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Abstract: Grasping objects in cluttered environments remains a significant challenge in robotics,
particularly when dealing with novel objects that have not been previously encountered. This
paper proposes a novel approach to address the problem of robustly learning object grasping in
cluttered scenes, focusing on scenarios where the objects are unstructured and randomly placed. We
present a unique Deep Q-learning (DQN) framework combined with a full convolutional network
suitable for the end-to-end grasping of multiple adhesive objects in a cluttered environment. Our
method combines the depth information of objects with reinforcement learning to obtain an adaptive
grasping strategy to enable a robot to learn and generalize grasping skills for novel objects in
the real world. The experimental results demonstrate that our method significantly improves the
grasping performance on novel objects compared to conventional grasping techniques. Our system
demonstrates remarkable adaptability and robustness in cluttered scenes, effectively grasping a
diverse array of objects that were previously unseen. This research contributes to the advancement of
robotics with potential applications, including, but not limited to, redundant manipulators, dual-arm
robots, continuum robots, and soft robots.

Keywords: deep reinforcement learning; full convolutional network; robotics; unstructured objects;
dexterous grasp

1. Introduction

The literature presents numerous works on vision-based robot dexterous manipula-
tion [1], especially focusing on end-to-end deep learning-based schemes that significantly
improve grasping accuracy and efficiency [2,3]. Indeed, a deep convolution neural network
can learn the complicated feature representation from a huge quantity of data instead of
relying on handcrafted feature extraction. Thus, many researchers have attempted to train
a robot to grasp objects utilizing deep learning-based solutions, primarily by estimating
the robot’s operation pose, which can be broken down into two categories. One scenario
involves segmenting and identifying the objects before estimating the operation pose by em-
ploying a well-known object model to address the grasping task in complicated scenes [4].
Another case is that the end-to-end operation pose was determined utilizing image or point
cloud data [5]. Although the latter category affords a better generalization ability, the cost of
training data prevents its widespread industrial application. Nevertheless, advanced deep
learning technology allows deep convolution neural networks to perform exceptionally
well extracting features from images.

In reality, grasping enables robots to manipulate and interact with objects, performing
tasks, such as moving, placing, and assembling. Through autonomous exploration and
learning, robots enhance their understanding of the environment and objects. This allows
them to engage in closer human interaction, such as delivering objects and collaborat-
ing on various tasks. For instance, Google brain employs QT-opt [6], a reinforcement
learning-based extensible self-supervised learning approach. Furthermore, multiple robots
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are utilized simultaneously to train the robot for a grasping task, aiming to shorten the
training time and addressing that deep reinforcement learning involves more training steps.
Through sparse rewards [7], Breyel et al. ensured that the robot developed a superior
grasping method. Nevertheless, a continuous (non-sparse) reward function causes local
optimization to be problematic, and, therefore, Berkeley developed a reward guidance
algorithm to address this issue [8].

Currently, most robotic grasping systems operate in a structured environment and
suffer from poor robustness and flexibility, requiring reset whenever the environment, the
grasping task, or the object’s condition change. However, when the objects are irregular or
stacked, the grasping task difficulty increases significantly. To compensate for that, current
studies typically derive image data from visual sensors and extract features manually, aim-
ing through supervised data and conventional machine learning algorithms to determine
the corresponding relationship between these artificially designed features and the robot’s
grasping pose [9].

To date, various DRL algorithms have been proposed for manipulation intelligence and
autonomous learning. Given that the manipulator and the complex dynamic environment
develop an interactive relation, the robot can learn how to grasp independently due to the
evolvement of reinforcement learning strategies, opening up the possibility of autonomous
control. Thus, this research develops a novel deep reinforcement learning-based approach
for the intelligent grasping control of robots. Figure 1 depicts the proposed system’s general
layout, where two RGB-D cameras extract images and combine image data to create visual
perception in simulation. Two fully convolutional action neural networks choose the best
action based on these features.
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(1) Unstructured environment: We present a unique Deep Q-learning (DQN) framework
combined with a full convolutional network suitable for end-to-end grasping of
multiple adhesive objects in a cluttered environment.

(2) Smaller training data: To improve data utilization, we perform mini-batch train-
ing instead of training on large amounts of data by storing the transitions in the
replay buffer.

(3) Reduced training time and remarkable results: We evaluate the proposed method in
real-world experiments. For cluttered situations, the experimental results indicate the
grasping rate of invisible objects is up to 88.9% with 282 ± 3 picks per hour.

The remainder of this paper is organized as follows. Section 2 briefly presents the
related work. Section 3 introduces the proposed Attention-DQN (ADQN) algorithm, and
Section 4 presents the experimental results and learning process. Finally, Section 5 concludes
this work.

2. Related Work

The studies of robot grasping that are most pertinent to our research are mentioned
below. The application of robot manipulation for grasping unseen objects has gained a lot
of traction.

2.1. Vision-Based Grasping

Learning and control in robotic systems aided with neural networks, which could
achieve better performances in terms of efficiency in manipulation. In recent years, visual-
based perception has been widely used for robotic grasping tasks, where object features
are extracted to guide the decision-making process. For instance, Lenz et al. [10] suggested
that a good five-dimensional grasp representation can be back-projected into a seven-
dimensional grasp representation, assisting a robot in grasping. Most previous works focus
on single or specific objects in structured environments, requiring a prior knowledge of
the target object and exploiting a corresponding feasible grasping set [11]. For the scenario
where the objects are invisible or similar, most researchers exploit information, such as
shape, color, and texture [12]. However, this strategy is inefficient since it is impossible to
create a database of known objects or learn the discriminant equation for grasping without
a given model and prior experience. Additionally, shape recovery or feature extraction
commonly relies on signals derived from sensors, which are then exploited heuristically to
generate a feasible grasp.

2.2. Attention Mechanism and Deep Q Network

Robotic grasping in cluttered environments is a challenging problem that has gar-
nered significant attention in the robotics community. Researchers have explored various
approaches to tackle this problem, employing both analytical and learning-based tech-
niques [13–15]. The attention mechanism efficiently extracts high-quality elements from
extensive information with limited resources [16], first applied to image classification
by Mnih et al. [17]. The attention mechanism reduces temporal complexity and has al-
ready achieved remarkable results in various types of deep learning tasks, such as natural
language processing, image recognition, and voice recognition. Moreover, it has also
demonstrated inspiring performance in reinforcement learning projects [18–20].

At present, many applications are based on Q-learning to improve robot performance.
Due to the large space occupied by Q-learning Q-table, it cannot solve some problems
in the high-dimensional state space [21]. Therefore, the DQN improves Q-learning by
innovatively combining Q-learning with reinforcement learning and adjusting the Q-value
using a neural network. The key principle of DQN is to approximate the value function,
and the experience replay mechanism breaks the correlation between data. Although
a standard DQN method can solve MDP problems, it cannot be effectively generalized
to unknown environments. Hence, Liang et al. proposed a knowledge-induced DQN
(KI-DQN) algorithm to overcome the generalization challenges [22].
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2.3. Grasping in Clutter

Many learning-based approaches have tried to overcome the problem of grasping
objects from a cluster of multiple objects [2,23,24]. For instance, Kalashnikov et al. [25] in-
troduced a scalable self-supervised vision-based reinforcement learning framework to train
seven robot setups for 5.8 k grasp attempts, involving learned pre-grasping manipulation,
like pushing and reactive grasping. Another approach that has been proposed is the use of
deep Q-learning to learn pushing and grasping motion primitives [26], which achieved a
task success rate of 85% for cluttered objects after approximately 2000 training episodes.

Unlike existing works [6,10,11] employing AlexNet and a pre-grasping dataset for fea-
ture extraction, we rely on ResNet [27]. Furthermore, the attention mechanism is employed
to enhance the expressiveness of the target, enabling better adaptation and grasping actions
for predicting rewards, then extracting the workspace features and producing the target
affordance map after the action network. Related to our work, Deng et al. [28] recently
proposed a DQN framework combining grasping and pushing. Finally, opposing many cur-
rent grasping algorithms that utilize reinforcement learning, our experiments demonstrate
that the developed method operates well on unseen objects in cluttered environments.

3. Problem Formulation and System Description

This study investigates how robots acquire shifting and grasping skills based on DRL.
Figure 2 depicts the system framework in broad strokes, which can solve the problems
of low efficiency, low success rate, and unsatisfactory cooperative effect and enhance the
robot grasping ability in complicated environments.
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Figure 2. Overview of the proposed Attention Deep Q-learning (ADQN) architecture.

3.1. Problem Formulation

The proposed solution employs two depth cameras and a parallel-jaw gripper and
investigates the combined job of shifting and gripping objects. Specifically, the robot
executes an action at under the current policy π in the state st of time t, then moves to the
next state st+1 and receives the immediate reward rt+1 with the action–state value function
Qπ

i+1(st, at) defined as:

Qπ
i+1(st, at) = Es+1[Rt+1 + γmaxQi

π(st+1, π(st+1)] (1)

The observation sequences are obtained by collecting camera images (state, action, re-

ward). To maximize the discounted sum of future rewards, i.e., Gt =
∞
∑

i=0
γiRi+t+1, the robot

generally searches for a policy π. When I → ∞ , our objective is to hasten the Q-function
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convergence in the course of a continuous environmental interaction, i.e., Qπ → Qπ∗ .
Finally, the optimal action the robot performs in the state st is derived as follows:

a∗t = argmax
at

Qπ∗(st, at) (2)

3.2. Attention-Based DQN

The attention network can elevate object perception. Thus, our attention architecture
(CBAMNet) is a convolutional block attention module that is mainly based on the deep
residual network (ResNet-50), with the network comprising a convolutional layer and
four attention blocks. The spatial attention (SA) mechanism and channel attention (CA)
mechanism are used for residual concatenation in the attention blocks. SA generates the
channel attention map, which focuses on the global information, and CA focuses on the
spatial feature map of the attention space and target space. The CA and SA are independent
and are sequentially combined to enhance attention to the position and feature information
of the objects in the workspace. The output features are merged and input into two action
networks to generate the shifting and grasping action visualization maps. The pixel-wise
prediction value Q and the probability of the action are obtained using the greedy strategy.
Moreover, self-training aims to optimize the target value:

Qi+1(st, at) = Rt+1(st, st+1) + γmax
a

Q(st+1, a; θt+1)] (3)

where Qt+1 is the predicted value of the executed action, Rt+1(st, at) is the reward value
obtained after executing action at, θt+1 is the network parameter at time t + 1, and the
maximum predicted value Q is derived from selecting the optimal action.

3.3. Reward Function

The sparse feedback is a common problem for reinforcement learning, which is fatal
to convergence. In this work, the robot is rewarded only when it successfully grasps an
object. The hierarchical reward is designed at the initial phase of the interactive training
between the robot and the system environment.

r =


1 success f ul grasping
0 unsuccess f ul grasping
1

∆x − E(r) movement process
(4)

where E(r) is the expectation of the relative reward estimation and ∆x is the distance from
the center of the two-finger gripper to the center of the nearest object. The coordinates
(x, y, z) of the gripper and the coordinates (xi, yi, zi) of the object in the base coordinate
system are obtained simultaneously because training is conducted in a virtual environment
system. Distance ∆x is derived as follows:

∆x =

√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2 (5)

We use the mean reward to update the reward expectation:

E(rnew)←
1
n

1
∆x

+
n− 1

n
rold (6)

The reward design is based on the motion control and grasping operations. Thus,
it can be roughly inferred that the success of grasping depends on the relative position
and posture of the gripper and object. The success of preliminary grasping attempts can
deduce the quality of posture directly, i.e., the reward feedback of posture is proximal. The
motion control process reflects the position change, and its feedback is challenging to learn.
Algorithm 1 shows DQN based on CBAMNet.
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Algorithm 1 Proposed DQN based on CBAMNet

Initialize the parameter θ, time step t and reward r of network model
Initialize an experience replay buffer D
Initialize action-value function Q with random weights
for number of episodes do

Extracting intermediate features from two identical attention networks and merging
for t = 1, T do

The behavior strategy selects the next action: at = maxaQ∗(st, a; θ)
Execute the action and feedback the reward value from the environment: rt

Store transition (st, at, rt, st+1) in D
Sample random minibatch of transition (si, ai, ri, si+1) from D
Calculate the target value: yt = Ra(st, st+1) + γmaxaQ(st+1, a′; θt+1)
Calculate the loss function, optimize objective and update network parameters
if Qs(st, at) = maxaQs

∗(st, a; θ) do
Execute the action of shifting

if Qg(st, at) = maxaQg
∗(st, a; θ) do

Execute the action of grasping
if the objects out of the training workspace then

Break;
end for

end for

4. Experiment Results

Usually, there are multiple objects presented in the actual grasping scene, which
brings significant difficulties for object grasping. We carried out model training in the
simulation environment to lessen the loss of the robot. The trained model would then be
transferred to the actual robot arm. We verified how to improve the grasping success rate
in real-word experiments.

4.1. Experimental Setup

In the simulation, the proposed method is evaluated in various scenarios to exhibit its
effectiveness using a modeled 6-DOF robot arm UR5 and a two-finger parallel gripper RobotIQ
2F-85 with an adjustable range of 0~85 mm. All experiments are on the v-rep3.6 simulation
platform based on bullet 2.8. Moreover, an Intel RealSense D435 depth camera is used as an
overhead camera, and another identical camera is deployed at 45◦. Our model is trained in
PyTorch with an NVIDIA-Tesla T4 on an Intel Xeon Golden CPU 2× 6128 clocked at 2.3 GHz.
Our physical experiments employ the RealSense D435 RGB-D camera and a physical robot (as
shown in Figure 3). The FLEXIV rizon4 is a 7-DOF robot arm with 4 kg maximum load. The
camera is attached to the end-effector, affording a good visual coverage of the graspable objectsElectronics 2023, 12, x FOR PEER REVIEW 7 of 12 
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Figure 3. Experiment in real environment. Our robot is able to grasp unseen objects with precise
perception, decision making at a high rate of speed, reduced training time, and receive remarkable
results. Our experimental setup consists of 1© a cooperative robot, 2© a depth camera, 3© a manipula-
tor with two-finger gripper (85 mm opening, maximum load 5 kg and 24 V DC power supply), 4© a
manipulation platform of various unknown objects.
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4.2. Training

In the simulation environment (Figure 4), multiple objects are placed randomly in a
challenging arrangement within a workspace of 1 m × 1 m. To expand the data sample,
the images captured by the cameras are rotated 16 times per 22.5

◦
and then input into

the same attention network (CBAMNet) for intermediate feature extraction and fusion.
The Shiftnet and Graspnet action networks conduct full convolution training based on the
fused intermediate features to obtain the pixel-wise Q value maps for action prediction.
According to the maximum Q-value map, the 3D point cloud is converted from the camera
coordinates to the robot coordinates to calculate the robot’s contact point position (x, y, z)
in the workspace. The environment is reset if the episode terminates or the objects are out
of the training workspace. The training parameter settings are listed in Table 1.
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Figure 4. During training in the simulation environment, multiple objects are randomly generated,
with their states being uncertain in each episode. The scenarios involve objects under adhesion and
stacking scenarios and the shifting action is used as the grasping operation to create a better space
and finally succeed in grasping.

Table 1. Parameter settings.

Parameter Value

learning rate: α 0.0001
exploration rate (start): εi 0.01

exploration rate discount: ζ 0.95
discount factor: γ 0.9

replay buffer capacity: D 500,000
mini-batch 64

max-episode 4000
Optimizer Adam

4.3. Testing

The performance of the training model is evaluated on 30 different operation scenarios
(see Figure 5). Each case involves unknown objects in irregularly placed scenes, with
other objects blocking the robotic tasks. The environmental state changes after performing
the shifting action, providing sufficient space for the grasping action. Finally, the robot
successfully grasps the object. We execute 10 runs per test, and the threshold of the action
numbers is set to 2 ×m per episode (m is the number of objects that must be picked per
case) per episode. The performance is evaluated based on the average grasp efficiency,

defined as
∑runs

i=1 success f ul numbers
∑runs

i=1 action numbers
, and the average grasp success rate of each object,

defined as
∑n

i=1 success f ul numbers
n(epoch numbers)

. The environment resets for the next grasping epoch if

the robot grasps all objects within the threshold of action numbers and not before exceeding
the threshold. For both metrics, a higher value is better.
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Figure 5. Testing cases: the robot grasps unknown objects for multi-irregular cases. During training
in the simulation environment, multiple objects are randomly generated, with their states being
uncertain in each episode. The scenarios involve objects under adhesion and stacking scenarios
and the shifting action is used as the grasping operation to create a better space and finally succeed
in grasping.

4.4. Comparisons with Previous Approaches

The dexterous operation skills are implemented in the v-rep simulation environment
to evaluate the proposed method’s effectiveness. The subsequent trials aim to prove that
our method can effectively speed up training and that the action policy is effective, boosting
action cooperation and grasping ability. We test our scheme against the following baseline
methods: (1) Grasping only, a greedy deterministic grasping strategy [29], where the full
convolution network predicts the action, and a greedy strategy selects the next action. The
robot only selects the action with the maximum Q value, as defined by the greedy strategy.
(2) The VPG-target maps the action Q-value through two action full convolution networks
and adopts the reinforcement learning method to learn the synergy between shift and
grasp [30]. (3) The vanilla Q-learning and deep vanilla Q-network (DQN) algorithms [21].

We set the maximum threshold number of actions taken during training. When the
threshold is reached, we reset the environment for grasping and begin the subsequent
training round. Then, a new scene will be generated for the subsequent training if the
target object is successfully grasped or if there is no object in the entire training region.
The robot will undergo 4000 grasping attempts, and Figure 4 compares the training curves
using different techniques.

The research results (see Figure 6) indicate that, compared to the Q-learning frame-
work [21], our proposed approach presents better completion and success rates. Addition-
ally, even though the DQN algorithm creates endless samples in real time based on the
experience replay pool for supervised training, it uses a random policy to select actions and
disregards the synergy of shifting and grasping, decreasing the grasping success rate [31].
The Grasping-only method solely relies on the grasping strategy with no shifting action
on the unknowable environment [29]. Moreover, the grasping performance varies from
40% to 60% and is inconsistent. Although the shifting action can alter the structure of
the unknown environment based on the VPG-target approach [30], it simply encourages
changing the environment’s structure, and the training effectiveness is only between 50%
and 65%, making it rather unsatisfactory. Although our approach performs poorly in the
first 1000 iterations of training, it significantly improves in the later training stages, reaching
an effectiveness of 80% and 90%, with the maximum successful grasping reaching 88.9%.
The grasping success rate, grasping efficiency (per hour), mean time(s) to complete one
action, number of actions, and successful objects are further analyzed and reported in
Table 2. The 30 various arrangements of testing instances involve 147 objects, with our
method outperforming existing methods.
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Table 2. Quantitative results considering the grasp success rate on test objects.

Q-Learning DQN Grasping-Only VPG-Target ADQN (Ours)

Actions 8.37 k 7.59 k 7.41 k 6.57 k 5.39 k

Objects 61 77 82 96 133

Success rate (%) 41.5 52.3 55.7 65.3 90.4

Mean Time (s) 14.6 13.9 13.4 12.8 11.5

Efficiency (per hour) 102 ± 5 135 ± 3 150 ± 4 183 ± 5 282 ± 3

4.5. Grasping in Clutter Scenarios

Physical Experiments. In each grasp attempt, our network receives the visual sig-
nals from the depth camera mounted on the robot end-effector. The color heightmaps
(4 × 224 × 224) and depth heightmaps (1 × 224 × 224) are rotated 16 times and input
into two identical attention networks (attention block × 4) for training. These networks
comprise a 7 × 7 convolution and maximum-pooling layer to fuse channel attention and
spatial attention (every attention block conducts 1 × 13 × 11 × 1 convolution). The fused
features (512× 14× 14) are input into two identical action networks using a greedy strategy
to generate the Q value maps of shifting and grasping actions. Then, the output is pro-
cessed by two fully convolutional layers, after which the network outputs the probability
of grasp success using a softmax function to guide the robot’s dexterous operation. Figure 7
illustrates that our system effectively grasps unknown objects in clutter.

Finally, we evaluated whether the learned model is able to successfully grasp the un-
seen objects in cluttered environments. Specifically, we evaluate our method on 145 grasp-
ing attempts and reveal that the robot is successful 111 times. Table 3 illustrates the results
of various methods in real-world grasping experiments. It is noticeable that the object-
grasping performance is obviously poor in [24] compared with other methods [32,33].
The experimental results demonstrate that our proposed model achieves around a 91.4%
grasping success rate in simulation and 88.9% in real-world execution, with fewer real data
for training. This is a considerable improvement over prior studies seeking to translate
simulation to reality.
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Table 3. The results of various methods in real-world grasping experiments.

Authors Physical Grasping Success Rate (%)

Morrison [32] 126/150 84%
Pinto [24] 97/134 72.3%

Xu [33] 123/143 86%
ADQN (Ours) 129/145 88.9%

5. Discussion

Each experience datum for a robot requires a grasp execution of the robot arm, which
frequently takes tens of seconds. Deep reinforcement learning-based robot grasping opera-
tions lack direct training data, and feedback from interacting with the environment may
be relatively sparse or suffer from significant delay, both of which are very unfavorable
for updating network parameters. Due to the complexity of the perception and control
model and the size of the network parameters, training is exceedingly challenging. It
should be noted that the decision result in the simulations is superior to the real-world
scenarios, even if the simulated environment is similar. Hence, to increase the accuracy of
the decision-making model on a physical robot, future research will investigate ways to
close the gap between simulation and the real environment.

It is important to acknowledge that despite the strong performance exhibited by the
trained grasp policies, there are still limitations and challenges that require attention. One
such challenge arises from the difficulty encountered by perception modules in accurately
perceiving objects that are highly occluded or visually ambiguous. Moreover, the grasp
policies may exhibit sensitivity to variations in object properties, such as shape, texture, or
weight. Addressing these challenges and improving perception and grasp planning algo-
rithms through further research can enhance the overall performance of the methodology.

6. Conclusions

This paper investigates a unique attention mechanism coupled with deep reinforce-
ment learning architecture for robot grasping. We contend that shifting and pushing should
be complementary actions for situations requiring dexterity robotic operation. Although
the Q-learning approach and its variations continue to be the most widely used model for
robotic grasping, these algorithms do not learn to coordinate shifting and grasping. The
learning model for our proposed method undergoes simulation-based self-supervision
training. Our approach exceeds the other evaluated alternatives, with a grasping success
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rate of 88.9% in clutter. The experimental results demonstrate that the suggested meth-
ods can generalize to unknown objects and have a noticeable improvement in grasping
efficiency, step-by-step motion time, and success rate.
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