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Abstract: With the rapid development of adversarial example technologies, the concept of adversarial
patches has been proposed, which can successfully transfer adversarial attacks to the real world
and fool intelligent object detection systems. However, the real-world environment is complex and
changeable, and the adversarial patch attack technology is susceptible to real-world factors, resulting
in a decrease in the success rate of attack. Existing adversarial-patch-generation algorithms have a
single direction of patch initialization and do not fully consider the impact of initial diversification
on its upper limit of adversarial patch attack. Therefore, this paper proposes an initial diversified
adversarial patch generation technology to improve the effect of adversarial patch attacks on the
underlying algorithms in the real world. The method uses YOLOv4 as the attack model, and the
experimental results show that the attack effect of the adversarial-patch-attack method proposed
in this paper is higher than the baseline 8.46%, and it also has a stronger attack effect and fewer
training rounds.

Keywords: object detection; YOLOv4; adversarial attack; adversarial patch; output diversification
initialization

1. Introduction

In recent years, with the rapid development of deep learning technology, deep learning
models represented by convolutional neural networks have been widely used in various
computer vision applications, such as image classification [1,2], object detection [3–5], face
recognition [6–8], object tracking [9–11], etc. As one of the basic tasks of computer vision,
the object detection task has achieved breakthroughs with the continuous development
of deep learning, and the detection method has changed from traditional manual setting
feature recognition [12,13] to automatic feature extraction based on neural networks, which
greatly improves the performance of object detection. At present, the mainstream object
detection model can be divided into two types according to its detection stage: one-stage
and two-stage detection models. The YOLO series model, represented by YOLOv4, is
a one-stage model; it realizes end-to-end work, and the positioning task is carried out
simultaneously with the regression task, which leads to a faster detection speed and is
suitable for real-time object detection tasks. The two-stage detection model [14,15] divides
the detection task into two stages; the model first identifies the possible target locations
to generate area suggestions and then classifies and identifies these area suggestions.
Compared with traditional detection systems, the detection model based on a deep neural
network shows good detection performance and detection speed.

The object detection model based on deep learning obtains excellent performance
brought by deep neural networks, but it also inherits the shortcomings of neural networks,
i.e., it is vulnerable to adversarial example attacks. Adversarial examples are samples that
can be made to obtain unexpected results (e.g., classification errors and failed pedestrian
detectors) by adding special perturbations that cannot be recognized by the human eye.
With the deepening of research in the field of image classification, researchers have shifted
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their eyes to more complex object detection tasks. The object detection system adopts a pre-
set prior frame to draw a bounding box at the target position to locate objects and identify
categories. The number of targets that need to be attacked is much larger than that of image
classification, so its attack is more complex than the image classification task. Xie [16]
extended the adversarial examples of image classification to object detection and proposed
a DAG method, which assigns adversarial labels to regions and optimizes the overall loss
function. Lu [7] proposed a stop-sign vanishing attack for videos and successfully attacked
the faster region-based convolutional neural network (Faster RCNN) method [15] using the
fast gradient sign method (FGSM) [17], which proved the effectiveness of object detection
adversarial attack. Although the adversarial example based on global perturbation can
successfully attack the object detection and recognition system, this attack method of
adding perturbation to the global image cannot be transferred to the physical world.

To obtain an attack adversarial example that can be successfully transferred to the
physical world, the concept of adversarial patch [18] was proposed. Li [19] attacked the
object detection system for the first time by adding patches to the image and achieved
certain results, and the adversarial patch well met the need of transferring adversarial
examples to physical world attacks. At present, combined with the actual mainstream
tasks, the research on adversarial patch attacks mainly focuses on three task areas: evading
face recognition systems, pedestrian detection systems, and automatic driving systems
that detect stop signs. Different from the single detection category of the facial recognition
system and the fixed stop sign mode in the autonomous driving system, Thys [20] believed
that it is more challenging to attack within a single category of ’people’ in the object
detection task and proposed an adversarial-patch-generation method to successfully evade
the detection of the YOLOv2 object detector. Based on this, the literature [21] presented a
printable adversarial T-shirt, and the above research further verified the effectiveness of
adversarial masks in the physical world. Hu et al. [22] further combined cutting techniques
to generate multi-angle detection-resistant T-shirts.

Although adversarial patches have been extensively studied in wearable and multi-
angle attacks, the existing adversarial patch generation methods adopt a single initialization
method and do not consider the initial diversification of adversarial patches, resulting in
the upper limit of adversarial patch attacks in the subsequent training process. Meanwhile,
most of the existing adversarial patch attack research is carried out on the YOLOv2 object
detector, but with the continuous development of detection technology, the YOLOv4
detector achieves better detection performance and is more widely used, which has a
more advanced network architecture and stronger detection performance than YOLOv2.
The original creator of YOLOv3 no longer updates the system after updating YOLOv3,
and since then, only Alexey’s improved YOLOv4 has been recognized. At present, the
YOLOv4 model is widely used in some specific places because of high accuracy. Therefore,
to generate an adversarial T-shirt with a stronger attack effect in the actual process, this
paper selects YOLOv4 as the attack model and proposes a diversified initial method based
on the existing classical adversarial-patch-generation algorithm to further improve the
avoidance effect of the adversarial patch on pedestrian detectors.

In summary, the main contributions of this paper are summarized as follows:

1. Based on the upper limit of attacks caused by single-adversarial-patch initialization,
this paper proposes an initial diversified-attack method, which is 8.46% higher than
the classical adversarial-patch-attack-effect method on the INRIA dataset.

2. Based on the idea of diversifying the initial direction of adversarial patches, the adver-
sarial example generation is faster than the original single-direction training, saving
an average of 300 training rounds.

2. Related Work

This section introduces the related work, which is divided into two aspects: object
detection model and adversarial patch technology. Firstly, the research background of the
YOLO series is provided, and the basic framework and the improved structure of the test
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model YOLOv4 model used in this paper are presented. Secondly, the relevant research
fields and research status of adversarial patch are presented, and the limitations of the
single initial diversification of existing adversarial patch methods are described.

2.1. Object Detector

YOLO is a single-stage detection model that redefines the detection task as a sin-
gle regression problem, thus enabling end-to-end detection directly from image pixels to
bounding box coordinates and class probabilities. Therefore, the YOLO detection model
is not used for two-stage detection models with a faster detection speed. YOLOv1 [23],
proposed by Joseph in 2016, divides the image into SS grids to detect the object in the
center of the real box. YOLOv2 [24] was optimized on YOLOv1 in 2017, the backbone
network was slightly adjusted, the fully convolutional network architecture was adopted,
and multi-scale training was introduced to improve the generalization ability and detection
effect of the network. However, YOLOv2 does not achieve good detection performance
for small targets, and the swarm detection effect is not satisfactory. Then, YOLOv3 [4] was
further optimized. It uses Darknet53 as the network backbone, adopts cross-scale feature
fusion, and selects the anchor size obtained by clustering on the MS COCO dataset. These
optimizations improve the detection performance of YOLOv3 for small targets, but its
recall is low, and the population detection performance is poor. Later, Alexey proposed
an improved version of YOLOv4 [3], and the main improvement is that the network struc-
ture adopts CSPDarknet53 as the backbone network, which solves the problem of large
computation in inference from the perspective of structural design, enhances the learning
ability of CNN, maintains light weight and reduces memory costs, and uses SPP layers to
ensure uniform dimensions for output. The PAN path aggregation network is adopted to
enhance from the bottom up, making it easier for low-level spatial information to propa-
gate to the top. Moreover, Mosaic data augmentation, Mish activation function, etc., are
exploited to enhance model robustness. Subsequently, different researchers proposed other
YOLO detection models based on this literature [5,25,26], and they paid more attention
to the detection of lightweight and industrial-specific tasks. YOLOv7 is a representative
lightweight detection model with excellent performance, and it will be widely studied.

In this paper, YOLOv4 is chosen as the test attack model because it has been widely
studied and has good performance; its structure is shown in Figure 1. When the YOLO
series model detects objects from an image, it first divides the image into grids of different
sizes, each grid being responsible for a different area. YOLOv4 object detection model
divides the image into three grids of different sizes to detect targets of different sizes,
and each grid is based on the preset priori box size, thereby generating three prior boxes
of different sizes as shown in Figure 2. For each prior box, the model directly outputs the
corresponding probability, position adjustment parameters, and class probability of the
object, such as the adjustment parameters of the prior box (x, y, w, h), the confidence score
con f , and the probability of the target category in the prior box (Pcls1, Pcls2, Pcls3. . . Pclsn).
Each grid point contains a total of 5 + n_classes-bit parameters, including 4-bit adjustment
parameters, 1 position reliability parameter, and the number of data categories n_classes.
Finally, the detection bounding boxes with the highest confidence are selected as the result
output by non-maximum suppression, and the final output detection bounding boxes in
red color in Figure 1 are obtained.
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Figure 1. YOLOv4 detection grid division diagram.

x, y, w, h , conf，P_cls1, P_cls2, P_cls3, …, P_clsn

Figure 2. YOLOv4 prior box output example.

2.2. Physical-World Object-Detection Adversarial Attack

In 2017, Brown first proposed the concept of adversarial patches and focused the attack
on a patch independent of the image, thus successfully misleading CNN classifiers [18].
Subsequently, researchers applied this idea to the object-detection adversarial-attack task
and carried out further research following its principles and characteristics.

Pedestrian detection is widely used in computer applications, such as vehicle-assisted
driving, motion analysis, etc. Ref. [20] is the first to propose an adversarial patch that gen-
erates an intra-class variation attack, enabling pedestrians to evade the YOLOv2 detector.
Based on this, Ref. [21] proposed a TPS non-rigid transformation and checkerboard map-
ping method to successfully print the generated adversarial patch on the T-shirt. In this way,
when people walk around in clothes, the twisted T-shirt can still evade the object detection
model. Ref. [27] added a frequency attention module to improve the attack effect of small-
and medium-sized patches, and the baseline method of the literature was adopted in the
attack algorithm. Later, researchers began to focus on generating more natural adversarial
patches after implementing pedestrian-detection attacks in the physical world, and Ref. [28]
proposed a universal physical camouflage attack for the wild. Ref. [29] designed physical
adversarial patches for object detectors by utilizing image manifolds learned on real-world
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images by pre-trained generative adversarial networks, and natural-looking adversarial
patches were generated by sampling optimal images from GANs. Ref. [30] also designed a
legal adversarial patch that looks more realistic to the naked eye, using animated images
as a starting point for patches, and this work proposed a new framework for a two-stage
training strategy to combat patches. Ref. [22] put forward the concept of adversarial texture,
and based on the adversarial T-shirt, a scalable generative attack (TC-EGA) method with
torus clipping was proposed to make AdvTexture have a repetitive structure. TC-EGA
can evade human detectors from different viewing angles, and it still uses the baseline
confidence attack algorithm as the basic attack algorithm.

Compared with the fixed-shape attack of autonomous driving stop signs and the
frontal attack in face recognition, the pedestrian detection task is more difficult due to the
variety of pedestrian postures and complex scenes. In recent years, with the deepening
of research, the naturalness and legitimacy of adversarial patches in the physical world
have been studied more deeply, bringing a series of innovations, such as multi-dimensional
angle confrontation tops, and T-shirts with adversarial animated images. Although the
current adversarial attacks are better in terms of the consideration and development of
physical factors, they all adopt a single initialization method based on Ref. [20], and use
random noise or grayscale images as the starting point for adversarial patch training,
without considering initial diversification. It can be seen from Ref. [31] that the diversity
of input space does not lead to the diversity of output space, and this paper believes
that a single initialization method limits the understanding space during the adversarial
patch generation process. Therefore, this paper proposes an initially diverse general
adversarial patch attack method, which aims to further improve the object-detection-attack
performance of the baseline method.

3. Improved Universal Adversarial-Patch-Diversity Initialization Attack Algorithm

In this section, a diverse and diversified adversarial patch generation method is
proposed for the problem of the singleness of the initialization direction in the traditional
adversarial-patch-generation process, which draws on the principle of output diversified
sampling (ODS) [31] to provide a more effective and diverse starting point for attacks.
This paper combines output diversification initialization (ODI), following the principle of
object detection to generate stronger adversarial patches to attack the object detector.

The following describes the generation principle of the object detection adversarial
patch: initialize the adversarial patch block, paste it at the target location, set the corre-
sponding attack loss function, and optimize the adversarial patch to make it aggressive by
the method based on gradient backpropagation, thereby generating an adversarial patch
that can evade the object detection model. Different from the existing adversarial patch
initialization method, this paper uses a diversified initial method instead of the existing
random initialization adversarial patch block.

The process is shown in Figure 3, and the details are shown below:

1. Initialize the adversarial patch. First, an n × n × 3 diversified patch is generated by
using the ODI algorithm, where n is the image size and 3 is the image channel.

2. Patch transformation. Performs a variety of random transformations, including
rotation, cropping, adding noise, and shading changes on the generated adversarial
patch to improve the robustness of adversarial patch training.

3. Paste the patch. Determine the target position in the image according to the dataset
label, and then place the converted adversarial patch in the center position of the
person in the graph for subsequent training.

4. Set the loss function. According to different attack tasks, set different loss functions,
including target category loss, target positioning loss, and target confidence level.

5. Enter the detection model. Construct an object detection model, and input the gener-
ated image data with adversarial patches into the detection model for detection and
localization classification.
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6. Gradient backpropagation. Using the Adam optimizer, perform iterative training to
update the data of the adversarial patch in the image through the backpropagation
algorithm until the training reaches the epoch round or loss convergence, and the
adversarial patch image is obtained.

Patch Inria Dataset

LOSS

DetectorPatch Transform Patch Applier

Rotate

Noise

Scale

Brightness

Data Gradient

YOLOV4

Object / Class 

probabilities

Bounding 

boxes

𝑳𝒐𝒃𝒋 = 𝒎𝒂𝒙(𝑷𝒐𝒃𝒋𝟏,𝑷𝒐𝒃𝒋𝟐, … , 𝑷𝒐𝒃𝒋𝒏) 

𝑳𝒄𝒍𝒔  = 𝒎𝒂𝒙 𝑷𝒄𝒍𝒔𝟏,  𝑷𝒄𝒍𝒔𝟐,… , 𝑷𝒄𝒍𝒔𝒏  

Random 

Initialization

ODI

Initialization

Figure 3. The overall design of the adversarial patch generation.

3.1. Analysis of the Principle of Attack Algorithm

The adversarial patch differs from the global perturbation attack category in the
original paper, and the object detector has a more complex task and network model.
However, in the process of generating adversarial patches, this paper argues that the
adversarial patches have the same characteristics, i.e., the diversity of random initialization
cannot be mapped to the diversity of the output space. To this end, this paper adopts
the output diversity method of multiple restarts to combat patch generation. Specifically,
the initialization diversity algorithm after the model output is designed as follows:

υODI =
5x
(
wT

d f (x)
)

‖ 5x
(
wT

d f (x)
)
‖2

(1)

where wd[−1, 1] is the initial diversification direction, sampling from the uniform distribu-
tion over [−1, 1], and f (x) is the classifier model output. Due to the complex diversity of
object detection tasks, the randomly generated wd from the uniform distribution of [−1, 1]
in the original paper cannot meet the requirements of the initial diversified functions of
the object detection task. According to the specific attack task and optimization target, this
paper reselects an appropriate wd. The specific reasons why the uniform distribution of
[−1, 1] cannot satisfy the task and how to obtain it are introduced in Section 3.2. The im-
proved attack algorithm diversity–universal adversarial patch (D-UAP) used in this paper
is shown in the following.

The Algorithm 1 uses a stochastic method to generate the initial adversarial patch and
applies it to the dataset after random transformation. Then, the formal training process
begins, which iterates by using the diversified initialization method, adds the corresponding
generated diversified direction at the model output, and takes the updated adversarial patch
as a new starting point; after the initialization is completed, the target model is attacked by
the original attack method, and finally, the attack patch after training is obtained. Due to
the randomness of the wd direction selection, using a single random may not necessarily
find an effective initialization direction. As shown in Figure 4, taking the spheroids as an
example, different selection cases of the initial diversification direction and the solution
space they fall into are observed, and the new direction can lead to the sub-optimal solution
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of the model. Therefore, this paper combines the multiple restart mechanism to make
multiple selections of random directions to find a better initialization direction.

Algorithm 1 D-UAP Algorithm

Input: the original image xorg, the object detector D, the patch transformation function
Trans f orm, the patch application function Applier, optimizer Adam, the D-UAP num-
ber of restarts restart, the diverse step size Nodi, the attack number of iterations s,
the learning rate lr, the diversity direction parameter wd.

Output: adversarial patch patchadv
1: Set wd∼ U(−a, b), patch0 = random()
2: for r in restart do
3: optimizer = Adam(patch0, lr)
4: for i in Nodi do
5: patchi = Trans f orm(patchi)
6: xi = Applier

(
xorg, patchi

)
7: vODI = vODI(xi, D, wd)
8: Updata patchi+1usingoptimizer, vODI
9: end for

10: for j in s do
11: patchj = Trans f orm

(
patchj

)
12: xj = Applier

(
xorg, patchj

)
13: Update patchj+1 using optimizer
14: patchadv = clip

(
patchj+1

)
15: end for
16: end for
17: return patchadv

Org

ODI（2-step）

Now Now
Org

ODI（2-step）
ODI（2-step）ODI（2-step）

Figure 4. Initial diversification direction example.

To determine the optimal initial number of diversified steps, this paper carries out
the ODI step size selection experiment. Let Nodi denote the diverse step size; according to
reference [31], this paper sets Nodi[2, 4, 6, 8, 16]. Meanwhile, the total training round is set
to 50, the number of restart is set to 100, the diversity of loss space changes is observed by
statistical means, and finally, the Nodi with the largest change in the loss space is selected
as the diversified initial step size used in this paper.

Taking the OBJ attack as an example, this paper conducts experiments to explore the
influence of Nodi step selection on the diversity of the loss space, thus obtaining the optimal
step selection.

Shown in Figure 5, loss_odi i is the loss space chart at the time when the step count is
i, and it can be observed from the first row that with the increase in the initial number of
diversified steps, the loss space diversity gradually increases, i.e., its distribution range is
increasingly extensive. The second line Loss_epoch 50 in Figure 5 corresponds to the loss
space change statistical chart after 50 rounds at the i moment. It can be observed that with
the increase in the initial diversification of steps, it will not continue to bring about the
diversification of the loss space. As shown in the Figure 5, when the initial number of
steps Nodi is 4, the statistical loss value distribution range is the largest, and the loss space
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diversification reaches the maximum. Therefore, this paper chooses the Nodi of four as the
initial diversification step in this paper.

loss_odi 2 loss_odi 4 loss_odi 8 loss_odi 16

Loss_epoch 50 Loss_epoch 50 Loss_epoch 50 Loss_epoch 50

Figure 5. The loss function distribution of different Nodi parameters and the corresponding 50 epochs.

Then, a parameter sensitivity analysis experiment is conducted to verify the influence
of different parameters on the attack effect, and the results are shown in Table 1.

Table 1. Sensitivity comparison chart.

Nodi Mean Maximum Minimum

2 51.47% 56.45% 47.27%

4 51.75% 55.83% 45.87%

8 53.06% 56.14% 47.90%

16 51.59% 55.20% 48.05%

Through experiments, it is proved that D-UAP is sensitive to the Nodi parameter,
the maximum difference between the values of different parameters can be 2%, and the
difference between the maximum and minimum values of the unified parameters is about
10%. This is because different initialization directions have different superposition effects on
attacks, and when choosing a good initialization direction, the attack effect of the optimized
target can be greatly improved. According to the above result, when Nodi is set to 4, it
has the best effect; under the comprehensive consideration of the calculation time, Nodi
is set to 4, which not only contributes to better results, but also helps to find a diversified
starting point.

According to the characteristics of the ontology and the expression of the quintuple
set, this section designs a security ontology for defense strategy recommendations and lays
an adaptable intelligence foundation for defense strategy selection. The security ontology
for early attack warnings provides a formalized expression of its knowledge and can be
exploited to perform reasoning and enforce security policies.

3.2. wd Parameter Selection

Due to the particularity of the object detection task, the use of the above output
diversified sampling method will simplify the attack, which is caused by the difference
between the principle of the object detection model and its image classification model.
The object detection model uses a preset prior box anchor for object detection. The prior
box refers to the preset box of different sizes and different aspect ratios on the image,
and the boxes of different sizes are set to obtain a larger intersection ratio so that there is a
higher probability of better matching detection frames. In this paper, k-means clustering
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is used to obtain the size of the prior box, in which there are a total of nine anchors of
different sizes and aspect ratios. The output of each layer of the object detection model
has four dimensions [batch_size, anchor_num(5 + nclasses), h, w], and the a priori box cor-
responds to (5 + nclasses) parameters. The first five bits are target position parameters,
where bits 0–4correspond to the four adjustment parameters of the target location coor-
dinates (tx, ty, tw, th), and the 5th bit is the confidence conf of the corresponding target
of the detection box; bits 5–85 represent the probability that the target belongs to each
category. Additionally, h and w correspond to the width and height of the mesh, and the
corresponding sizes of the object detection model used in this paper are 13 × 13, 26 × 26,
and 52 × 52, respectively.

Suppose that there is an image with a single-digit target number, and the number of
detection boxes output by the model is 10,647 as shown in Figure 2. That is, anchor_num×
∑3

i=0(hi × wi) = 3× (13× 13 + 26× 26 + 52× 52). However, according to the concept of
positive and negative samples of YOLOv4, only the prior box greater than the IOU threshold
is used as positive samples and the rest as negative samples. This shows the distribution
of positive and negative samples and their unevenness in object detection. It is known
that when an output is considered a negative sample, its output con f confidence position
is negative, i.e., under the normal model output, only a small number of con f is positive.
In this experiment, an image is tested to obtain negative samples of tens of thousands
of digits and positive samples within two digits. In this case, if wd still uses the value
obtained from the uniform distribution of [−1, 1]C, only a small number of output con f
will be negative, and a large number of output con f will be positive. Combined with the
object detection principle and the target location attack algorithm detloss = mean

(
maxpro

)
,

maxpro is the maximum confidence of the category “person”, the maximum confidence of
maxpro is always 1, and in the same way, detloss is always the same, i.e., the gradient update
is always unchanged. Therefore, if wd is not set correctly in this paper, the original wd can
be still used, and its function of initializing diversity is lost.

In this paper, the value of wd is reselected according to the positive and negative
sample ratio of the model, and the problem is corrected by redistributing the positive and
negative values in the wd. If the total number of samples output by the dataset is nsamples,
and the model detects that the number of positive samples is npositive, the proportion of
positive samples is rate =

npositive
nsamples

. The value of wd is selected from the uniform distribution

of [−rate,+1] as shown below.
According to the above Algorithm 2, the Rateoutput is calculated to be 0.004. Thus,

when the attack category is an object, the corresponding position of wd in this document
is obtained from the uniform distribution of [−0.004,+1]. When the attack category is cls,
it is a category attack, which has the same principle as image classification. In this case,
the corresponding position is obtained from the uniform distribution of [−1,+1]. When the
attack category is object∗class, wd is obtained from the uniform distribution of [−0.004,+1]
at the con f position, and from the uniform distribution of [−1,+1] at the class position.
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Algorithm 2 Adversarial attack method based on output diversification initialization

Input: model Model, dataset Dataset, number of prior bounding boxes per grid
anchor_num, target confidence con f

Output: positive samples rate Rateoutput
Set ratev = []

2: for image in Dataset do
output = Model(image)

4: for index in range (len(output)) do
for j in s2 do

6: Get the target confidence con f from the corresponding location in the model
output

npositive = ∑(con f > 0) . Get the total number of elements in the con f
array > 0

8: Get nall of the elements in the con f array
rate = npositive/nall

10: ratev.append(rate)
end for

12: Rateoutput = ∑ ratev/len(ratev)
end for

14: end for
return Rateoutput

3.3. The Loss Function Part of the D-UAP Method

To improve the physical utility of the adversarial patch, in the study on adversarial
glasses [32], the authors proposed NPS (non-printability-score) and total variation. Our
work follows in the footsteps of Thys [20] in 2019 and continues to use these two utility
loss functions.

Given that the computer RGB color space is P, the colors that printers and other
devices can copy and print are only a subset of the computer color collection. Therefore,
to print more robust adversarial patches, we need to make as many adversarial patches
as the printers can print. Previous studies defined the non-printability score NPS and set
30 RGB color combinations that can be printed as the optimization direction [32]. If the set
of colors that can be printed is C ⊂ P, then the NPS score for the unprintability of a pixel
p̂ is

NPS(P̂) = min
cprint∈C

∣∣P̂− cprint
∣∣ (2)

where cprint denotes a set of 30 printable colors in C, and p̂ denotes our RGB colors against
the patch. p̂ ∈ P, and when p̂ is closer to cprint ∈ C, the NPS score is smaller; in this case,
it is the most likely to print an adversarial patch. Therefore, non-printability is taken as one
of our optimization goals, and the non-printability loss function is as follows:

Ln ps = ∑
p̂∈Patch

NPS( p̂) (3)

where Patch is an adversarial patch, and p̂ is a pixel in the adversarial patch.
To improve printability, studies have shown that natural images are smooth and con-

sistent during capture, i.e., changes between pixels are smooth, and non-smooth adversarial
patches may not be attacked in practice. Therefore, to find the perturbation of smooth
consistency, the total amount of change in the image is set to Ltv, and the smoothing loss
function is set to ensure a smooth color transition [33]. Ltv is expressed as follows:

Ltv = ∑
i,j

√((
ri,j − ri+1,j

)2
+
(
ri,j − ri,j+1

))2
(4)
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where (i, j) is the pixel at the coordinates (i, j) in the adversarial patch. When the values
of neighboring pixels are similar, Ltv is smaller, and the adversarial image is smooth.
Therefore, to better implement attacks in the physical world, this paper also takes the
smoothness loss function as one of the optimization goals.

The attack target is shown in Figure 3. Let the object detection loss function be Ldet.
When the target is the object detection bounding box, Ldet = Lobj; when the target of the
attack is the target category, Ldet = Lcls; when the attack task is a combination of both,
Ldet = Lobj ∗ Lcls. The optimization goal in this paper is represented as follows:

L = α ∗ Ln ps + β ∗ Ltv + γ ∗ Ldet (5)

where α, β and γ are the weight coefficients.

4. Design of Experiments

This section provides the detailed configuration of the experiment in this paper. Firstly,
the experimental environment is introduced, mainly including software and hardware
settings, as well as the dataset used and the configuration parameters of the attack model.
Secondly, the details of the experiment are given, and the parameter selection in the specific
experimental process is described.

4.1. Experiment Configuration

The experiments are conducted on a server equipped with an Intel(R) Xeon(R) Gold
5218R CPU @ 2.10 GHz, 125.5 GB main memory, and an NVIDIA GeForce RTX 3090Ti
GPU with 24 GB video memory. The algorithm is implemented with the PyTorch deep
learning framework.

The dataset used in this study is the INRIA pedestrian dataset, which contains 614 pos-
itive samples in the training set and 1273 pedestrians; the test set contains 288 sheets and
589 pedestrians. The dataset shows that most of the people are in a standing position and
are taller than 100 pixels. This helps to place adversarial patches during training, so the
dataset is more suitable for this study than PASCAL VOC and MS COCO.

The YOLOv4 object detection model is taken as the attack object model. Referring
to the literature [19], the non-maximum suppression threshold is set to 0.4, and the IOU
threshold is set to 0.5. To obtain more samples for training, this paper sets the confidence
threshold to 0.25, and better samples are selected to participate in the training process.

4.2. Implementation Details

In this experiment, the diversified initial step size introduced in Section 3.1 is in-
vestigated, and according to the analysis of the loss function in Section 3.3, three sets of
experiments are set up, corresponding to category attacks, confidence attacks, and category
plus confidence attacks. In this paper, the number of restarts for each group is set to 10 times.
Since wd is randomly generated during each restart, 10 different adversarial patches are
obtained. In this experiment, the adversarial patch generation method [20] in the original
paper is taken for comparison, and the training epoch of both groups of experiments is set
to 600 rounds.

To verify that the initial diversification attack can generate countermeasures faster and
the generated countermeasures have stronger attack effects, the ODI step size in Section 3.1
is selected as the parameter of this experiment. The number of restarts of each group of
training is set to 10, 10 different initialization directions wd are randomly generated, and the
experimental result is compared with that of the original adversarial patch generation
method [20]. According to the analysis of the loss function in Section 3.3, the comparative
experiment is divided into three groups—category attacks, confidence attacks, and category
plus confidence attacks—in which the training epoch is uniformly set to 600 rounds.



Electronics 2023, 12, 3080 11 of 16

5. Experimental Results

In this paper, recall is adopted as the evaluation index. In the following table, YUAN
represents the original adversarial patch attack method [20], and ODI ATTACK represents
the diversified initial direction of the adversarial patch attack method proposed in this
paper. The detection recall of the original model is taken as the baseline, and according to
the attack target, three sets of comparative experiments are carried out.

As shown in Table 2, the adversarial patch generation method proposed in this pa-
per achieves better attack effects than the original method for the three attack targets,
among which the OBJ attack is the best, and the recall is reduced by 8.46%, compared with
the original adversarial patch attack.

Table 2. Comparison of the effects of the recall attack.

Approach Recall

Clean 100%

YUAN ODIATTACK

OBJ ∗ CLS 53.18% 48.83%

OBJ 52.41% 45.87%

CLS 93.15% 86.93%

Figure 6 shows the attack effect of the proposed method, where the horizontal images
correspond to the clean image, the detection effect of the clean image, and the detection
effect of the adversarial patch image generated by the superimposed method in this paper,
and the vertical images correspond to the image of one person to a large number of
people. According to the detection effect, when the adversarial patch proposed in this
paper is performed on the image, the YOLOv4 detector can detect the person in the image
well. However, when the adversarial patch is superimposed on the person, the detection
performance of the detector is greatly reduced, and only a few people can be detected by
the detector, which proves the effectiveness of the attack method proposed in this paper.

Clean

Clean

Detect

Attack

Detect

Figure 6. Comparison of detection results.

5.1. Comparative Analysis of Training Epoch

This section analyzes the training time overhead of the proposed adversarial patch
generation method and the original adversarial patch generation method, in which the TV
loss is the smoothness loss function, NPS loss is the non-printability loss function, the DET
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loss refers to the OBJ loss function in Section 3.3, and recall is the recall rate. These values
adopt normalized reality.

Figure 7 shows the loss graph of the classic adversarial patch generation method [20]
during the training process. It can be seen that the training loss converges at about
700 rounds, indicating that the original attack method needs more rounds to achieve
convergence to complete the training process.

Figure 7. The loss graph of the classic training method.

Figure 8 shows the loss training graph of the OBJ attack in this paper. It can be seen that
in the 10 groups from 0 to 9, except for the second group, which converges slowly, the rest
of the groups converge in 300 to 400 training rounds. Using the attack method proposed
in this paper, adversarial patches can converge in a short time, which greatly reduces the
complexity of the algorithm and the time overhead of generating adversarial patches.

One Two Three Four Five

Six Seven Eight Nine Ten

Figure 8. The training loss graph of the D-UAP method.

5.2. Physical World Attack Display

To verify the aggressiveness of the adversarial patch generated in this paper in a real
scenario, the generated adversarial patch is printed for the YOLOv4 detection model; two
sets of targets are selected for testing, and the test results are illustrated in Figure 9.

Figure 9. The detection graph of the attack in the physical world.

The above figure corresponds to normal object detection and object detection with
the adversarial patch, respectively. It can be seen that the chair can be correctly identified
in both images, and only the character carrying the adversarial patch successfully evades
the detection of the detector. Thus, the two sets of examples verify the effectiveness of the
proposed adversarial patch attack method in the real world.

Figure 10 shows the comparison of the person carrying and not carrying the adversarial
patch. It can be seen that when there is no adversarial patch, the target person standing
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normally and carrying a book can be correctly identified; after carrying the adversarial
patch, the detector fails to detect the presence of the target person.

Figure 10. Comparison graph of person detection in holding a book.

5.3. Complementary Experiments

The above analysis proves that the adversarial patch can evade the detector, but to
further illustrate the effectiveness of the adversarial example, this paper selects multiple
sets of patch pictures and pastes them to the target person in the same way for detection.
This demonstrates that the evasion effect of generating the adversarial patch on the detector
is not caused by the occlusion of the patch block but by the perturbation generated by
the specific generation on the adversarial patch. As shown in Figure 11, random noise,
a cartoon image, a flower image, and two adversarial patches generated by the YOLOv2
model are taken as test patches.

（1）Noise patch （2）Cartoon patch （3）Flower patches （4）YOLOv2-1 （5）YOLOv2-2

Figure 11. Test the patches.

Taking the above images as a control experiment, this paper applies these patches to
the same image at the same time, takes multiple images as examples, adds different patches
to the example images, inputs them into the model for detection, and then investigates the
detection effect of the detector on these images. The following figure shows the detection
effect of YOLOv4 on images with different patches.

It can be seen from Figure 12 that the use of random noise countermeasure patches and
cartoon images cannot achieve the aggressiveness of the adversarial example generated
in this section to the detection model, which proves the particularity of the adversarial
example. Although individual images such as the third row and third column of images in
the obscuration of the flower patch can make the model fail to correctly identify the target,
this situation is rarer than the object detection adversarial example. Unlike other specific
pictures, the adversarial example can decrease the performance of the detection model.

In this section, the random adversarial patch comparison experiment is added, and re-
call is still selected as an evaluation index, taking the OBJ attack as an example, and the test
results are as follows:

As can be seen in Table 3, the model’s detection performance of the dataset is relatively
degraded after adding noise and other network pictures, but the overall detection rate
is good, and most of the targets can be identified. In addition, the recall values of the
two adversarial patches trained on the YOLOv2 model on YOLOv4 show that the object
detection adversarial examples have a certain degree of mobility to the detection model,
and compared with other random patterns, the carefully trained adversarial examples still
have a greater impact on the detection model than the random patches.



Electronics 2023, 12, 3080 14 of 16

Figure 12. Detection effect with patch.

Table 3. Compare to the patch to detect recall.

Patch Recall

Clean 100%

Noise 89.89%

Cartoon 88.18%

Flower 88.33%

YOLOv2-1 74.02%

YOLOv2-2 82.27%

OURS 45.87%

6. Conclusions

This paper proposes an initial diversified generation method for generating adversarial
patches, which reconsiders the impact of the adversarial initialization direction on its
training results based on the traditional adversarial patch generation mechanism. Aiming
at pedestrian detection attacks, the statistics-based initial diversified step count Nodi is
combined with restart training, and the wd random direction is combined with simultaneous
training of the adversarial patch with multiple different starting points.

In this way, the adversarial patch jumps out of the limited solution space and obtains
a better solution. Finally, the effectiveness of the proposed method is proved by experimen-
tally showing that the adversarial patch trained from a new starting point has a larger logist
space and stronger aggression than that trained from the same starting point. By using the
diverse adversarial patch training methods proposed in this paper, combined with existing
physical clothing simulation technology, it is possible to obtain better adversarial T-shirts
than the existing methods, so pedestrians can better avoid pedestrian detectors.
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