5574886
http://dx.doi.org/10.1109/TSA.2003.814458
http://dx.doi.org/10.1109/ICASSP.2018.8461310
https://github.com/AissamDjahnine/Suppression-of-Acoustic-Noise-in-Speech-Using-Spectral-Subtraction-
https://github.com/AissamDjahnine/Suppression-of-Acoustic-Noise-in-Speech-Using-Spectral-Subtraction-
http://dx.doi.org/10.1016/j.specom.2006.06.004
http://dx.doi.org/10.1371/journal.pcbi.1008228
https://zenodo.org/record/3243139
http://dx.doi.org/10.5281/zenodo.3243139
http://dx.doi.org/10.1109/ACCESS.2019.2921579
http://dx.doi.org/10.3390/e18040112
https://pypi.org/project/pesq/
http://dx.doi.org/10.1145/3369555.3369564
http://dx.doi.org/10.12921/cmst.2021.0000015
http://dx.doi.org/10.21437/Interspeech.2021-1239
http://dx.doi.org/10.1109/ISCSLP.2012.6423452
http://dx.doi.org/10.1016/j.procs.2022.09.074
http://dx.doi.org/10.1016/j.procs.2022.09.073

	Introduction
	Proposed Approach
	Enhanced Empirical Wavelet Transform (EEWT)
	Teager Energy Operator (TEO)
	Mask Construction
	Mask Processing
	Thresholding
	Final Processing

	Materials
	Results and Discussion
	Conclusions
	References

