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Abstract: As many new coding techniques and coding structures have been introduced to further
improve the coding efficiency of depth maps in 3D video extensions, the coding complexity has been
greatly increased. Fast algorithms are now needed to improve coding unit (CU) depth decisions
as well as the coding pattern decision based on the coding. This paper presents an innovative
machine learning-based approach aimed at mitigating the complexity associated with in-frame
coding algorithms. We build different clustering models for different CU sizes to cluster CUs of the
same size to decide their CU sizes. This is achieved by augmenting ensemble clustering through the
expedited propagation of clustering similarities, considering CU with the same or similar texture
complexity the same as for CU depth selection, which is informed by a comprehensive analysis of
the original texture and its neighboring elements. The experimental findings demonstrate that the
proposed scheme yields a substantial average reduction of 44.24% in the coding time. Remarkably,
the corresponding Bjøntegaard delta bit rate (BDBR) increment observed for the synthetic view is a
mere 0.26%.

Keywords: depth map; CU size decision; ensemble clustering

1. Introduction

With the progressive maturation of the new-generation video coding technology ver-
satile video coding (VVC), current coding technology research is mostly focused on two-
dimensional video. For three-dimensional video, research is mostly based on 3D-HEVC,
while the new, more efficient VVC technology is less used in three-dimensional video.
Consequently, the primary emphasis of this paper is on the exploration and analysis of the
new-generation video coding standard VVC, specifically within the domain of 3D video
coding technology. This study undertook an exploration to optimize video encoding time
and enhance the speed of 3D video encoding. The VVC standard introduced novel en-
coding techniques, notably leveraging quadtree multi-type tree (QTMT), which exhibits a
significant improvement in encoding efficiency. Diverging from the quadrinomial tree (QT)
partitioning structure employed in high-efficiency video coding (HEVC), the VVC standard
introduces a multi-type tree (MTT) partitioning scheme, illustrated in Figure 1. The QTMT
partition structure allows CU to have a square or rectangular shape, and QTMT allows
further partitioning of coding tree units (CTUs) using binary tree (BT) or ternary tree (TT) on
top of the QT partitioning of HEVC, resulting in a significant increase in coding complexity.
Consequently, streamlining the QTMT-based CU partitioning process holds great potential
for substantially curtailing the computational complexity inherent in VVC [1].

Encoding 3D video constitutes a considerably intricate system that entails concurrent
encoding of multiple views. This necessitates augmented video transmission bandwidth
and expanded video storage space. The video format is composed solely of a restricted
number of texture videos and their associated depth maps. These texture videos and
depth maps can be employed in synthesizing numerous virtual views through depth
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image-based rendering (DIBR) [2]. Although a greater number of views contributes to
heightened immersion, it concurrently poses significant challenges concerning data storage
and transmission [3].
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Figure 1. QTMT partitioning scheme in VVC.

The depth map serves as a means to capture and represent the geometric attributes of
a given scene, utilizing grayscale to convey the spatial separation between the camera and
the depicted objects. Notably distinct from texture frames, depth maps exhibit prominent
characteristics by extensive homogeneous regions that are demarcated by sharp edges. In
contrast, texture frames encompass intricate content comprising abrupt fluctuations in
sample values. Although the depth map itself is not directly observable to the viewer, the
intrinsic geometric information it encapsulates plays a pivotal role in the generation of
synthetic views. The encoding process of the depth map necessitates meticulous preserva-
tion of its edge information, as the distortion of such details can result in the emergence
of inaccuracies during the compositional fusion of foreground and background pixels in
the synthesized view, thereby potentially altering the fundamental structure of the cor-
responding 3D video. Consequently, ensuring the fidelity of the encoded depth map’s
edge information emerges as a critical undertaking, thereby facilitating the provision of
high-quality synthetic views. Particularly within homogeneous regions, coding techniques
must be employed to accomplish this objective, given the human visual system’s inherent
limitation in discerning minute variations in depth values.

Within the context of H.266/VVC-based 3D video, this research endeavor presents a
novel proposition encompassing an ensemble clustering methodology for the purpose of
effectively addressing the intricacies associated with depth map coding. We consider depth
map CU coding as a clustering problem and use the augmented ensemble clustering by
fast propagation of clustering similarity proposed in [4] to solve this problem. The texture
information and similarity function of the depth map CU are used to construct the base
clusters, and then the base clustering results are aggregated and unified by the consensus
function. Creating different clusters of CUs with the same or similar pixel points allows us
to quickly determine the different types of multiple CUs at the same time, which facilitates
the next step of CU partitioning. Our method effectively improves the coding efficiency of
VVC-based 3D video depth map intra-frame coding, shortens the coding time, and replaces
the complicated intra-frame coding calculation process.

The subsequent sections of this paper can be summarized as follows. Section 2
provides a comprehensive overview of recent advancements pertaining to the reduction
in complexity in both VVC and 3D-HEVC frameworks. Section 3 proposes a fast CU
partitioning algorithm and introduces the high-correlation feature. Section 4 describes the
combined experimental results. Section 5 concludes the paper.

2. Related Works
2.1. Status of H.266/VVC Research for 2D Video

In the two algorithms proposed in the literature [5], the initial stage involves conduct-
ing pruning aimed at filtering out redundant partitioning patterns through the utilization
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of an algorithm. Its primary objective is to efficiently identify and eliminate superfluous
patterns. The subsequent phase encompasses predictive termination, wherein a meticu-
lous selection process is employed to identify the most suitable model from the obtained
outcomes, ultimately facilitating an early conclusion of predictive partitioning. In the
literature [6], video content features are counted based on three aspects: CU pixel gradient,
block mean and block variance. These features are used in conjunction with CU depth
and prediction patterns of temporally and spatially adjacent CUs for fast CU segmentation
decisions and fast prediction. In the relevant literature [7], an adaptive approach is intro-
duced whereby an intra-frame prediction pattern adjacent to a neighboring coding unit
(CU) is leveraged to dynamically incorporate selection candidates into the rate-distortion
optimization (RDO) process. Similarly, another scholarly work [8] presents a hierarchical
convolutional neural network (CNN) architecture, serving as an alternative to the com-
putationally intensive brute force method employed in the search for RDCost. Within
the existing literature, a scholarly work [9] introduces an enhanced internal subdivision
algorithm specifically tailored for partitioning CUs into sub-CUs based on diverse direc-
tional considerations. This algorithm further facilitates the identification of the optimal
division pattern. A hierarchical CNN model incorporating early termination principles is
proposed in [10], specifically for the prediction of CU partitions pertaining to 64 × 64 CUs.
This model effectively bypasses the necessity for redundant partitions, thereby enhancing
the overall efficiency of the process. Ref. [11] employs deep convolutional networks to
extract spatiotemporal coding features by integrating reference features obtained from
diverse convolutional kernels. These fused features are instrumental in determining the
coding depth within a given frame. Notably, candidate partitioning patterns predicated on
probabilistic models and spatiotemporal coherence are strategically employed to discern
the most optimal encoding depth. The literature [12] determines the CU division direction
as well as binary and ternary divisions in advance based on the directional gradient, which
leads to a fast selection of CU division. In the literature [13], an early decision method is
proposed based on TT characteristics, which effectively reduces the complexity of TT. One
study [14] designed a fast algorithm based on a random forest classifier model and texture
region features. Another study [15] proposes a lightweight adjustable QTBT partitioning
scheme based on a machine learning approach using a random forest classifier to determine
the partitioning method of coded blocks.

2.2. Current Research Status and Dynamic Analysis of the Complexity of Three-Dimensional Video
Coding (3D-HEVC)

Ref. [16] proposed an algorithm for the early determination of motion and parallax
vectors. This algorithm employs a statistical analysis-based approach to adaptively reduce
the number of spatial and temporal motion vector candidates specifically for prediction
units characterized by merged patterns. By implementing this reduction strategy, the algo-
rithm effectively mitigates the complexity associated with texture view coding. Ref. [17]
proposed a rapid coding scheme, leveraging the inherent properties of video content to
expedite the compression process in 3D-HEVC. The algorithm capitalizes on the spatial
and temporal correlations within the video content to analyze the characteristics of the
CTUs. By leveraging these correlations, the algorithm selectively bypasses unnecessary
coding patterns, effectively reducing computational complexity while maintaining satis-
factory compression quality. In the pertinent literature [18], the early decision-making
process for CU sizes is approached as a clustering problem. Subsequently, three distinct
clustering models are devised specifically for CUs of sizes 64 × 64, 32 × 32, and 16 × 16,
with the aim of determining if further splitting is necessary at an early stage. Notably, a
similarity distance metric is introduced into the early CU size decision to ensure a balanced
consideration between time-saving and coding efficiency, thereby allowing users to make
informed choices. One study [19] proposes the use of effective homogeneity determination
to improve previously proposed depth map PU size decisions. Other research [20] is based
on a decision tree early skipping method for fixed-size CU. Another study [21] proposes an
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intercomponent tool that uses links to save runtime through the joint encoding of quadtrees.
A fast decision-making method based on decision trees for depth graph coding was pro-
posed in [22]. The method uses data mining and machine learning to associate encoder
contextual attributes and construct a set of decision trees. One study [23] introduces two
methods to reduce the complexity of 3D-HEVC when encoding blocks to be encoded, and
then goes on to form a hybrid complexity reduction scheme using a dual-mode prediction
method, motion information of the base texture view, and rate distortion cost information
of the encoded blocks. The method proposed in [24] can adaptively use the tree block
ground complexity classification to analyze the tree block encoding complexity model, thus
performing fast pattern size determination and adaptive motion search range. Another
study [25] applied depth modeling model 1 in depth map coding to save coding time.

3. Proposed Early CU Size Decision Algorithm

Traditionally, the decision-making process for coding unit sizes is tackled through
supervised machine learning techniques. Clustering, an unsupervised machine learning
approach, involves partitioning a dataset into one or multiple clusters based on shared
similarity characteristics among the data points. A CU of a certain size is divided into
different clusters and distinguished according to the CU in different clusters for fast coding.

3.1. Ensemble Clustering

When dealing with complex data structures, indistinct boundaries, aspherical distri-
butions, and high dimensionality, individual clustering algorithms often struggle to yield
optimal clustering results. Moreover, different algorithms applied to the same dataset
may produce varying clustering performances. Each clustering algorithm possesses its
own strengths and weaknesses, and no single algorithm can universally address all data
distributions and application scenarios. Selecting an appropriate clustering algorithm
for a given problem, particularly in the absence of prior knowledge, can be challenging.
Furthermore, even when employing a specific algorithm, determining the optimal param-
eters for the clustering task can prove arduous. Ensemble clustering algorithms provide
a compelling strategy by harnessing a consistency function to proficiently integrate mul-
tiple base clustering algorithms. This approach aims to achieve improved results with
enhanced robustness. The ensemble clustering algorithm has two phases. The first phase is
to generate a set of base clusters with differences so that the clustering of the dataset does
not appear homogeneous when there is diversity among the base cluster members. The
second phase is to use a combination strategy to improve the accuracy of the clustering
ensemble results.

Within ensemble clustering, the fundamental information lies in direct co-occurrence
relationships among objects. Fred and Jain [26] introduced the notion of a co-association
matrix to capture these relationships, representing the frequency of occurrences of two
objects from multiple basic clusters within the same cluster. However, the conventional
co-association matrix considers only direct co-occurrence relationships, overlooking the
inclusion of comprehensive information from indirect connections within the dataset. When
two objects are present within the same cluster in the basic clusters, they are deemed directly
connected. On the other hand, if two objects are situated in different clusters and these
clusters possess direct or indirect links to each other, the objects are considered indirectly
connected.

Most ensemble clustering algorithms study object-level ensemble information and
are unable to explore higher-level information in multiple base cluster ensembles. Multi-
scale indirect links in base clustering are usually ignored, which may negatively affect the
robustness of their consistent clustering performance. Addressing the need to enhance
consistency clustering performance by incorporating higher-level ensemble information
and integrating multi-scale direct and indirect connections, we have opted for an ensemble
clustering method that employs fast propagation of clustering similarity through random
walk. This approach serves as a solution for the early CU size decision problem. By lever-
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aging the ensemble clustering approach, we delve into the abundant information available
in the ensemble at the basic clustering level, utilizing multi-scale ensemble techniques
and mapping strategies to analyze clustered objects. This enables us to effectively and
efficiently tackle the aforementioned challenging problems. Karl Peason (1905) first intro-
duced the term “random walk” to create a mathematical model of random trajectories,
which is relevant to our daily life. For example, the diffusion process of colored liquid
drops in water, the propagation of gas molecules in the air, and the trajectory of molecules
from one place to another can be regarded as random walk models. Random wandering
represents a dynamic process that moves from one node to another with a certain transfer
probability each time it moves, with randomness and uncertainty. Since each time it moves
with a certain transfer probability, the wanderer keeps repeating the process and eventually
obtains a probability distribution. Based on the random wanderer model and improved
models, a major breakthrough has been made in solving the problems of node ordering,
clustering, classification, graph theory, and topological correlation, etc.

3.2. Feature Selection

The relationship between CU block size and its content is widely recognized, and it
is observed that depth maps often contain numerous flat regions comprising pixels with
similar or even identical values. As a result, the utilization of larger blocks in the depth map
is significantly more probable than the adoption of smaller blocks. Figure 2 shows the depth
map and CU division of the “GhostTownFly” video frame. We can see that the depth map
has a large number of areas at the bottom and a small number of areas at the top as smooth
areas, corresponding to a CU size of 64 × 64 at the corresponding position in Figure 2b,
and the division method is not used. Only the middle of the figure is in the edge position,
and the CU in the edge region in the corresponding Figure 2b continues to be divided;
the details are gradually highlighted. Therefore, using an exhaustive partition size search
method will generate a lot of coding time to check unnecessarily smaller CUs, which leads
to a large computational load. Therefore, it is necessary to terminate CU partitioning early.
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To enhance the performance of clustering analysis, it is crucial to devise a method
for discerning whether the present CU corresponds to a flat region, while also eliminating
irrelevant and redundant features. In this regard, we have opted to employ the Roberts
gradient sum as a feature. The Roberts operator, also referred to as the cross-differencing
algorithm, utilizes local differencing calculations to detect edge lines. The Roberts gradient
can be defined as follows:

∇x f = f (i, j)− f (i + 1, j + 1) (1)

∇y f = f (i, j + 1)− f (i + 1, j) (2)

R(i, j) = |∇x f |+
∣∣∇y f

∣∣ (3)

A small pixel gradient sum in the current CU indicates that the depth values in this
CU are almost the same, indicating that the pixel difference in this region is not large, so
this CU should be terminated early for division. The current CU gradient sum is defined as:

S =
H−1

∑
i=0

W−1

∑
j=0

R(i, j) (4)

The height and width of the current CU are denoted by H and W, respectively, while
R(i, j) represents the gradient value of the pixel at coordinates (i, j) within the current CU.

It is important to note that distinct thresholds are applied to different CU sizes, and
even for the same CU, varying quantization parameters (QPs) result in diverse content
details. Consequently, the gradient sum varies with different CU sizes and QPs.

3.3. Clustering for Early CU Size Decision

Ensemble clustering involves the integration of multiple base clusters to achieve a
more consistent and improved clustering outcome. Consider a dataset X = {x1, . . . , xn}
consisting of n objects, where xi represents the ith data object. Let Π = {π1, . . . , πm}
represent a set of M basic clusters derived from the dataset, with πm =

{
Cm

1 , . . . , Cm
nm
}

representing the mth cluster. For clarity of expression, we denote the set of all clusters as
C =

{
C1, . . . , CNC

}
, where Ci is the ith cluster

In CTU, the CU depth is divided into {0, 1, 2, 3, 4}. The optimal CU size in the coding
region can be its own size, i.e., the CU texture is smooth or simple enough not to need
further division, or it can be divided into smaller CUs, i.e., the CU texture is complex at the
edge position. We set up several different clustering models for 64 × 64, 32 × 32, 16 × 16,
and 8 × 8 coding regions for analysis. If the image pixels in the same-size CU are all very
similar, they can be considered as one cluster, and the CUs in this cluster do not need to
be further split. Instead, further division of the current CU is required to determine the
optimal CU size.

Formally, the Jaccard [27] coefficient between two sets, denoted as Cx and Cy, is
calculated as follows:

Jaccard
(
Cx, Cy

)
=

∣∣Cx ∩ Cy
∣∣∣∣Cx ∪ Cy
∣∣ (5)

In this graph, each cluster serves as a node, and the Jaccard coefficient is defined as
follows:

G = (V , ε) (6)

Here, V = C represents the set of nodes in graph G, while ε represents the set of edges.
The weights of the edges connecting two nodes are defined as follows:

exy = Jaccard
(
Cx, Cy

)
(7)
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Once the initial similarity graph is constructed, additional multi-scale information
is incorporated to augment the clustering similarity. To determine the probability of
transferring from one node to another by random walk, the transfer probability matrix P is
constructed:

Pxy =

{ exy
∑Ck 6=Cx exk

, i f x 6= y

0, i f x = y
(8)

The probability from node Cx to Cy, denoted as Pxy, is proportional to the edge
weights connecting them. By employing random walk trajectories with various step sizes,
the clustering similarity is further refined. Subsequently, a new similarity measure is
obtained for each pair of nodes by considering the similarity observed during the nodes’
random walk.

The new similarity matrix between all clusters is represented as follows:

Z =
{

zij
}

NC×NC
(9)

The cosine similarity is used here. The cosine similarity can be expressed in terms
of Zij.

In the context of ensemble clustering, the traditional co-association matrix utilizes
a data structure to represent object similarity. The pairwise relationship of the mth base
cluster can be represented by the connectivity matrix. The definition of this similarity is
as follows:

Am =
{

am
ij

}
N×N

(10)

am
ij =

{
1, i f Clsm(xi) = Clsm(xj

)
,

0, otherwise,
(11)

Clsm(xi) denotes the class cluster to which xi belongs in the base clustering member πm.

A =
1
M

M

∑
m=1

Am (12)

The above equation is the traditional covariance matrix of the whole system.
While the traditional covariance matrix captures the frequency of two objects ap-

pearing together in multiple base clusters, it treats each cluster as an independent entity.
Although it leverages object co-occurrence relationships to extract cluster information, this
approach limits the potential for enhancing object connectivity through the utilization of
rich information available for further refinement. For this purpose, we use the enhanced
connectivity matrix (ECA) matrix to extract similarities in clustering on multiple scales.

The ECA for each individual base cluster is constructed by utilizing the clustering
similarity matrix.

Bm =
{

bm
ij

}
N×N

(13)

bm
ij =

{
1, if Clsm(xi)= Clsm(xj

)
zuv, if Clsm(xi) 6= Clsm(xj

) (14)

By constructing the enhanced connectivity matrix for each basic cluster, the resulting
covariance matrix encompasses the entire system. The definitions are as follows:

B =
1
M

M

∑
m=1

Bm (15)

The ECA matrix can be used for any consistency function based on the concatenation
matrix.

For coded frames, we divide them into their corresponding datasets according to
64 × 64, 32 × 32, 16 × 16, and 8 × 8, for example, D64×64 = {n1, n2, . . . , nm}, which can



Electronics 2023, 12, 3098 8 of 13

be divided into two clusters by the above similarity metric process. One of the clusters
denotes no division of CU, which is denoted as Cn. The other cluster denotes division of
CU, which is denoted as Cs. Similarly, the other N × N CU is similar to the clustering
process. Typically, as the sample data approach the cluster center, the likelihood of being
assigned to a particular cluster increases. Figure 3 illustrates the flowchart of the algorithm.
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3.4. Consensus Functions

The proposed ensemble clustering framework utilizes the consensus function to derive
the final consistent clusters. Initialize the data as:

R(0) =
{

R(0)
1 , . . . , R(0)

n

}
(16)

where R(0)
i = {xi} denotes the ith initial region and the initial region set similarity matrix is

defined as:
S(0) =

{
s(0)ij

}
N×N

(17)

s(0)ij = bij (18)

Having obtained the initial set of regions and their respective similarity matrices, an
iterative process of region merging is initiated. Starting with an initial number of regions N,
after N − 1 iterations, all objects are merged into a root region. Here, we choose to perform
N − 2 iterations, iterate the initial number of regions N to the number of regions 2, cluster
all Cus of a certain size into two clustering results, and finally output CS and Cn.
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4. Experimental Results

To test the proposed method for intra-frame coding of VVC depth maps in 3D video,
we used VTM10.0 to test it. We used the commonly used Common Test Conditions file.
The dataset consists of eight test sequences, each encoded with different quantization
parameters. Simulations were conducted for each test sequence using both the three-view
case and random access configurations. The coding efficiency is evaluated by measuring
the Bjøntegaard delta bit rate (BDBR) of the synthetic view and the time saved during depth
map coding. The time savings for depth map coding (Ts) are calculated using the following
formula:

TS =
T0 − T1

T0
(19)

In the given context, “T0” represents the total encoding time of the original method,
while “T1” represents the total encoding time of the proposed method.

The experimental results are given in Table 1. These show that the algorithm saves
44.24% of time on average from the full-frame intra-configuration results, and the BDBR
increases only by 0.26%. The minimum time saving is 35.33% for the video sequence
“Kendo” and the maximum time saving is 51.58% for the video sequence “GTFly”. The
small amount of BDBR added kept the encoding performance largely unchanged, but
the encoding time was greatly reduced. In the case of random access configurations, the
algorithm demonstrates reduced coding time without significantly compromising RD
performance across all tested sequences. The proposed depth map intra-frame prediction
method effectively reduces unnecessary computational costs, leading to time savings in
video coding through the utilization of a more efficient prediction model.

Table 1. Experimental results of the proposed algorithm in the case of full intra-frame configuration
and random access configuration.

Sequence
All Intra Case Random Access Case

BDBR (%) TS (%) BDBR (%) TS (%)

Balloons 0.32 36.18 0.18 3.94
Kendo 0.48 35.33 0.07 3.82

Newspaper1 0.12 48.07 0.13 5.14
GTFly 0.15 51.58 0.04 6.07

PonznanHall2 0.35 50.01 0.08 5.76
PonznanStreet 0.36 49.74 0.33 6.75
UndoDancer 0.08 47.51 0.13 4.36

Shark 0.23 35.47 0.11 7.02
Average 0.26 44.24 0.13 5.36

Table 2 shows that the texture complexity presented by the intra-frame CU differs
for different depth map QPs, which in turn reflects the different reduction times of the
algorithm for their CU division.

Table 2. Reduction rate of coding time for different QPs.

Depth Map QPs
Overall Time Reduction

All Intra Case Random Access Case

34 36.59% 3.85%
39 37.80% 3.94%
42 42.47% 4.59%
45 51.01% 5.76%

As shown in Table 3, we compare the experimental results of the proposed method
with other related work schemes, e.g., fast decision-making for 3D-HEVC depth map coding
units using two-dimensional entropy and variance [28]. The proposed method achieved a
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greater reduction in encoding time than [28], the increments of BDBR were also significantly
lower than those in [28], with some advantages indicating better encoding performance
for the proposed algorithm compared to the method presented in [28]. The proposed
method exhibits superior time efficiency compared to [28] for depth map intra-frame
encoding [29]. Analysis of depth map tree block features using Bayesian decision rules and
correlation of neighboring tree blocks. Comparing the performance to the experimental
results in [29], it exhibits similar scaling time during encoding. However, the increment in
BDBR achieved by the proposed method is smaller than that reported in [29], rendering the
proposed algorithm more efficient for encoding. In [30], tensor features were extracted to
represent the uniformity of the CU, and then the extracted features were analyzed to find a
suitable threshold. Again, the time-saving rate and the increased BDBR in the results of the
proposed algorithm are better than the experimental results in [30].

Table 3. Comparison of coding performance with other related jobs.

Sequences
Yao [28] D [29] Bakkouri [30] Proposed

BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%)

Balloons 0.20 32.60 1.02 51.70 0.21 38.24 0.32 36.18
Kendo 1.00 36.50 1.09 52.20 0.31 37.54 0.48 35.33

Newspaper 0.90 24.40 1.21 49.80 0.55 35.01 0.12 48.07
GTFly 0.40 31.30 0.93 52.80 0.41 40.28 0.15 51.58

PonznanHall2 −1.70 51.10 0.65 57.10 0.21 35.92 0.35 50.01
PonznanStreet 0.30 32.90 0.85 53.40 0.25 35.01 0.36 49.74
UndoDancer 1.10 43.70 0.25 45.90 0.25 34.14 0.08 47.51

Shark 1.50 41.40 0.65 46.50 0.42 40.89 0.23 35.47
Average 0.46 36.74 0.83 51.2 0.33 37.13 0.26 44.24

Figure 4 visualizes the comparison with the experimental results in [28] using a single
video sequence as the basic unit and time saving as a metric. The proposed algorithm still
performs relatively well in terms of time saving with BDBR lower than [28]. The video
sequences “Newspaper” and “GTFly” have more obvious time-saving advantages, and
most of them also perform better among different kinds of video sequences.
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Figure 4. Comparison of the time-saving rate of the algorithm in this paper with that of the literature [28].

In Figure 5, the RD curves of the two video sequences and the time-saving curves
at different QPs are given. From the figure, we can see that the RD performance of the
algorithm in this paper is almost the same as that of VTM10.0, and the average time-saving
rate is also good. When encoding the same video sequence with different QPs, the larger
the QP of the video sequence is, the more obvious the time-saving effect is.
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5. Conclusions

We propose an ensemble clustering approach to make fast CU decisions for different
sizes of CUs, thus speeding up the rate distortion optimization cost process and partially
replacing the algorithm in the encoder, saving coding time and improving coding efficiency.
In the clustering process, we used the gradient sum to characterize the data, designed
different clustering models for different sizes of CUs, used the similarity measure to
measure whether the CUs had similar characteristics in the case of the same-size CU,
and finally integrated the clustering results through the consensus function to obtain the
final results of the division of CUs. On average, the proposed algorithm achieved a time
saving of 44.24%. Additionally, the Bjøntegaard delta bit rate (BDBR) for the synthetic view
showed a negligible increase of merely 0.26%.
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