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Abstract: To address the issue of the insufficient safety monitoring of power maintenance vehicles
during power operations, this study proposes a vehicle monitoring scheme based on ultra wideband
(UWB) and deep learning. The UWB localization algorithm employs Chaotic Particle Swarm Opti-
mization (CSPO) to optimize the Time Difference of Arrival (TDOA)/Angle of Arrival (AOA) locating
scheme in order to overcome the adverse effects of the non-visual distance and multipath effects in
substations and significantly improve the positioning accuracy of vehicles. To solve the problem
of the a large aspect ratio and the angle in the process of power maintenance vehicle operation
situational awareness in the mechanical arm of the maintenance vehicle, the arm recognition network
is based on the You Only Look Once version 5 (YOLOv5) and modified by Convolutional Block
Attention Module (CBAM). The long-edge definition method with circular smoothing label, SIoU
loss function, and HardSwish activation function enhance the precision and processing speed for the
arm state. The experimental results show that the proposed CPSO-TDOA/AOA outperforms other
algorithms in localization accuracy and effectively attenuates the non-visual distance and multipath
effects. The recognition accuracy of the YOLOv5-CSL-CBAM network is substantially improved; the
mAP value of the vehicles arm reaches 85.04%. The detection speed meets the real-time requirement,
and the digital twin of the maintenance vehicle is effectively realized in the 3D substation model.

Keywords: power operations; UWB; long-edge definition method; YOLOv5; digital twin

1. Introduction

Irregular operations and a lack of safety awareness are the primary causes of safety
accidents. With the rapid development of artificial intelligence, machine vision and wireless
positioning technology have been effectively applied to the monitoring system, enabling
object recognition, tracking, and safety warning.

Deep learning object recognition networks are currently a popular research topic and
are widely employed in intelligent monitoring systems. Recognition networks can gener-
ally be classified into two categories: two-stage and single-stage targets. The two-stage [1]
network achieves object detection via region box selection and position regression, which
obtains high accuracy through tedious calculations and time consumption. For instance,
Li et al. [2] used fast R-CNN to improve the detection of pedestrians and He et al. [3] used
Mask R-CNN to enhance the detection of rail transit obstacles. Single-stage [4] networks
directly extract the features by regression strategies and determine the location of the target.
The representative algorithms are YOLO [5–8], RFBNet [9], and SSD [10–13]. In applica-
tion, Lu [14] presented a method for detecting pedestrians using multiscale convolutional
features and a three-layer pyramidal network to enhance pedestrian-target detection accu-
racy. Meanwhile, Lin [15] introduced a multi-scale feature cross-layer to improve YOLOv5
and enable the accurate identification of ultra-small targets in remote sensing images.
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Lin [16] proposed a traffic sign detection approach that utilized a lightweight multiscale
feature fusion network, which significantly enhanced the detection performance of small
targets and delivered better real-time results. Yang [17] proposed a YOLO network target
tracking algorithm based on multi-feature fusion to track and localize operators’ helmets.
Recently, Huang [18] utilized Alphapose with ResNet to achieve dressing detection for
power operators, which can play a vital role in regulating their attire.

Ultra Wide Band (UWB) positioning technology [19] utilizes high-frequency radio
pulses for triangulation positioning. It has the advantages of high accuracy, strong anti-
interference performance, stable performance, and low energy consumption. Therefore, it is
a popular choice for object positioning, indoor navigation, tracking, and surveillance appli-
cations. Lin [20] proposed a drift-free visual SLAM technique for mobile robot localization
by integrating UWB, which resulted in a significant reduction in the overall drift error of
robot navigation. Li [21] proposed a pseudo-GPS positioning system for underground
coal mines consisting of noisy UWB ranging to achieve robust and accurate positioning
estimation for CMR applications. Lee [22] proposed a marker-based hybrid indoor position-
ing system (HIPS) that performs hybrid positioning by using marker images and inertial
measurement unit data from smartphones, enabling accurate navigation in subways.

The positioning of power maintenance vehicles and the state of the crank arm are the
main causes of safety accidents. Vehicle supervision relies on manual monitoring, and the
application of intelligent technology in vehicle monitoring is insufficient. Therefore, im-
proving vehicle monitoring by utilizing deep learning techniques and wireless positioning
technologies is an urgent problem.

This paper utilizes UWB to renew the location information of the power maintenance
vehicle in a three-dimensional model of the substation and to determine whether they
are within a prohibited area. Additionally, deep learning is employed to evaluate the
arm status of the vehicle in a safe area, thus creating a digital twin of the vehicle in the
three-dimensional substation model and facilitating safety monitoring. The innovative
work of this paper is as follows:

1. A chaotic particle swarm optimization TDOA/AOA algorithm is proposed to improve
the TDOA/AOA method in order to find the optimal method and improve positioning
accuracy with less UWB stations and antennas.

2. An improved YOLOv5 state recognition network for vehicle arms has been designed.
We used a long-edge definition method (LDM) and a circular smoothing labeling
(CSL) complex model to achieve state recognition of rotating arms. Additionally,
we introduced a CBAM attention mechanism to enhance feature extraction of the
network, while employing the SIoU loss function to reduce loss value and enhance
the nonlinear segmentation ability of the network. Comparative experimental results
demonstrate the superiority of our method in achieving state-of-the-art performance.

3. A three-dimensional digital twin monitoring system is designed; the location of the
vehicle and status of the arm are live updated in the twin monitoring system.

2. Digital Twinning Route

The three-dimensional model of a substation and vehicle is modeled and depicted
in Figure 1. The UWB and deep learning methods are employed separately to locate the
vehicle in the operational setting and evaluate the status of its arm. Virtual vehicle real-time
update via the location and status information in the 3D model. The overall route of the
system is shown in Figure 2.
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the mobile target to estimate target localization. Although positioning results can be ob-
tained by using only two base stations in the unobstructed environment, actual environ-
ments are affected by non-line-of-sight propagation, multipath, and geometric accuracy, 
which can cause location errors. To improve the positioning accuracy, this paper adopts 
chaotic particle swarm algorithm to increase precision of TDOA/AOA. 

Chaotic Particle Swarm Optimization (CPSO) is a combination of chaotic optimiza-
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2.1. CPSO + TDOA/AOA Algorithm

In UWB, the TDOA/AOA algorithm can improve the localization accuracy with less
base stations. It measures AOA parameters at the base station and TDOA parameters at the
mobile target to estimate target localization. Although positioning results can be obtained
by using only two base stations in the unobstructed environment, actual environments
are affected by non-line-of-sight propagation, multipath, and geometric accuracy, which
can cause location errors. To improve the positioning accuracy, this paper adopts chaotic
particle swarm algorithm to increase precision of TDOA/AOA.

Chaotic Particle Swarm Optimization (CPSO) is a combination of chaotic optimization
algorithm (COA) and particle swarm algorithm (PSA). CPSO can enhance the search ability
of particles and avoids falling into local optimal solutions. The proposed composite scheme
TDOA/AOA with CPSO optimizing is depicted in Figure 3.

When the particles of the traditional particle swarm algorithm search in a complex
environment, the flight directions all point to the global optimal solution. When one
of the particles finds a local optimal solution during the flight, the search speed of the
remaining particles will largely slow down to zero, causing the particles to fall into the
local optimal solution, i.e., premature defects. The Chaotic Particle Swarm Optimization
(CPSO) algorithm is a combination of chaotic optimization and particle swarm algorithm.
Chaotic optimization has the characteristics of randomness and convenience, which can
enhance the search ability of particles for targets at any position in space and avoid the
algorithm optimization process to fall into local optimal solutions.

There are various chaos models, mainly Logistic mapping model, the Henon mapping
model, and the Lorenz mapping model. Among them, the Logistic mapping model has a
simple structure and better ergodicity compared to other mapping models, and the Logistic
mapping model is used as the chaos model in this paper. The logistic mapping model is

Zi+1 = µZi
(

1− Zi
)

i = 0, 1, 2, . . . . (1)
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where µ ∈ (2, 4] is the control parameter and the value of µ is proportional to the chaotic
occupancy ratio. Zi ∈ (0, 1) is the chaotic domain, capable of generating chaotic sequences
Z1, Z2, . . . , Zn.
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The iterative processes of the particle swarm algorithm to find the optimal solution
and the global optimal solution are

Vk
i = ωVk−1

i + c1r1(Pbi
− Xk−1

i ) + c2r2(Gbi
− Xk−1

i ), (2)

Xk
i = Xk−1

i + Vk−1
i . (3)

In Equations (2) and (3), i = 1, 2, . . . , N, N is the number of particles in the particle
swarm. As the value of N increases, the optimization ability of the algorithm gradually
improves, but when the value of N exceeds a certain threshold, the optimization ability no
longer improves and consumes more time. k is the number of current update iterations.
ω is the inertia weight coefficient, and the value of ω is isotropically correlated with the
global search ability of the particle and anisotropically correlated with the local search
ability, which is usually performed by the dynamic ω method. c1 and c2 are learning factors,
highlighting the proportion of “self-cognition” and “social experience” of particles. Usually,
c1 = c2 ∈ [0, 4]. When c1 = 0 the group diversity of the algorithm disappears and the
algorithm will fall into the local optimal solution. When c2 = 0, there is no information
exchange between particles in the algorithm, and the convergence rate of the algorithm
decreases. r1, r2 are random numbers in the range [0, 1]. Pbi

is the individual optimal
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position of the i-th particle, Gbi
is the global optimal position of the particle population at

the k − 1th iteration, and Vk
i and Xk

i are the velocity and position of particle i at the k-th
iteration, respectively.

The iterative process of the CPSO is based on the particle swarm algorithm and is
implemented as follows:

Firstly, related parameters are initialized and processed. r1 and r2 of Equation (2)
are set random values. The initial velocity and direction of each particle are irregular,
some positions will be missed in the search process, which cannot ensure ergodicity and
diversity. CPSO performs a chaotic mapping of the velocities and positions of each particle
in the initial stage, replacing r1 and r2 with the chaotic sequence formed by Equation (1) to
enhance to steadily search for the global optimal solution.

Secondly, update the particle parameters. According to Equation (3), the velocity
and position vector of each particle are updated iteratively, and the range of velocity is
[Vmin, Vmax], and the positions are [xmin, xmax] and [ymin, ymax]. The inertia weighting factor
ω is set dynamically. It is

ω = ωmax −
k(ωmax −ωmin)

kmax
. (4)

where ωmax and ωmin represent the maximum and minimum weight coefficients, respectively,
and k and kmax represent the current and maximum number of update iterations, respectively.

Thirdly, the fitness of each particle is calculated. The CPSO provides the search
direction for the particles by fitness function, and the value of the fitness is anisotropically
related to the particles to the function. In this paper, the fitness function is designed using
the target coordinates to be measured, and its expressions is

Fitness
(

x′, y′
)
= [(di1 − di + d1)

T(di1 − di + d1) +
σ2

ε

n2
β

(
β− arctan

(
y− y1

x− x1

))2
] (5)

where i = 2, 3, 4 . . . N, di1 denotes the distance difference between the target MS (x, y) to
be located and the base station BSi and BS1, di denotes the positioning distance error, nβ

denotes the AOA measurement noise, β is the observation angle between BS1 and MS, σ2
ε

is the variance of the AOA view measurement error.
Fourthly, the value of the historical fitness is updated, and it is judged whether the

particle with updated fitness is in stagnation. If the particle is in stagnation, its chaotic
perturbation is performed using Equation (1).

Finally, when the number of iterations reaches the maximum, the global optimal
position Gb corresponding to the smallest value of the fitness function is determined as the
optimal solution optimized by the algorithm. Otherwise, return to the second step and
continue the iterations.

2.2. YOLOv5-CSL for Vehicle Arm Recognition

A novel YOLOv5-based network for vehicle arms recognition is proposed. The net-
work uses long-edge definition method (LDM) and circular smooth label (CSL) to reduce
cross loss. HardSwish is implanted in the convolutional layer to improve the feature
extraction capability and CBAM built to improve recognition accuracy of the network.

2.2.1. YOLOv5-CSL with Attention Mechanism

The proposed network adopts R-YOLOv5 as backbone network to detect vehicle arm
and calculate arm angle. The structure of modified R-YOLOv5 is presented in Figure 4.
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Where BottleneckCSP1_X: CSP1_X structure, BottleneckCSP2_X: CSP2_X structure, 
SPPF: fast spatial pyramid pooling module, Upsample: upsampling module, Concat: con-
nection module, Conv: convolution module, Backbone: backbone network, Neck: bottle-
neck network, Prediction: prediction module, CBAM: attention mechanism module. 

The Backbone consists of the backbone network CSPDarkNet and the spatial pyra-
mid pooling SPPF for feature extraction. CSP1_X is applied to CSPDarkNet to enhance the 
feature extraction ability of images. Compared with SPP, SPPF adds two CBS modules to 
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Figure 4. The structure of YOLOv5-CSL with attention mechanism.

Where BottleneckCSP1_X: CSP1_X structure, BottleneckCSP2_X: CSP2_X structure,
SPPF: fast spatial pyramid pooling module, Upsample: upsampling module, Concat:
connection module, Conv: convolution module, Backbone: backbone network, Neck:
bottleneck network, Prediction: prediction module, CBAM: attention mechanism module.

The Backbone consists of the backbone network CSPDarkNet and the spatial pyramid
pooling SPPF for feature extraction. CSP1_X is applied to CSPDarkNet to enhance the
feature extraction ability of images. Compared with SPP, SPPF adds two CBS modules to en-
hance the training efficiency of the network. The structures are presented in Figures 5 and 6.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18 
 

 

error, n β  denotes the AOA measurement noise, β  is the observation angle between 

1BS  and MS, 2
εσ  is the variance of the AOA view measurement error. 

Fourthly, the value of the historical fitness is updated, and it is judged whether the 
particle with updated fitness is in stagnation. If the particle is in stagnation, its chaotic 
perturbation is performed using Equation (1). 

Finally, when the number of iterations reaches the maximum, the global optimal po-
sition bG  corresponding to the smallest value of the fitness function is determined as the 
optimal solution optimized by the algorithm. Otherwise, return to the second step and 
continue the iterations. 

2.2. YOLOv5-CSL for Vehicle Arm Recognition 
A novel YOLOv5-based network for vehicle arms recognition is proposed. The net-

work uses long-edge definition method (LDM) and circular smooth label (CSL) to reduce 
cross loss. HardSwish is implanted in the convolutional layer to improve the feature ex-
traction capability and CBAM built to improve recognition accuracy of the network. 

2.2.1. YOLOv5-CSL with Attention Mechanism 
The proposed network adopts R-YOLOv5 as backbone network to detect vehicle arm 

and calculate arm angle. The structure of modified R-YOLOv5 is presented in Figure 4. 

BottleneckCSP1_1

Input

Conv

SPPF

BottleneckCSP1_2

BottleneckCSP1_3

BottleneckCSP1_1

Upsample

Concat

BottleneckCSP2_1

Upsample

BottleneckCSP2_1

Concat
Concat

BottleneckCSP2_1 Conv

Concat

BottleneckCSP2_1 Conv

Backbone Neck Prediction

CBAM

CBAM

CBAM

 
Figure 4. The structure of YOLOv5-CSL with attention mechanism. 

Where BottleneckCSP1_X: CSP1_X structure, BottleneckCSP2_X: CSP2_X structure, 
SPPF: fast spatial pyramid pooling module, Upsample: upsampling module, Concat: con-
nection module, Conv: convolution module, Backbone: backbone network, Neck: bottle-
neck network, Prediction: prediction module, CBAM: attention mechanism module. 

The Backbone consists of the backbone network CSPDarkNet and the spatial pyra-
mid pooling SPPF for feature extraction. CSP1_X is applied to CSPDarkNet to enhance the 
feature extraction ability of images. Compared with SPP, SPPF adds two CBS modules to 
enhance the training efficiency of the network. The structures are presented in Figures 5 
and 6. 

CSP1_X CBS Resunit
Concat

CBS
CBS

1×X

 

CBS Conv BN SiLU

Resunit CBS CBS add

 
Figure 5. The structure of CSP1_X. Figure 5. The structure of CSP1_X.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

Where Conv: convolution module, BN: Batch Normalization structure, SiLU: activa-
tion function, Resunit: residual module; add: tensor summation, Concat: tensor stitching, 
CBS: consists of a two-dimensional convolution layer + a Bn layer + a SiLU activation func-
tion. 

SPPF CBS MaxPool MaxPool MaxPool
Concat CBS

 
Figure 6. The structure of SPPF. 

Where MaxPool: maximum pooling, Cancat: tensor stitching, CBS: consists of a 2D 
convolutional layer + a Bn layer + a SiLU activation function. 

The Neck part consists of a feature pyramid network and a discriminator. cSP2_X can 
enhance the feature fusion capability and make the network extract more detailed fea-
tures, and the structure is shown in Figure 7. The prediction part implements the object 
detection function for three scales: large, medium, and small. The YOLOv5 network adds 
180 angle classification channels in the prediction part to accomplish prediction of object 
rotation angle. 

CSP2_X CBS
Concat

CBS
CBS

2×X
CBS

 
Figure 7. Schematic diagram of CSP2_X structure. 

Where CBS: composed of a 2D convolutional layer + a BN layer + a SiLU activation 
function, Concat: tensor stitching. 

The hybrid attention mechanism (CBAM) is a hybrid attention mechanism that com-
bines both channel attention and spatial attention, which is typically represented by the 
convolutional block attention module [23]; the network structure is shown in Figure 8. 

Channel 
Attention 
Module

Spatial 
Attention 
Module

Input 
feature map

Output 
feature map

F1

Mc

F1 F2

Ms
Fc

 
Figure 8. CBAM structure diagram. 

The channel attention module (CAM) performs pooling operation and compression 
in spatial dimensions on the feature map F1 extracted from the backbone network to obtain 
two dimensional 1 × 1 × C feature matrices, and then inputs them sequentially into the 
Multi-Layer Perceptron [24] (MLP) network, which is processed by the MLP network, and 
then inputs the Sigmoid activation function to acquire the channel attention module asso-
ciated feature parameter Mc. Finally, Mc is dotted with the feature map F1 to output the 
feature map Fc of the CAM. 

The spatial attention module (SAM) takes Fc as the new input feature map, pools it 
and obtains two feature matrices with same channel, then splices them in channel order 
to receive a new feature matrix, convolves them and inputs them into the Sigmoid activa-
tion function to obtain the relevant feature parameters Ms of the SAM. Finally, Ms is then 
combined with the feature map F2 and outputs the feature map of the whole CBAM by 
performing the corresponding operation. 

Figure 6. The structure of SPPF.

Where Conv: convolution module, BN: Batch Normalization structure, SiLU: ac-
tivation function, Resunit: residual module; add: tensor summation, Concat: tensor
stitching, CBS: consists of a two-dimensional convolution layer + a Bn layer + a SiLU
activation function.

Where MaxPool: maximum pooling, Cancat: tensor stitching, CBS: consists of a 2D
convolutional layer + a Bn layer + a SiLU activation function.

The Neck part consists of a feature pyramid network and a discriminator. cSP2_X
can enhance the feature fusion capability and make the network extract more detailed
features, and the structure is shown in Figure 7. The prediction part implements the object
detection function for three scales: large, medium, and small. The YOLOv5 network adds
180 angle classification channels in the prediction part to accomplish prediction of object
rotation angle.

Where CBS: composed of a 2D convolutional layer + a BN layer + a SiLU activation
function, Concat: tensor stitching.

The hybrid attention mechanism (CBAM) is a hybrid attention mechanism that com-
bines both channel attention and spatial attention, which is typically represented by the
convolutional block attention module [23]; the network structure is shown in Figure 8.
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The channel attention module (CAM) performs pooling operation and compression in
spatial dimensions on the feature map F1 extracted from the backbone network to obtain
two dimensional 1 × 1 × C feature matrices, and then inputs them sequentially into the
Multi-Layer Perceptron [24] (MLP) network, which is processed by the MLP network,
and then inputs the Sigmoid activation function to acquire the channel attention module
associated feature parameter Mc. Finally, Mc is dotted with the feature map F1 to output
the feature map Fc of the CAM.

The spatial attention module (SAM) takes Fc as the new input feature map, pools it
and obtains two feature matrices with same channel, then splices them in channel order to
receive a new feature matrix, convolves them and inputs them into the Sigmoid activation
function to obtain the relevant feature parameters Ms of the SAM. Finally, Ms is then
combined with the feature map F2 and outputs the feature map of the whole CBAM by
performing the corresponding operation.

The CBAM integrates the advantages of CAM and SAM, focuses on both channel
features and spatial features, enhances the attention to important channels and focal regions
of images, and improves the feature expression capability of the network. CAM and SAM
in CBAM are both lightweight modules with fewer internal convolution operations, which
reduce the computational effort and improve the performance of the network with a small
increase in the number of network parameters.

2.2.2. Long-Edge Definition Method with Circular Smoothing Label

The vehicle arm has a large aspect ratio and multiple rotation angle. Data labeling
with the rotating method can reduce the redundant information, improve the detection
accuracy, and increase training efficiency of the network; however, Exchangability of Edges
(EoE) [25] and Periodicity of Angle (PoA) [26] problems occur during network training to
reduce recognition accuracy.

In this study, we adopted a combination of LDM and CSL to solve the boundary
problem of θ. Where LDM tackles the edge variation problem, and CSL settles the angle
period problem.

LDM is a five-parameter labeling method, which is a novel angle definition method
and avoids the edge exchangeability. LDM describes target as ([x, y, w, h, θ]), (x, y) is
the rectangular center coordinate of the rotated box, w and h are the width and length of
the rectangular box, respectively. θ is the angle between the length and the x-axis, where
θ ∈ [−90◦,90◦). The LDM is demonstrated in Figure 9:
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LDM can eliminate EoE. CSL transforms the regression problem of θ into a classi-
fication problem, divides angles in different ranges and categories, and discretizes the
continuous problem to avoid PoA. However, the discretization process inevitably generates
an accuracy loss. To evaluate the loss, the maximum loss and the average loss of accuracy
(obeying uniform distribution) are calculated by the following formula:

Max(loss) = ω/2, (6)

E(loss) =
∫ b

a
x× 1

b− a
dx =

∫ ω/2

0
x× 1

ω/2− 0
dx =ω/4. (7)

where ω is the width of the rectangular box and the values of a, b are in the interval [−π
2 , π

2 ].
The minimum precision of angle range is 1◦, and the maximum loss and expected

loss were separately set to 0.50 and 0.25. When two rotating rectangular frames with a
1:9 aspect ratio were used for the test, the intersection ratio of the two rotating rectangular
frames decreased by 0.05 and 0.02, the accuracy loss of the method can be acceptable.

In order to make the classification, loss can be used to predict the distance between the
result and the angle label, a One-hot coding method was designed, assuming that the real
angle label is 0◦, and the accuracy loss values were the same when the angle alter 1◦ to 90◦.
The One-hot coding method is in Figure 10. Based on One-hot label, CSL was introduced,
and the CSL is presented in Figure 11.
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The expressions for CSL are

CSL(x) =
{

g(x) θ − r < x < θ + r
0 otherwise

, (8)

s.t.
g(x) = g(x + kT), k ∈ N

0 ≤ g(θ + ε) = g(θ − ε) ≤ 1, |ε| < r
0 ≤ g(θ ± ε) ≤ g(θ ± ς) ≤ 1, |ς| < |ε| < r

g(θ) = 1

. (9)

where g(x) is the window function with periodicity, monotonicity and symmetry. The
radius r determines the size of the window. In this study, the Gaussian function is used as
the window function with a radius of 6. The functional expression of g(x) is as following:

g(x) = ae−
(x−b)2

2c2 . (10)

where a, b, and c are constants, and in this paper, a is set to 1, b to 0, c to 4, and x is the
angle parameter.

2.2.3. HardSwish Convolution Module

In YOLOv5 network, Leaky ReLU and SiLU are frequently used activation functions.
Leaky ReLU is updated form of Rectified Linear Unit (ReLU), which introduces a fixed
slope to solve the problem of fixed parameters caused by Dead ReLU, but its performance
is unstable. Sigmoid-weighted Linear Unit (SiLU) and HardSwish are other forms of Swish
activation function. Swish function has no maximum value but a minimum value with
smoothness and non-monotonicity. Its functions are

Swish(x) = x · Sigmoid(βx), (11)

Sigmoid(βx) =
1

1 + exp(−βx)
. (12)

When the β is 1, the Swish function becomes the SiLU function, and it has better
performance and effect than the Leaky ReLU.

HardSwish uses a strong nonlinear function and improves the accuracy of Swish. It is

HardSwish(x) =


0 x ≤ −3
x x ≥ 3

x(x+3)
6 others

. (13)

HardSwish has a stronger nonlinear capability. The SiLU of R-YOLOv5 is replaced by
the HardSwish, and the improved network structure is shown in Figure 12.
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3. Maintenance Vehicle State Identification and Three-Dimensional Reproduction
3.1. CPSO + TDOA/AOA Positioning Experiment

Taylor [27], Chan [28], TDOA/AOA [29], and PSO + TDOA/AOA [30] algorithms were
utilized to conduct experimental comparisons. As presented in Figure 13, the experimental
and computational results were compared in different environments, including various
stations, communication radii, and AOA measurement errors.
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Figure 13. Influence of various factors. (a) Shows the Root Mean Square Error (RMSE) of different
algorithms with different number of base stations within a radius 3000 m. (b) Shows the test results
of different algorithms with a radius range of 500 to 3000 m and four base stations. (c) Shows the
variance range of TDOA observation error caused by AOA errors of different algorithms under the
same experimental conditions. From the figure, it can be seen that the TDOA/AOA optimized by the
proposed CPSO has the best performance among all the algorithms.

The results of using the positioning algorithm designed in this paper to locate the
power maintenance vehicle in the three-dimensional model of the substation with UWB
positioning equipment are shown in Figure 14. Figure 14a,b represent the positioning
results of the power maintenance vehicle at different operating positions, and it can be
seen from the figures that the algorithm designed in this paper can accurately locate the
maintenance vehicle.
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3.2. Experiment of Crank Arm State Recognition
3.2.1. Experimental Environment and Evaluation Criteria

The experimental platform is PyCharm and Microsoft visual studio 2017, the computer
operating system is Windows 10, the graphics card model is a NVIDIA TITAN XP with 12
G of video memory, and the deep learning framework is Pytorch.

Objective evaluation index the average precision (AP) of a single category, the mean
average precision (mAP), Frames Per Second (FPS), and error detection rate (EDR) are used
to evaluate metrics for model evaluation.

3.2.2. Experimental Data and Data Processing

We did not find any publicly available data sets related to the power maintenance
vehicle after reviewing the relevant literature, so this paper uses a homemade dataset
approach for the experiments. Firstly, the robotic arms of the power maintenance vehicle
are calibrated in categories, and the upper and lower robotic arms are calibrated as arma
and armb, respectively, as shown in Figure 15.
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Figure 15. Mechanical arm calibration diagram.

Since the rotating target detection algorithm used in this paper refers to the target
detection algorithm in the field of remote sensing, the homemade dataset format refers
to the annotation format of the remote sensing target detection dataset DOTA, and the
RoLableImg annotation software is used to annotate the mechanical arm of the power
maintenance vehicle in the dataset, and the annotation process is described in Figure 16.
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The labeled results are saved and an .xml file is generated, which contains information
about the position of the rotated rectangular box, converting the .xml file into a .txt file in
the Dataset for Object Detection (DOTA) dataset.

In this paper, the homemade dataset has a total of 1200 images of curved-arm power
maintenance vehicles, and the training set, validation set, and test set are set according to
the ratio of 4:1:1. In the process of training a convolutional neural network, if the number of
samples in the training set is small, the model obtained from the network training is largely
poorly generalized. Therefore, although the sample numbers of category arma and armb
in the dataset are basically in equilibrium, in order to enhance the diversity of the dataset
and prevent the overfitting problem caused by too little data, we augmented the training
and validation sets in the dataset by enlarging, cropping, and adjusting the contrast of the
original images, thereby increasing the diversity of the dataset. The numbers of training
set and validation set images before enhancement are 800 and 200, respectively, and the
numbers of training set and validation set images after enhancement are 2979 and 762,
respectively, and the enhanced images are presented in Figure 17.
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3.2.3. Experimental Pretreatment

During training, the size of the input image was set to 608 × 608, the training period
was 300 epochs, the initial value of the learning rate was 0.001, the optimizer selects Adam,
the number of images per batch iteration batch size was setup to 16, the angle loss parameter
angle loss was 0.8, angle BCELoss positive weight was set to 1.0. The confidence value
threshold was 0.55 for all the inferred images for the experimental algorithm, and the IoU
threshold was 0.45 for the NMS operation.

3.2.4. Experimental Comparison

YOLOv5-CSL-CBAM to perform the recognition. The trained network models are
used for recognizing arms, and the resulting experimental data results are shown in Table 1.

Table 1. Horizontal comparison experiment results.

Network Model
AP/%

mAP/% Parameters/MB FPS Perror/%
arma armb

R-Faster-RCNN 78.62 79.47 79.18 314.0 8.6 38.0
R-Reppoints 87.70 66.60 75.65 280.0 14.1 74.4

RoI Transformer 81.12 80.76 80.94 421.0 6.2 59.2
R-YOLOv5-based 80.55 79.47 80.01 34.5 33.2 21.2
R-YOLOv7-based 88.78 80.25 84.01 42.5 30.5 12.9

YOLOv5-CSL-CBAM 89.88 80.20 85.04 35.2 32.8 13.6

In experiments, the upper and lower vehicle arms were calibrated as arma and armb.
Table 1 shows that YOLOv5-CSL-CBAM has higher AP values for target arma and armb,
with 89.88% and 80.20%, respectively, its mAP value is higher than R-Faster-RCNN, R-
Reppoints, RoI Transformer, R-YOLOv5-Based, and R-YOLOv7-based by 5.86%, 9.39%,
4.10%, 5.03%, and 1.03%. This suggests that YOLOv5-CSL-CBAM has the best recognition
performance for vehicle arm. By examining the parameter quantities of each network
in Table 1, it becomes clear that YOLOv5-CSL-CBAM’s parameter quantity is 35.2 MB.
Compared to R-YOLOv5-Based network, there is a slight increase in the parameter quanti-
ties, yet its complexity is lower than R-YOLOv7-based network. The network’s detection
accuracy has improved, and the inference speed has reached 32.8 FPS, which is sufficient
for real-time detection.

The error detection rate of YOLOv5-CSL-CBAM is 13.6%, whereas the compared
networks have an error detection rate of more than 50%. Therefore, based on the above data,
it is evident that the proposed YOLOv5 vehicle arm state recognition network can accurately
recognize vehicle arms in substations and fulfill the demands of real-time detection.

3.2.5. Ablation Experiments

To further validate the efficiency of our proposed network, we performed ablation
experiments to analyze the longitudinal performance. We pruned and modified the model
using HardSwish, resulting in R-YOLOv5-HardSwish, employed SIoU loss function to
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produce R-YOLOv5-SIoU and integrated CBAM attention mechanism to create R-YOLOv5-
CBAM. Table 2 presents the findings of these ablation experiments.

Table 2. Ablation experiment results.

Network Model HardSwish SIoU CBAM
AP/%

mAP/%
arma armb

R-YOLOv5-Based × × × 80.55 79.47 80.01
R-YOLOv5-HardSwish

√
× × 89.30 79.01 84.16

R-YOLOv5-SIoU ×
√

× 89.50 80.41 84.96
R-YOLOv5-CBAM × ×

√
89.79 79.98 84.88

YOLOv5-CSL-CBAM
√ √ √

89.88 80.20 85.04

It shows that the R-YOLOv5-HardSwish network improved by 4.15% compared to the
original network, indicating that the HardSwish can enhance the network’s nonlinearity.
SIoU loss function can lessen the network training loss values and improve network
performance, resulting in mAP of R-YOLOv5-SIoU increased by 4.85%. By introducing
CBAM into the original network, the AP values of the arms in the R-YOLOv5-CBAM
network, respectively, increased by 9.24% and 0.51%, while the mAP increased by 4.87%,
indicating that CBAM can effectively extract image feature information and upgrade the
network’s feature extraction capability. Compared to the original network, the mAP value
of YOLOv5-CSL-CBAM increased by 5.03%. Thus, we can conclude that the YOLOv5-CSL-
CBAM network designed in this paper can accurately detect vehicle arms.

3.3. Vehicle Arm Angle Measurement

To further test the recognition accuracy of vehicle arm angle, the RoLableImg an-
notation software was used to annotate the vehicle arm, and the vehicle arm angles are
predicted by different network models. One of the test pictures is shown in Figure 18 and
prediction results are presented in Table 3.
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Table 3. Prediction results from the perspective of each model.

Network Model
θ Predicted Value/o θ Prediction Error/o Average

Prediction Error/oθarma θarmb ∆θarma ∆θarmb

R-Faster-RCNN 5 28 5 9 7.0
R-Reppoints 12 53 2 16 9.0

RoI Transformer 8 45 2 8 5.0
R-YOLOv5-Based 10 35 0 2 1.0
R-YOLOv7-based 9 36 1 1 1.0

YOLOv5-CSL-CBAM 10 38 0 1 0.5

It is starkly reflected in Table 3, where the average error of the vehicle arm angle is
0.5 predicted by YOLOv5-CSL-CBAM. Compared with other networks, the angle prediction
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error is reduced by 0.5, 0.5, 4.5, 8.5, and 6.5, respectively. These findings demonstrate that
the proposed network achieves the highest prediction accuracy.

3.4. Three-Dimensional Twin Implementation of the Vehicle

The vehicle safety operation monitoring and twin system consists of server, cameras,
UWB base stations, and tags. In Figure 19, the cameras are applied to obtain images of
the vehicle operation. The UWB achieved the location of the vehicle. In the 3D scene, the
server completes the real-time presentation of the location and arm state of vehicle.
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Figure 19. Electric power maintenance vehicle safety operation monitoring system.

In the 3D model of the substation, the results of the positioning of the CPSO + TDOA/AOA
method are in Figure 20. From the figure, it can be seen that the positioning algorithm
designed in this paper achieves the real-time and accurate presentation of the position
information of the vehicle. Figure 20a shows the result of the initial position positioning of
the power maintenance vehicle, and Figure 20b shows the positioning result map after the
vehicle position is changed and updated in real time in the 3D twin system.
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Figure 20. Positioning result diagram real-time positioning results. (a,b) are the results of the initial
position positioning of the maintenance vehicle and the positioning results after the real-time change
of the vehicle position in the three-dimensional twin system, respectively.

In order to verify the reconfiguration of the power maintenance vehicle in the sub-
station 3D model, the updated results of the operation status of the power maintenance
vehicle in the substation 3D model in the actual power operation scenario are shown in
Figure 21. Figure 21a shows the actual scene diagram of the operation process of the
maintenance vehicle, and Figure 21b shows the updated results of the operation status of
the maintenance vehicle in the 3D model.

As can be seen from Figure 21, the power maintenance vehicle in the actual operation
power operation scene can realize the operation state update in the substation 3D model,
and the operation state of the maintenance vehicle in the actual operation power operation
scene and the substation 3D model is more matching. Therefore, the algorithm proposed in
this paper successfully realizes the real-time twinning of vehicles in the 3D system.
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4. Conclusions

This paper introduces a safety monitoring and digital twin scheme for power mainte-
nance vehicles. The scheme employs UWB technology to acquire vehicle position informa-
tion and machine vision technology to recognize the arm state of the vehicle, then update
the status of vehicles in a 3D scene with the acquired information. In the locating algo-
rithm, CPSO was applied to optimize global search for the initial position of the target and
eliminate interference problems in the TDOA/AOA algorithm and improve positioning
accuracy. CSL, HardSwish, and CBAM models are applied to YOLOv5 network to increase
the accuracy of vehicle arm status. In the substation three-dimensional model, the status of
virtual vehicle is real-time update and safety monitored.

5. Discussion

Our designed positioning algorithm and robotic arm state recognition algorithm have
better positioning effect and recognition effect. However, there are still some shortcom-
ings in the process of monitoring the operation safety of the electric power maintenance
vehicle. Although the detection of the mechanical arm state recognition network of the
electric power maintenance vehicle is more accurate and the detection speed can meet the
requirements of real-time detection, there is still a large space for improving the detection
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speed. In the future, the network can be considered for light weight processing to further
improve the detection speed while maintaining the detection accuracy.
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