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Abstract: Internet of Things (IoT) technology is widely used in new power systems, and it also
provides many new modes for network attacks. Illegal terminal device identification is also a
significant topic in the field of wireless authentication technology. Some kinds of power network
equipment are located in sparsely populated areas and rely on IoT terminals for real-time monitoring.
Attackers use illegal terminals to connect power IoT devices for production monitoring and to carry
out network attacks, which may cause serious damage, such as power data theft and misoperation of
power network equipment. Radio frequency fingerprint (RFF) can extract hardware features from
different devices, and is widely used for device identification and authentication. The area over
which power network equipment placed is vast, and there are many wireless communication devices
and terminals. It is difficult to identify illegal devices through commonly used network management
techniques, thus making it difficult to distinguish between the mobile terminals of employees and
illegal terminals in general spectrum screening. In response to the above situation, this paper uses
the characteristics of the squared spectrum of random access preamble signals to extract hardware
device features, proposes an illegal device identification algorithm based on Gaussian distribution
theory, and evaluates its performance. The experimental results show that, when the signal-to-noise
ratio (SNR) is greater than 15 dB, the average recognition result is greater than 92%. In addition, the
algorithm has low computational complexity and high engineering application value.

Keywords: mobile equipment; preamble signal; squared spectrum; Gaussian distribution

1. Introduction

In recent years, with the continuous promotion of China’s 2060 carbon neutrality target,
the construction of new power network systems has been accelerated. The development of
power network systems has, thus, been rapid, aiming at improving public health, sparking
technological innovation and creating new economic opportunities. The power network
stations cover a large area, and the space is open. With limited human resources, managers
can only rely on a small number of people to complete on-site duty work, which results in
a lack of regulation and high network security risks. For example, it is difficult to detect
when outsiders come into direct contact with control equipment on site, and equipment
is prone to be overlapped by external lines and being attacked by intermediaries [1–6].
For example, some criminals utilize today’s rapidly developing science and technology
to connect illegal mobile phones with power network systems through cellular mobile
communication. Figure 1 presents a schematic diagram of an attack scenario, which
illustrates an example of power network data leakage. Firstly, illegal terminal devices
make connections to power network systems by adopting a cellular wireless networking
method. In this way, attackers can access the local network of power stations through
cellular mobile communications from afar, conduct sniffing, tapping, and network attacks,
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including infiltrating and controlling various terminal devices in the local network, collect
network traffic, and even forge and tamper with power control instructions in the network.
After attacking the power network system successfully, the illegal equipment transmits the
stolen information to the external base station.
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data
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Figure 1. Schematic diagram of attack scenario.

From the example given of data leakage from a power network, it can be seen that,
if illegal devices are connected to the power equipment, large quantities of important
information may be leaked. Therefore, effective device authentication mechanisms are
needed to improve network security. Radio frequency fingerprint (RFF) identification is an
effective technology for classifying wireless device identities [7–15]. As shown in Figure 1,
a detector is used in this example, playing the role of third party testing equipment. Illegal
devices use cellular communication, which has the characteristics of small coverage and
low power transmission. Moreover, mobile phones used by venue employees share the
same network as criminal devices, which makes it difficult for the detector to accurately
and effectively detect illegal devices.

This article considers an identification method for illegal equipment in new power
network systems, and proposes a recognition algorithm based on a Gaussian distribution
fitting test. The main contents of the investigation include: first, estimating the arrival time
of the preamble signal of the wireless device through the Haar wavelet transform, then
analyzing the squared spectrum characteristics of the preamble signal, that is, calculating
its squared spectrum, and analyzing its differences to provide a basis for feature extraction.
On this basis, this article reports a recognition algorithm based on a goodness of fit test of
the Gaussian distribution to achieve recognition of illegal equipment and legal equipment.

The rest of the article is organized as follows: Section 2 provides a detailed summary
of work undertaken so far. Section 3 describes the methodology used, including the
signal model, analysis of the Zadoff–Chu (ZC) sequence, signal collection, and the analysis
approach, including the confusion matrix and goodness of fit test. Section 4 provides the
experimental results. Section 5 presents the conclusions.

2. Related Work

A number of scholars have conducted extensive research on the issue of RFF
recognition [7–9,16–21], which is discussed below.

Existing RFF recognition methods involve two main schemes. One is traditional device
fingerprint technology, which usually selects one or more signal features for fingerprint
extraction, such as the I/Q imbalance, frequency offset, phase noise, and so on. The
other involves utilization of neural networks to automatically extract features for device
identification. By increasing the size of the network, deep learning methods can improve
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the capacity of a fingerprint model and improve the differentiation degree of the device
fingerprint, which has been extensively considered in recent years.

Linning Peng proposed a method to extract the RF fingerprint by using a differential
constellation trace figure [8], which can be obtained by oversampling the received signal
and performing differential operations on the signal to plot the sample points. Then
the cluster center is calculated using the K-means clustering method. USRP was used
as the receiving platform to identify 12 CC2530 devices using OQPSK modulation. The
experimental results indicated that, when SNR was above 15 dB, it could reach a recognition
accuracy of over 95%, and when the SNR was above 30 dB, it could reach 99%. Based
on this work, Linning Peng later proposed a hybrid device classification scheme based
on multi RF fingerprint features [7], which uses four modulation features, namely, a
differential constellation trace figure (DCTF), a carrier frequency offset, a modulation offset,
a constellation offset, and an I/Q offset. Based on this, a hybrid classifier scheme was
designed to adaptively combine different features according to the channel signal-to-noise
ratio (SNR). The weight of each feature was obtained during the training period. These
features were combined with the weights selected according to the estimated SNR during
the testing period. The classification error rate was as low as 0.048.

Laxima Niure Kandel exploited channel state information (CSI) for recognition [16].
The author collected the measured data in different locations as the training data and
designed a classifier to determine whether the equipment was legal. Comprehensive
experiments in diverse real environmental settings were conducted using the training set
and the test set with a ratio of 8.5:1.5. The results indicated that, when transmitter and
receiver were static, an accuracy of 98% was obtained, and, for the moving area, 92% device
identification accuracy was obtained.

In light of the phenomenon that most existing RFF technologies are data-dependent,
Yang Yang proposed a data-independent RFF extraction scheme [17], which was imple-
mented on random data segments, such as communication data. In this study, a method
called least mean square (LMS)-based adaptive-filter-based stacking (LAFS) was designed
for RFF extraction; then, the author used the tap coefficients of an adaptive filter to represent
the features. By utilizing the proposed LAFS, stable device fingerprints can be extracted
from changing data. The LAFS was evaluated and the experimental results indicated that
the classification accuracy could reach 98.9%, outperforming the deep learning network.

All the methods mentioned above are state of the art in traditional RFF recognition.
Nevertheless, these selected features are effective in distinguishing a limited number of
devices only when used alone or with a few cases. The distinguishing accuracy decreases
as the number of devices grows [10].

In recent years, with the development of artificial intelligence technology, machine
learning algorithms have been widely applied in fingerprint extraction and device
recognition [18–20]. Amani Al Shawabka et al. [21] proposed a deep-learning-based
recognition algorithm, which first analyzes features and then uses a convolutional neural
network (CNN) to achieve fingerprint accuracy levels that traditional low dimensional algo-
rithms cannot achieve. Pengcheng Yin proposed a novel multi-channel convolutional neural
network (MCCNN) for long-term evolution (LTE) terminal identification [9]. The MCCNN
is leveraged for feature extraction from the different parts of the signal, including the
transient-on part, the modulation part, and the transient-off part. Then, the extracted
features are combined to achieve higher classification accuracy. The experimental results
obtained indicate that the identification accuracy achieved was as high as 98.96%.

At the same time, experts in some fields are gradually starting to research and use
deep neural networks (DNNs) to construct modulation recognition classifiers in order to
improve the effectiveness and reliability of recognition algorithms. However, this type
of method also has certain limitations, requiring a large number of training samples and
having high computational costs, making it unsuitable for applications with high real-
time requirements.
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In conclusion, the traditional RFF identification methods have difficulty recognizing a
large number of devices accurately. RFF identification based on deep learning also requires
large training samples and struggles to meet high real-time requirements. In addition,
the aim of our article is to identify whether a terminal device is moving, which is a little
different from traditional RFF research, the goal of which is to identify whether a device
belongs to a specific category. Such research on recognizing static devices has not been
carried out before. Therefore, a new method for identifying static terminals based on RFF
with high real-time effectiveness and reliability still requires investigation.

3. Methodology
3.1. Signal Model

When a terminal is connected to a mobile network, it will send initial information to
achieve synchronization with the base station, which is referred to as sending of preamble
signals. The preamble signals of wireless devices are generated by one or several ZC
sequences, with a total of 64 different ZC sequences in each cell. Mobile devices will
randomly select one ZC sequence for access. The ZC sequence can be represented as
described in [9]:

s(n) = exp{j
πqn(n + 1)

NRS
ZC

}, 0 ≤ m ≤ NRS
ZC, (1)

where n is the number of sequences and there are a total of 64 different ZC sequences;
q and N are adjustable parameters and NRS

ZC is the length of the ZC sequence.
The signal after adding Gaussian white noise can be expressed as

r(n) = s(n) + w(n), (2)

where w(n) represents the added Gaussian white noise signal, whose mean value is zero
and with variance of σ2.

The identification problem of illegal devices in this design can be expressed in terms
of the following hypothesis-testing model:{

H0, Identi f ied as illegal device
H1, Identi f ied as legal device

, (3)

In this scenario, illegal devices are wired to power devices and steal data, usually in
a static state; legitimate devices refer to mobile devices (such as mobile phones) used by
employees. These devices generally follow employees around as they operate the devices,
making it difficult for them to remain stationary. Therefore, the identification of illegal
devices can be further transformed into the identification of moving/static devices, which
can be expressed as {

H0, Identi f ied as static device
H1, Identi f ied as moving device

. (4)

3.2. Analysis of ZC Sequence

The preamble signals of mobile phone are composed of multiple ZC sequence cyclic
shifts [9]. Different ZC sequences have orthogonality. According to simulations, the real
part of the squared spectrum of the ZC sequence follows a Gaussian distribution; the
distribution fitting results are shown in Figure 2.

The reason for this phenomenon is that different cyclic shifts of the ZC sequence have
orthogonality for static equipment. In this way, for equipment in a static environment,
different ZC sequences are independent of each other, and the real part of the squared
spectrum of the preamble signal thus obeys a Gaussian distribution. For equipment in
the moving environment, due to the Doppler effect, the orthogonality between different
cyclic shifts of the ZC sequence will be destroyed. In this case, different ZC sequences will,
thus, no longer have mutual independence. Therefore, when a moving device is connected
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to the network, the squared spectrum of the preamble signal does not follow a Gaussian
distribution; that is, the squared spectrum of the legitimate device’s preamble signal does
not follow a Gaussian distribution. Reflecting this characteristic, this article proposes a
recognition algorithm based on the goodness of fit test of a Gaussian distribution, which
can effectively identify illegal equipment.
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Figure 2. Schematic diagram for distribution fitting of ZC square spectral sequence.

3.3. Collection of Preamble Signal

The preamble signal of a wireless device is the initial message sent by the terminal
while accessing the mobile network before transmitting data; it can also be used to syn-
chronize the user equipment with the base station to obtain base station resources. Usually,
the preamble is triggered when it is necessary to connect to a mobile network. The typical
preamble signal waveform is shown in Figure 3.
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Figure 3. Typical leading signal waveform (in red frame).

Estimating the arrival time of signals in low SNR environments is an important topic
in signal processing and analysis. In [22], a signal arrival time estimation method based
on Haar wavelet transform is reported; the Haar wavelet transform has the functions of
edge detection and mutation point localization. It has been widely applied in the signal
processing area. This article uses the Haar wavelet transform algorithm to reduce the noise
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level of the received signal [22], thereby estimating the start and end times of the preamble
signal without prior signal information. The discrete Haar wavelet transform function used
in this article is as follows [22]:

1
√

a
ψ(

n
a
) =



1
√

a
, n = −

a
2
+ 1,

a
2
+ 1, . . . ,−1

−
1
√

a
, n = 0, 1, . . . ,

a
2
− 1

0 , else

. (5)

where a represents the scale and n represents the translation. ψ(
n
a
) is the mother wavelet

function, which can be written as:

ψ(k) =


1 , 0 ≤ k ≤ 0.5
−1 , 0.5 ≤ k ≤ 1
0 , else

. (6)

In our experimental approach, first, the collected signal with noise is subjected to a
wavelet transform as described above. Then an optimal approximation to the original signal
is found in the function space formed by scaling and translation of the wavelet mother
function to remove the noise contained in it. Finally, the processed wavelet coefficients are
subjected to a wavelet inverse transform to obtain the denoised signal. The waveform of
the denoised leading signal is shown in Figure 4. The arrival and end times of the preamble
signal can, thus, be accurately estimated.

0 2000 4000 6000 8000 10,000 12,000 14,000

n

0

0.5

1

1.5

r(
n
)

Original signal with noise 

0 2000 4000 6000 8000 10,000 12,000 14,000

n

0

0.5

1

s
(n

)

Signal after Haar wavelet transform

Figure 4. Schematic diagram of comparison before and after wavelet transform.
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3.4. Analysis of Feature

As shown in Figures 5 and 6, the time-domain and frequency-domain waveform of
the preamble signals of static and moving devices are very similar. The waveform is a
random variable consisting of random variables in the time and frequency domain and
does not have any significant peak. Therefore, in this design, it is difficult to effectively
distinguish the preamble signals emitted by the static and moving devices through general
processing, such as time-domain modulus extraction and signal Fourier transform, as
expected. Therefore, in this article, an illegal device recognition algorithm based on the
Gaussian distribution RF fingerprint features is considered.
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Figure 5. The time domain waveform of preamble signals for static (left) and moving (right) devices.
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Figure 6. The frequency domain waveform of preamble signals for static (left) and moving (right) devices.

According to the analysis of the ZC sequence above, it can be concluded that the real
part of the squared spectrum of the preamble signal of a static device follows a Gaussian
distribution, while the real part of the squared spectrum of the preamble signal of a moving
device does not follow a Gaussian distribution. Therefore, this algorithm first extracts the
squared spectrum of two types of preamble signals and calculates their real parts. The real
part of the squared spectrum waveform of the two devices is shown in Figure 7. Figure 7
indicates that the real part of the squared spectrum waveform of the preamble signals
of the static device consists of random variables and does not have any significant peak,
while for moving devices, it exhibits two significant peaks. The peaks indicate that the
signal comprises a deterministic part and additive phase noise, which do not follow a
Gaussian distribution. The difference in the real part of the squared spectrum waveform of
the preamble signals can be utilized to distinguish the two signals.
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Figure 7. The real part of the squared spectrum waveform of preamble signals for static (left) and
moving (right) devices.

3.5. Goodness of Fit Test Algorithm for Distribution

In theoretical research, when it is necessary to test whether a group of random samples
conforms to a certain probability distribution, a goodness of fit test of distribution is usually
utilized. Widely used methods include the Anderson–Darling (AD) test, the Kolmogorov–
Smirnov (KS) test, etc. [23]. The goodness of fit test method used in this paper is the KS
test, which is used to test whether the distribution of the real part of the squared spectrum
of the preamble approximately follows a Gaussian distribution. If it follows a Gaussian
distribution, it is determined to be illegal equipment. If it does not follow a Gaussian
distribution, it is determined to be legal equipment.

In this design, it is assumed that the samples x1 ≤ x2 ≤ . . . ≤ xN are independent,
identically distributed observation samples arranged in ascending order in the squared
spectrum of the leading signal, all of which come from the overall empirical distribution
samples FR(x). Here, the distribution of the samples is a Gaussian distribution of the
overall empirical distribution samples.

The null hypothesis H0 needs to be tested:

Fγ(x) = F(x, θ), (7)

where F is the distribution cluster, whose parameter is θ. The basic idea of the goodness
of fit test of an empirical distribution function is to compare the distance between the
hypothetical distribution F(x, θ) and the empirical distribution Fγ(x).

The identification of illegal devices can be further transformed into an identification
model expressed as: {

H0, Fγ(x) = F(x, θ)
H1, Fγ(x) 6= F(x, θ)

. (8)

The empirical distribution function can be calculated using the following formula:

F̂γ(x) =


0, x < xi
i/n, xi < x < xi+1
1, xn ≤ x

. (9)

The basic process of the KS test is as follows:
Step 1: Calculate the empirical cumulative distribution function F̂γ.
Step 2: Define the absolute value of the maximum difference between two cumulative

distribution functions as the test statistic of goodness of fit:

Q̂ = max|F̂γ(x)− Λ̂∗1(x)|

where Λ̂∗1(x) = exp{−e−x}, x ∈ (−∞, ∞)
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Step 3: Compare the goodness of fit test statistics with the threshold λ̂; accept
H0 (H0 = 0) if Q̂ ≤ λ̂ and reject H0 if Q̂ > λ̂. When the significance level or error
warning probability of the given test Pf a is given, the threshold can, thus, be obtained by
solving the following equation:

Pf a = Φ[λ̂(
√

M + 0.12 + 0.11/
√

M)], (10)

where Φ(x) = 2 ∑∞
i=1(−1)i−1e2i2x2

.

3.6. Evaluation Metrics

In this article, we use the confusion matrix to evaluate the performance of the goodness
of fit test for the distribution algorithm. The confusion matrix provides high precision and
excellent classification capability, so that it is used for classification in this article.

The basic standard evaluation criteria include true positive (TP), false positive (FP),
false negative (FN), and true negative (TN), which are shown in Table 1.

Table 1. Confusion Matrix.

Confusion Matrix
Actual Value

Positive Negative

Predict Value
Positive True Positive False Positive

Negative False Negative True Negative

However, the evaluation criteria in the confusion matrix cannot measure the advan-
tages and disadvantages of the proposed algorithm by counting the quantity of data only.
Therefore, the confusion matrix is extended to include the following four secondary in-
dicators with the basic statistical results, shown in Table 2: accuracy, precision, recall,
and specificity.

Table 2. The secondary indicators.

Formula Significance

Accuracy TP + TN
TP + FP + TN + FN

The proportion of all correctly
judged results of the

classification model to the
total observed values.

Precision TP
TP + FP

The proportion of correct
predictions among all

positive results.

Recall TP
TP + FN

The proportion of correct
predictions among all actual

positive results.

Specificity TN
TN + FP

The proportion of correct
predictions among all actual

negative results.

Using the above four secondary indicators, the quantity values in the confusion matrix
can, thus, be converted into a proportion between 0 and 1.

Utilizing these four indicators, another third-level indicator called F1 − score is, thus,
derived, which can be represented as:

F1 − score = 2× Precision× Recall
Precision + Recall

(11)

The F1 − score value ranges from 0 to 1; a value of 1 represents the best output of the
model, while 0 represents the worst output of the model.
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In this article, the performance of the goodness of fit test for the distribution algorithm
can, thus, be evaluated by the criteria described above.

4. Results and Analysis

This section introduces the construction of the experimental platform and the setting of
the experimental parameters. Then, we display the empirical and theoretical distributions
of the real parts of the squared spectrum of two types of signals, and, finally, analyze
their performance.

4.1. Establishment of Experimental Platform and Parameter Settings

In order to verify the illegal device recognition algorithm based on Gaussian distribu-
tion features proposed in this article, an experimental system was built, which included
a static mobile phone serving as an illegal device and a moving mobile phone serving as
legitimate equipment carried by staff.

Software defined radio (SDR) is a radio broadcasting communication technology that
controls traditional hardware circuits through software to receive and transmit wireless
signals of different frequency bands and standards. This design uses a USRP B210 device
to build a base station system in the Ubuntu 18.04 system using the srsRAN 21 open-source
software suite, while another USRP N210 device is used to capture signals. The related
parameters of USRP B210 and USRP N210 are shown in Table 3. These two USRP devices
mainly perform front-end processing, such as signal transmission, filtering, mixing, and
sampling. The maximum frequency of USRP is 6 GHz and the maximum processing
bandwidth is 56 MHz. By using variable sampling theory, it can be converted to a sampling
rate of 30.72 Msps, meeting the requirements of a 10 MHz bandwidth and 2.565 GHz center
frequency in this study.

Table 3. USRP equipments and related parameters.

USRP B210 USRP N210

Frequency range 70 MHz–6 GHz 0 Hz 1–6 GHz
RF bandwidth 56 MHz 100 MHz
Sampling rate 61.44 MS/s 100 MS/s
TX channels 2 2
RX channels 2 2

Interface USB 3.0 Ethernet
Chipset AD 9361 AD 9510

1 0 Hz means USRP N210 can cover the direct current (DC) frequency.

4.2. Experimental Results

As shown in Figures 8 and 9, the solid blue line represents the theoretical Gaussian
distribution curve of the squared spectrum sequence of the preamble signal, and the actual
distribution of the squared spectrum sequence is represented by small red circles. The above
results provide estimated empirical distribution functions for two scenarios and theoretical
distribution functions obtained from fitting data based on a Gaussian distribution. From
the graph, it can be seen that, under hypothetical H0 circumstances, the empirical distribution
function of the squared spectral sequence fits a Gaussian distribution well (H0 = 0); under
hypothetical H1 circumstances, the actual distribution function is significantly different from a
Gaussian distribution (H1 = 1). From this, it can be verified that the squared spectrum of the
preamble signal of illegal equipment (static equipment) follows a Gaussian distribution, while
the squared spectrum of the preamble signal of legal equipment (moving equipment) does not
follow a Gaussian distribution. In the experiment, each hypothetical case corresponds to one of
the evaluation criteria, respectively, which is shown in Table 4.
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Figure 8. Fitting result of the squared spectral distribution of the preamble signal of an illegal device
(H0 = 0).

Figure 9. Fitting result of the squared spectral distribution of the preamble signal of a legal device
(H1 = 1).

Table 4. Correspondence of the hypothetical case and the evaluation criteria.

Hypothetical Criteria

H0 = 0 TN
H0 = 1 FN
H1 = 0 FP
H1 = 1 TP

In this design, SNR is one of the main factors affecting algorithm performance. There-
fore, this article investigates its impact on algorithm performance.

In this study, 1000 sets of preamble signals were collected in two different scenarios,
and varying degrees of noise were added. The minimum SNR was 0 dB and the maximum
value was 30 dB, with an increment of 3 dB. The sampling point for each preamble signal
was 10,000. For each SNR, the collected signals were identified and the recognition results
obtained from these simulations were used to obtain their respective recognition accuracy.
As shown in Table 5, five criteria were evaluated in the design, each of which gradually
increases with increase in SNR.



Electronics 2023, 12, 3144 12 of 15

It can be seen from Table 6 that TNR and FNR are basically not affected by SNR. The
reason is that, after the spectrum processing described in this article, the waveform of the
preamble signal of the static equipment can approximately be regarded as the spectrum
of Gaussian white noise. Therefore, no matter how low the SNR is, its spectrum can
be regarded as a spectrum of noise obeying a Gaussian distribution. The performance
is, thus, affected little by SNR. TPR and FNR are greatly affected by SNR because there
are obvious peak spectral lines in the square spectrum of the moving signal, which is a
combination of the noise spectrum and the signal spectrum. Therefore, when the SNR is too
low, the power of the signal spectrum component will decrease, causing the peak spectral
line of the spectrum to be small, resulting in unclear characteristics and a decrease in the
recognition accuracy.

Table 5. Extended performance diagram of distribution fitting recognition algorithm.

SNR Specificity Recall Accuracy Precision F1 − Score

0 dB 81.1 57.3 69.2 75.1 65.1
3 dB 86.5 67.2 76.8 83.2 74.3
6 dB 88.7 74.6 81.6 86.8 80.2
9 dB 90.6 82.0 86.3 89.5 85.6

12 dB 92.4 86.4 89.4 91.9 89.0
15 dB 93.9 89.9 91.9 93.6 91.7
18 dB 95.1 92.0 93.5 94.9 93.4
21 dB 95.7 93.8 94.7 95.6 94.7
24 dB 96.2 95.7 95.9 96.1 95.9
27 dB 96.4 96.3 96.3 96.4 96.3
30 dB 96.7 96.6 96.6 96.7 96.6

Table 5 illustrates five extended performances of the proposed algorithm in this
article. The five criteria increase as SNR grows. As shown in the figure, they can all reach
an accuracy of more than 90% when SNR is more than 15 dB. This is aligned with our
expectations since this algorithm can provide high accuracy of recognition.

Table 6. Basic performance diagram of distribution fitting recognition algorithm.

SNR TNR TPR FPR FNR

0 dB 81.1 57.3 42.7 18.9
3 dB 86.5 67.2 32.8 13.5
6 dB 88.7 74.6 25.4 11.3
9 dB 90.6 82.0 18.2 9.4

12 dB 92.4 86.4 13.6 7.6
15 dB 93.9 89.9 10.1 6.1
18 dB 95.1 92.0 8.0 4.9
21 dB 95.7 93.8 6.2 4.3
24 dB 96.2 95.7 4.3 3.8
27 dB 96.4 96.3 3.7 3.6
30 dB 96.7 96.6 3.4 3.3

4.3. Comparison with Other Scheme

As shown in Figure 10, TPR and TNR are compared with RFF based on deep learning,
which is exploited in [16] for device identification using the training set and the test set with
a ratio of 8.5:1.5. Inspired by [16], this article simulates 1000 samples of CSI collected from
different devices, from which the samples are first divided randomly into two parts: 85%
for the training set and 15% for the test set. By comparison, we find that the performance of
the scheme proposed in this article shows little difference with the scheme of deep learning.
RFF identification in this article can reach an accuracy of 96.6% and the scheme in [16] can
reach 98.1%, which indicates that the performance in our article is a little lower. Fortunately,
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compared with the deep learning method, this algorithm does not require a training section
and has low complexity, resulting in high engineering value.

0 5 10 15 20 25 30
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65

70

75

80

85

90

95

TNR of the scheme in this manuscript

TPR of the scheme in this manuscript

TNR of the benchmark scheme

TPR of the benchmark scheme

Figure 10. Comparison of recognition with schemes proposed in [16] by Kandel, L in 2019.

5. Conclusions

This article proposed an illegal mobile device identification scheme based on RFF.
Firstly, we studied the characteristics of the ZC sequence. As was discussed in Related Work,
most existing schemes have difficulty achieving high accuracy and meeting high real-time
requirements at the same time. To overcome this shortcoming, we proposed a recognition
algorithm based on a Gaussian distribution fitting test by analyzing the squared spectrum
characteristics of the preamble signals of illegal and legitimate devices in a power network
system. The real part of the squared spectrum of the preamble signals of illegal devices
follows a Gaussian distribution, while the real part of the squared spectrum of legitimate
device’s preamble signals does not follow a Gaussian distribution. The experimental
results showed that, in an environment with an SNR of 30 dB, the average recognition
accuracy of the algorithm could reach 96.6%, and the algorithm has low complexity and
high engineering value. In conclusion, this algorithm displays high precision and excellent
classification capability, making it suitable for the identification of illegal equipment in
power network stations. This design has the advantage of recognizing signals of the same
type and recognizing whether they are static. When the signals are composite signals, it
may be difficult to use this method to identity an illegal device. The application of this
method in the case of composite signals (mixed with other types of signals) will be studied
in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Anderson–Darling
CNN Convolutional neural network
CSI Channel state information
DC Direct current
DCTF Differential constellation trace figure
DNN Deep neural network
FN False negative
FP False positive
IoT Internet of Things
KS Kolmogorov–Smirnov
LMS Least mean square
LTE Long-term evolution
MCCNN Multi-channel convolutional neural network
RFF Radio frequency fingerprint
SDR Software defined Radio
SNR Signal-to-noise ratio
TN True negative
TP True positive
ZC Zadoff–Chu
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