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Abstract: The direction-of-arrival (DOA) estimation of wideband signals, based on sparse signal
reconstruction, has recently been proposed, owing to its unique high-resolution performance. As a
typical tool of sparse signal reconstruction, sparse Bayesian learning (SBL) enhances little sparsity
in most works, leading to a non-robust local fitting. To significantly enhance sparsity, we proposed
a novel hierarchical Bayesian prior framework, and deduced a novel iterative approach. It was
discovered that the iterative approach had a lower computational complexity than the majority of
current state-of-the-art algorithms. Besides, the proposed approach achieves a high angular estimation
accuracy and sparsity performance, by utilizing the joint sparsity of the multiple measurement vector
(MMV) models. Moreover, the approach stabilizes the estimated values between different frequencies
or snapshots, so as to obtain a flat spatial spectrum. Extensive simulation results are presented, to
demonstrate the superior performance of our method.

Keywords: direction-of-arrival; sparse Bayesian learning; hierarchical Bayesian prior; sparse recovery

1. Introduction

As a popular research focus in array-signal processing, DOA estimation has been
developed rapidly, and applied widely in military and civilian fields, such as radar, sonar,
wireless detection, mobile communication, biomedicine, and so on [1]. Substantially, the
majority of the current research is based on narrowband signals, while the study for
wideband-signal DOA estimation plays an important role, as the common assumption that
signals coming from different directions occupy the same frequency band does not always
hold up in practice [2,3]. Considering the performance of various algorithms, wideband-
signal DOA estimation shows significant advantages in its resolution, estimation accuracy,
and robustness to correlated sources.

Traditional DOA estimation methods for wideband signals can be roughly divided into
two categories: the incoherent signal subspace methods (ISSMs) [4,5], and the coherent sig-
nal subspace methods (CSSMs) [6–8]. The common point of ISSMs and CSSMs is converting
no-spectrum-aliasing wideband signals to narrowband signals for subsequent processing,
while their most obvious difference is that CSSMs can handle coherent sources with a lower
operational complexity than ISSMs. It is worth noting that there are two methods based on
orthogonal testing: one is the test of orthogonality of projected subspaces (TOPS), and the
other is the test of orthogonality of frequency subspaces (TOFS). Because the TOPS and
TOFS operate within different principles, their approaches differ in DOA estimation. They
all share the ability to determine the ideal reference frequency point, and strike a balance
between the computational complexity and signal-to noise-ratio (SNR). However, all the
above algorithms have to face the following basic limitations: (1) pre-estimation procedures
are necessary for accurate angular estimation, (2) a high level of snapshot accumulation
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is intractable and inevitable, (3) a priori, the number of sources is required, and (4) their
performance is constrained by the SNR.

Numerous approaches have been gradually developed to manage the aforementioned
limitations owing to compressed sensing and sparse recovery [9,10]. Compared with con-
ventional approaches, they demonstrate better performance in terms of locating coherent
sources, depending less on a high SNR, and operating with higher efficiency. According
to the current research, the approaches relying on sparse representation can be roughly
classified into three categories. The first category is based on basis pursuit, e.g., matching
pursuit (MP) [11] and orthogonal matching pursuit (OMP) [12]; the second category is
based on convex optimization [13–16]; and the final category is based on SBL [17,18]. It has
been proven that SBL outperforms both the basis pursuit and convex optimization in sparse
recovery, leading to a more accurate angular estimation [19]. However, most SBL-like
methods adopt the single measurement vector (SMV) model [18] or the generalized SMV
model [17], resulting in a straightforward decoupling between various snapshots. In fact, a
reasonable use of temporal correlations could improve the estimation accuracy. Addition-
ally, it has been mentioned that the MMV models are superior to the SMV models in terms
of sparse performance, e.g., stronger joint sparsity and better sparse recovery [20,21].

In light of this, a novel method, based on the block-sparse Bayesian model for
wideband-signal DOA estimation, is presented in this paper. The approach converts
the MMV model into the block-sparse model, in order to fully retain the advantages of the
MMV model and sufficiently utilize temporal correlations. As a counterpart to SBL-like
methods in the wideband field, or the MMV model, our proposed approach enables the
simultaneous utilization of the joint sparsity between snapshots and frequencies using
tactful algorithm design. Moreover, compared with the conventional Gaussian prior, the
employed prior with hierarchical structure can significantly improve the sparsity-inducing
performance of the SBL.

The rest of this work is organized as follows. In Section 2, the signal model is in-
troduced. In Section 3, the likelihood and prior are presented for variational Bayesian
inference. Further, the computational complexity of various approaches is compared. The
performance of our algorithm is evaluated in Section 4, and the conclusions are drawn in
Section 5. For clarity, the notations used in this paper are given in Table 1.

Table 1. List of notations.

Symbol Description

N (µ, Σ) Real Gaussian distribution with mean µ and covariance Σ

CN (µ, Σ) Complex Gaussian distribution with mean µ and covariance Σ

⊗ Kronecker product

� Hadamard product

◦ Khatri–Rao product

IN N × N identity matrix

const Constant

i.i.d Independent and identically distributed

p(a|b) Conditional probability density distribution of variable a with respect to variable b

p(a; b) Probability density distribution of variable a with respect to variable b

q(·) Probability density distribution

〈·〉q(·) Expectation with respect to q(·)

diag(·) Transforming matrix into vector diagonally or transforming vector into matrix
diagonally

‖·‖p,q Obtain the lq norm after finding the lp norm for each row of a matrix
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2. Signal Model

Assume K uncorrelated far-field wideband sources, whose DOA set is θ = {θ1, . . . , θK},
are received by a linear array with N sensors. Without loss of generality, the received data
can be modeled as:

x(t) = As(t) + n(t) (1)

where A = [a(θ1), . . . , a(θK)] ∈ CN×K is the array manifold matrix with its k-th entry as
a(θk) = [exp(−jv1), . . . exp(−jvN)]

T, vn = 2π f dn sin(θk)/c, n = 1, . . . , N, dn is the location
of the n-th sensor relative to the reference one, c is the velocity of light, s(t) = [s1(t), . . . , sK(t)]

T

and n(t) = [n1(t), . . . , nN(t)]
T are the signal vector of K sources, and the additive white

Gaussian noise (AWGN) vector at time t, respectively. The time-domain data can be converted
to the frequency domain by a filter bank or the discrete Fourier transform, expressed as:

x( f j) = A( f j)s( f j) + n( f j) (2)

where f j illustrates that the wideband signals are separated into J sub-bands, and the
individual center frequency is f j, j = 1, . . . , J.

In order to guarantee the data independence of the same sub-band between different
snapshots, the total observation time has to satisfy T � 1/(BL), where B is the bandwidth,
and L is the number of snapshots. If the condition holds, the frequency-domain model of
wideband array signals could equivalently be treated as the time-domain model of narrow-
band array signals. After matched filter and snapshot accumulation, (2) is changed into:

Xj = AjSj + Nj (3)

where Aj = A( f j), Sj ∈ CK×L is the complex amplitude matrix for L snapshots at the j-th
frequency point, and Nj ∈ CN×L is the noise matrix at the j-th frequency point.

To let the model be available for sparse-recovery methods, (3) needs to be converted
to the following form by sparse representation, expressed as:

Xj =
¯
AjPj + Nj (4)

where
¯
Aj = [aj(θ1), . . . , aj(θM)] ∈ CN×M is the extended manifold matrix, θm ∈

{
θ

M
m=1

}
is yielded by discrete sampling, and Pj ∈ CM×L is the solution matrix with every row
representing a potential source.

Therefore, the challenge is to accomplish sparse recovery so as to obtain Pj from (4).
According to [22], (4) can be rewritten as:

yj = Φjpj + nj (5)

where yj = vec(Xj
T) ∈ CNL×1, Φj =

¯
Aj ⊗ IL ∈ CNL×ML, pj = vec(Pj

T) ∈ CML×1, and
nj = vec(Nj

T) ∈ CNL×1. Equation (5) is a block-sparse model, since pj is segmentally sparse
(i.e., many segments only contain zeros). In this model, we only care about the locations of
nonzero elements, rather than the concrete values, since different pj theoretically indicates
the same location of sources. Therefore, different pj can be unified as p. Considering all the
frequency bins, we can obtain:

y = Ψp +
¯
n (6)

where
¯
y = [yT

1 , . . . , yT
J ]

T ∈ CNLJ×1, Ψ = [ΦT
1 , . . . , ΦT

J ]
T ∈ CNLJ×ML, and

¯
n =

[nT
1 , . . . , nT

J ]
T ∈ CNLJ×1.
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3. Proposed Approach
3.1. Bayesian Model

It is required, and crucial, to build an appropriate Bayesian model for SBL. In this
paper, priors with the hierarchy structure are imposed on hidden variables, to further
enhance sparsity. As for the observed variable y, the likelihood is:

p(y|p; δ) ∼ CN (Ψp, δ−1INLJ) (7)

Impose Gaussian distribution prior to the hidden variable p, such that:

p(p;γ) ∼ CN (0, Σ) (8)

where γ = [γ−1
1

, . . . , γ−1
M ]

T
, and Σ = diag(γ)⊗ IL ∈ RML×1. Since inverse gamma distri-

bution is conjugate to Gaussian distribution, the gamma distribution prior is adopted for
each element of γ, expressed as:

p(γ; a, b) =
M

∏
m=1

ba

Γ(a)
γa−1

m e−bγm (9)

where Γ(a) =
∫ ∞

0 xa−1 exp(−x)dx, a is the shape parameter, and b is the scale parameter.
Similarly, assume δ obeys the gamma distribution, which yields:

p(δ; c, d) =
cd

Γ(c)
δc−1e−dδ (10)

where c and d are the corresponding shape and scale parameters, respectively. The directed
acyclic graph for representing the Bayesian model is shown in Figure 1.
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3.2. Variational Bayesian Inference

For the purpose of deriving the iterative algorithm of the SBL, Bayesian inference is
adopted. Unfortunately, the closed-form solution for posterior cannot be directly obtained
using Bayesian inference. However, the approximate solution can be obtained through
variational Bayesian inference [22]. The posterior is factorized as:

p(p,γ, δ|y; a, b, c, d) ≈ q(p,γ, δ) = q(p)q(γ)q(δ) (11)

where q(p), q(γ), and q(δ) are separable marginal distributions of p, γ, and δ. Each of their
logarithmic forms can be solved by the others. As to ln q(p), it satisfies

ln q(p) = 〈ln p(y|p, δ)p(p;γ)〉q(γ)q(δ) + const (12)

In the light of (7), (8), and (12), q(p) can be solved to obey the Gaussian distribution,
with the mean and variance as:

µp = 〈δ〉ΣpΨHy (13)
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Σp = (〈δ〉ΨHΨ + 〈Σ〉−1)
−1

(14)

As usual, NJ < M holds when dense sampling is applied for high-precision DOA
estimation, so (13) and (14) could be equivalently transformed into the following formulae
for a lower computational complexity:

µp = 〈Σ〉ΨH(〈δ〉−1INLJ + Ψ〈Σ〉ΨH)
−1

y (15)

Σp = 〈Σ〉 − 〈Σ〉ΨH(〈δ〉−1INLJ + Ψ〈Σ〉ΨH)
−1

Ψ〈Σ〉 (16)

Likewise, q(γ) satisfies

ln q(γ) = 〈ln p(p;γ)p(γ; a, b)〉q(p)q(δ) + const (17)

Utilizing (8), (9), and (17), q(γ) is identified as a gamma distribution, whose shape
parameter,m− th scale parameter, and mean are:

a = a +
1
2

(18)

bm = b +
1
2

〈
pH

mpm

〉
= b +

1
2
µH

pm
(IL + diag(diag(Σpm

)))µpm
(19)

〈γm〉 =
a

bm
(20)

where pm and µpm
∈ CL×1 are the m− th entry of p = [pT

1 , . . . , pT
M]

T and µp = [µT
p1

, . . . ,µT
pM

]
T,

m = 1, 2, . . . , M, Σpm
= Σp([(m− 1)L+ 1 : mL], [(m− 1)L+ 1 : mL]) ∈ CL×L is the sub-matrix

of Σp.
Similarly, q(δ) satisfies

ln q(δ) = 〈ln p(y|p, δ)p(δ; c, d)〉q(p)q(γ) + const (21)

With (7), (10), and (21), q(δ) can also be solved as a gamma distribution, and its shape
parameter c, scale parameter d, and mean are:

c = c +
NLJ

2
(22)

d = d +
1
2

〈
(y−Ψp)H(y−Ψp)

〉
= d +

1
2

yHy− real(µH
p ΨHy) +

1
2

〈
pHΨHΨp

〉
(23)

〈δ〉 = c
d

(24)

For solving the final term of (23), ΨHΨ needs to be divided into two parts; i.e.,
(ΨHΨ)Λ = diag(diag(ΨHΨ)), and (ΨHΨ)¯

Λ
= ΨHΨ− diag(diag(ΨHΨ)). Therefore, (23)

can be rewritten as:

d = d +
1
2

yHy− real(µH
p ΨHy) +

1
2

∥∥∥∥(ΨHΨ)¯
Λ
� (µH

p µp)

∥∥∥∥
1,1

+
1
2

∥∥∥(ΨHΨ)Λ � (µH
p µp + Σp)

∥∥∥
1,1

(25)

So far, the preparation of the proposed iterative algorithm has been finished. With the
help of (15), (16), (20), and (24), it is easy to construct the iterative algorithm, in which the
specific steps are as follows:

(1) Initialization. Set the first iterative number k = 0, a = b = c = d = 10−6 (ensure

uninformative distribution), and p(0) = (ΨHΨ)
−1

ΨHy. Preset error tolerance ε and
maximal iterative number kmax.
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(2) Repetition. Input p(0), ε and kmax.

While (
∥∥∥(p(k+1) − p(k))/p(k)

∥∥∥
2
> ε or k < kmax) do:

{Compute µp and Σp according to (15) and (16), respectively;
Compute 〈Σ〉 and 〈δ〉 according to (20) and (24), respectively;
Update k = k + 1;
Regard γ as p(k).}

End while
(3) Output. Obtain final p(k) and calculate the corresponding DOA.

3.3. Computational Complexity

In terms of the number of complex multiplications, as (16) dominates the computa-
tional complexity, the complexity of the proposed iterative algorithm can be expressed
as O(MN2L3 J2). When dense sampling is adopted, O(MN2L3 J2) is less than O(N2M2).
The computational complexities of W-SpSF [15], W-SBL [16], l1-SVD [14], and JLZA [13]
are respectively O(J3M3), O(JM3), O(K3M3), and O(M3 + NM2 + LNM). Generally, our
algorithm achieves minimum computational complexity, because M� N, L, J, K holds in
most cases.

4. Numerical Simulation

In this section, the superior performance of our proposed approach is verified using
five simulations, with ISSM [4], W-SpSF [15], W-SBL [16], l1-SVD [14], and JLZA [13] com-
pared. Root mean square error (RMSE) is used to evaluate different methods, defined as:

RMSE =

√√√√ 1
McK

Mc

∑
mc=1

K

∑
k=1

(θ̂mc ,k − θk)

2

(26)

where Mc is the number of Monte Carlo trials, θ̂mc ,k is the estimated angle of the k-th source
in the mc-th trial, mc = 1, . . . , Mc, and k = 1, . . . , K.

Here, MATLAB 2020a is used to run all the algorithms, and the platform is a ThinkSta-
tion with 512 GB RAM and 2.70 GHz CPU. If not otherwise stated, the simulation conditions
are: K = 3 uncorrelated sources, number of sensors N = 8, central frequency f0 = 400 Hz,
bandwidth BW = 200 Hz, J = 5, Mc = 300, grid interval 1◦, and number of grids M = 180.

Simulation 1 tested the angular resolution of various algorithms. The simulation
conditions were: a random DOA set {−5◦, 35◦, 60◦}, SNR 20 dB (as similar results could be
obtained at other SNR values, only one SNR value was considered here), and number of
snapshots T = 20. As shown in Figure 2, the estimated values of the proposed approach and
the ISSM were the most precise. Note that our proposed approach achieved smoother peak
values, expressed low fluctuation with respect to the frequency, and showed a better joint
sparsity performance than the ISSM. The results can be explained by the fact that SBL is able
to converge at sparse solutions in spite of different conditions, and the proposed approach
has the ability to enhance sparsity more, and stabilize the estimated values of DOA among
different frequencies. To summarize, the proposed method retains the advantages of SBL,
and shows a better estimation performance than ordinary SBL-like methods.

Simulation 2 examined the estimation accuracy of various algorithms. The simulation
was conducted with a random DOA set {−5.5◦, 35.1◦, 60.2◦}. In Figures 3 and 4, different
T and SNR were adopted, to depict optimum or undesirable experimental conditions. It
can be seen that the proposed approach performed the best across the whole range of
SNR values and the numbers of snapshots. Among these algorithms, only the proposed
approach could maintain moderate stability no matter the specific frequencies of degrees.
Furthermore, the proposed approach achieved more distinct advantages when undesirable
conditions were adopted. These results undoubtedly confirm that our proposed approach
inherits the estimation-accuracy advantage of Bayesian compressed sensing, and further
prove the superiority of the hierarchical structure in enhancing sparsity.
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Simulation 3 tested the RMSE in relation to the sampling interval (also referred to
as the grid interval). The simulation conditions were: a randomly selected DOA set
{−30.75◦, 6.47◦, 44.82◦}, SNR 20/−10 dB, and number of snapshots 5/20. From Figure 5,
it is clear that the RMSEs of all algorithms declined when coarse grids were adopted, while
the proposed method still evidently outperformed others. This indicates that coarse grids
had less effect on the proposed approach than on others, as the convergence performance
of SBL was robust to the grid interval. Moreover, the superiority of the proposed approach
tended to strengthen even more when the SNR was low, just like in Simulation 2. Therefore,
when signal-processing conditions are undesirable or inadequate, or when the sampling
interval is coarse, it is preferable to adopt our proposed approach.
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Simulation 4 focused on the ability to detect more sources. The simulation conditions
were: DOA sets with unknown sources randomly chosen from [−90◦, 90◦], SNR 20/−10 dB,
and the number of snapshots 10/30 (the number of snapshots was increased to allow ISSM
and l1-SVD to work normally). It can be seen from Figure 6 that the proposed method
maintained the highest estimation precision across the whole range of numbers of sources,
which confirms that the proposed approach has the potential to detect more sources.

Simulation 5 tests the dependence on the number of sensors of various algorithms. The
simulation conditions were: a random DOA set {−30.75◦, 6.47◦, 44.82◦}, SNR 20/−10 dB,
and the number of snapshots 5/20. The results shown in Figure 7 support three conclusions:
(1) the RMSE performance of the proposed approach was better than the other competitors,
(2) the proposed approach could easily handle underdetermined DOA estimation problems,
especially when the underdetermined degree was large, and (3) for the purpose of obtaining
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accurate DOA estimated values with less antennas, the proposed approach would be a
practicable selection in reality.
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5. Conclusions

In this paper, we further extended the application of sparse Bayesian learning for DOA
estimation based on wideband signals and the MMV model. The main contributions are: the
hierarchical Bayesian prior framework is designed to enhance sparsity, the corresponding
iterative process is derived, and the whole method is applied to solve underdetermined
DOA estimation problems. In some ways, our proposed method substantially carries
forward the benefits of sparse Bayesian learning, and leads to a more excellent estimation
performance and sparse recovery capability. The simulation results were presented to prove
the superior elements of our method, such as the sparsity enhancement, high estimation
accuracy, stable estimated values, and strong adaptability.
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