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Abstract: Robotic grasping in cluttered environments is a fundamental and challenging task in
robotics research. The ability to autonomously grasp objects in cluttered scenes is crucial for robots
to perform complex tasks in real-world scenarios. Conventional grasping is based on the known
object model in a structured environment, but the adaptability of unknown objects and complicated
situations is constrained. In this paper, we present a robotic grasp architecture of attention-based
deep reinforcement learning. To prevent the loss of local information, the prominent characteristics of
input images are automatically extracted using a full convolutional network. In contrast to previous
model-based and data-driven methods, the reward is remodeled in an effort to address the sparse
rewards. The experimental results show that our method can double the learning speed in grasping a
series of randomly placed objects. In real-word experiments, the grasping success rate of the robot
platform reaches 90.4%, which outperforms several baselines.

Keywords: deep reinforcement learning; attention mechanism; reward remodeling; learning and

adaptation; dexterous manipulation

1. Introduction

Robot grasping, or the capacity for object manipulation, is a key skill required for
robot contact with the physical world. While robotic grasping has come a long way, the
challenges intensify when dealing with cluttered environments where multiple objects
are present. In clutter, objects can be densely packed, occluded by other objects, or have
varying orientations and positions. These variables add complexity, which conventional
grasp planning techniques find difficult to manage. The difficulties presented by ambigu-
ous object postures and probable collisions must be addressed in order to ensure robust
grasp operation under clutter. Traditional grasp planning approaches often struggle in
cluttered environments due to their reliance on explicit models or heuristics that may not
generalize well. Robots can acquire grasping rules directly from interactions by using a
deep reinforcement learning approach, which enables them to adapt and overcome the
difficulties of cluttered environments.

Currently, grasping flexibly in the continuous motion space for robots in a complicated
environment is difficult. The robot’s performance will be hampered by the crowded objects
in an unstructured environment. The following three factors are crucial to robot grasping
operations: (1) How can an unstructured or complicated environment be perceived in an
autonomous and high-precision manner? (2) How can the generalization performance
be improved? (3) How may new operational abilities be acquired at a lower cost and
with less training data? It has been demonstrated that deep reinforcement learning is
capable of solving the complex control issues of the robot arm in an efficient manner [1,2].
Nevertheless, in reinforcement learning, the robot is not informed about which actions to
take but instead needs to determine through iterative experimentation which actions will
yield the maximum reward by trial and error. The majority of the time, these actions not
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only affect immediate rewards but also impact the subsequent action, thus influencing all
future rewards. When training a real robot arm with reinforcement learning algorithms,
it will suffer from issues such as a low sample efficiency and long learning cycles [34].
Self-supervised learning methods could reduce manual inputs and improve data efficiency
for many objects and scenarios [5]. As a result, its implementation on real robot platforms
is quite challenging.

Due to the high sample complexity, the direct application of deep reinforcement
learning for manipulator control is frequently limited to fairly straightforward tasks [6].
Additionally, reinforcement learning still struggles with sparse rewards, and when the
task and action dimension increase, it becomes harder to learn non-zero rewards during
learning and exploration. We propose a method called CBAM-Dueling DON, which
combines the attention mechanism with DQN for grasping invisible objects in order to
overcome these difficulties. This method enables the virtual to real conversion and exhibits
some adaptability in dynamic environments.

This paper presents a comprehensive framework that tackles the challenge of achieving
robust grasp operations in cluttered environments for multi-objective robotic tasks using
deep reinforcement learning. Our proposed approach aims to overcome the drawbacks of
earlier studies by incorporating robustness, adaptability, and multi-objective considerations
within the deep RL framework. By simultaneously optimizing grasp success rates, the
efficiency, and other relevant objectives, our framework enables the robot to learn policies
that exhibit an improved performance and generalize effectively to cluttered scenarios.
Additionally, we conduct a comparative analysis against several baselines to evaluate the
effectiveness of our approach. We run actual robot testing to confirm the effectiveness of our
strategy and show how it generalizes to unknown objects (see Figure 1). The experimental
results confirm the practicality and generalization capabilities of our approach in grasping
objects in diverse and cluttered environments.

Figure 1. Our robot is able to grasp unknown objects with precise perception, perform decision
making at a high rate of speed and reduced training time and receive remarkable results. Our
experimental setup consists of (1) a cooperative robot, (2) a depth camera, (3) a manipulator with a
two-finger gripper, and (4) a manipulation platform of various unknown objects.

In summary, the main contributions of this paper are as follows:

(1) To enable the robot to actively observe the surroundings, an attention-based active
exploration dueling DON method is presented.

(2) The experiment results demonstrate that the system has improved the grasping
efficiency in a real chaotic environment because it fully incorporates the attention
mechanism and reinforcement learning algorithm.
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(3) We reduce the training time while significantly improving the results: after 10,000 iter-
ations training for 25 h, the optimal grasping success rate is 90.4%.

(4) The low sample efficiency and sparse reward issues have been resolved, and the
modified method can double the learning speed.

The rest of the paper is organized as follows. Briefly, the related work will be presented
in Section 2. We will next go into great depth on the proposed approach in Section 3.
Section 4 presents the experimental results, and finally, Section 5 concludes this work.

2. Related Work

Robotic grasping in cluttered environments is a challenging problem that has garnered
significant attention in the robotics community. In order to tackle this issue, researchers have
investigated a number of strategies using both analytical and learning-based methods [7-9].
These methods for graspable objects are time consuming and impractical for real-time
implementation. Similar to iterative neural networks, RL is a process of running agents
through a series of state-action pairs. It extracts information from data by sampling and
combines the Markov decision process (MDP) with a large number of state-action pairs.
The complex probability distribution model of the reward is associated with it.

Analytical methods often rely on geometric reasoning and physics-based models
to plan grasps. These methods provide workable grasp configurations by taking into
account elements like the object shape, contact locations, and hand kinematics. These
approaches, however, have difficulty in cluttered contexts because of occlusions, ambiguous
item positions, and the incapability to take into account dynamic environments. On the
other hand, learning-based systems use data-driven methodologies to learn grasp policies.
Supervised learning methods utilize labeled training data to predict grasp configurations
from visual or tactile inputs.

Reinforcement learning (RL) has demonstrated remarkable success in training robots to
perform complex tasks, including robotic grasping. Robots can learn policies by interacting
with their surroundings and receiving feedback in the form of rewards or penalties based
on task performance using RL-based techniques. Mokhtar et al. [10] presented a deep
reinforcement learning approach to learn grasping and pushing policies for manipulating
a goal object in highly cluttered environments to address the problem of present objects
preventing the grasp action. A dual reinforcement learning model technique allowed
the robot to handle complex scenarios with excellent resilience and grasping success
rates. However, due to numerous grasping attempts, the method suffers from a relatively
slow speed.

To address the challenges of cluttered environments, researchers have looked into var-
ious methods for reinforcement-learning-based grasping. Some studies have incorporated
depth information into the state representation to enable better perception of objects in
clutter. For instance, Duan et al. [11] proposed an end-to-end, multi-task semantic grasping
convolutional neural network (MSG-ConvNet) which enables the robot to select an optimal
grasping area in an active perception way through simply reasoning on the multi-modal
information output by the proposed model. Self-supervised learning for suction grasp-
ing in a congested environment was examined in another work [12]. It made the robotic
picking system learn picking skills from scratch, but this work only considered cylinders.
It is exciting to combine Resnet with the U-net structure, a unique convolutional neural
network (CNN) framework, to forecast the picking region without recognition or a pose
estimate [13]. The authors trained the network end to end with online examples, which
took a lot of time due to the variety of poses, types of stacks, and complex backgrounds
in bin picking situations. However, the methods in [11-13] suffer from a very poor speed
because of the repeated gripping attempts.

Additionally, researchers have investigated the use of reinforcement learning for
multi-objective robotic tasks [14-16]. Agents can optimize several objectives by learning a
set of trade-off policies using multi-objective reinforcement learning (MORL) algorithms.
A method is to consider the states of all the targets so that the pushing action can expand
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the grasping space of all targets as much as possible to achieve the minimum total number
of pushing and grasping actions, which in turn increases the effectiveness of the entire
system for multi-objective robotic tasks [17]. Many of these methods make the assumption
that the scene is adequately scattered, with objects well isolated. However, depending
exclusively on grasp motions is insufficient when dealing with dense clutter where objects
are packed closely together.

Overall, robot grasping is mainly focused on model-based [18-20] and data-driven [21-23]
methods. Many learning-based approaches have tried to overcome the problem of grasping
objects from a cluster of multiple objects [24-26]. Traditional analytical methods rely
on 3D models of known objects in order to identify stable force closures for grasping.
Nonetheless, it might frequently be difficult to find accurate models for unique objects. In
order to improve the efficiency, Azizzadenesheli et al. [27] presented a unique RL algorithm
that blends model-free and model-based approaches. Related to our work, Stephen et al.
enhanced the performance of exploration with efficient learning on environments with
sparse rewards [28]. In this paper, we proposed a model-free self-supervised learning
method for robot grasping in cluttered environments. Instead of employing ResNet and
a feasible grasping set, for feature extraction, we adopt a different strategy and use a
Densenet network [29]. Our work is based on a framework of an attention-based dueling
DQN in combination with a full convolutional network. The self-supervised learning
enables our method to achieve excellent grasp success rates even without an object model.

3. Approach

In order to identify the answer to the MDP, which is a policy that maps the present
state (s¢) to an action (a;) that maximizes the sum of expected rewards, we trained the
robot using attention-based dueling deep reinforcement learning (Q-learning). We restrict
our procedure to a discrete action space to increase the sampling efficiency because of the
enormous action space and sparse rewards.

3.1. Problem Formulation

Our suggested methodology aims to provide a robot with robust grasp operations
in cluttered environments while taking several objectives into account. Specifically, we
will train a deep reinforcement learning (RL) agent to learn grasping policies that optimize
the grasp success rates and efficiency. In order to accomplish this, we formulate the
issue as a Markov decision process, in which the robot interacts with the environment
and makes decisions based on the observed states in order to maximize its anticipated
cumulative rewards.

3.2. Prioritized Experience Replay

Prioritizing the experience replay is combined with strengthening the experience
replay mechanism. How to judge whether a sample is valuable, or to cause a greater TD
error (temporal difference error), is the key to the prioritized experience replay mechanism.
The sample value increases with the size of the estimate to the target value error. If the TD
deviation at sample i is defined as o}, the following is true for the sampling probability:

c
C: = ,-
Y Cin

Each sample TD error is represented by C; during calculations, and j is used to modify
the significance of the TD error. The TD error value is utilized immediately when j is 1.
When j is less than 1, the influence of samples with a high TD error can be reduced, while
the influence of samples with a low TD error can be increased. There are often two different
definition methods of C;: the proportion of priority C; = |6;| + € and the priority-based
sorting method C; = 1/rank(i), where rank(i) is given by ordering |6;].

M
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The sample is drawn with unequal probability when the probability distribution of
the priority playback is used. Since the distributions of the sample and the action value
function are not identical, the model update is biased. The important sampling weight w is
used to correct this deviation, and the corresponding formula is:

where N represents the number of samples stored in the replay buffer and  represents
the degree of correction. Add a weighted w, in front of each learned sample to make the
update unbiased.

3.3. Reward Remodeling

When the allowable error between the end-effector position of the manipulator and
the target position reaches a certain value, the manipulator will get a higher reward value,
such as 10. In this process, when the target is not reached, each step will only get a small
reward, such as —0.01. According to Equation (3), the judgment of the reward is related to
the adaptive size of the target. Its form can be expressed as:

101X, — X7 < ple)
ry = 3
={oo " A et ®

Nevertheless, because there are so few target rewards, it is difficult to sufficiently train
the learning policy. We changed the rewards and adjusted the intermediate rewards when
the end-effector and target point were separated by a specific distance. The setup of reward
is as follows: . .

oy~ X7 — X~ XT|
1%, — XT]

4)

where r; must be stabilized in [—0.08, 0.08] since it represents the reward determined by
reward modification at step t in Formula (4). The stability of training will be impacted if
the intermediate reward is too substantial.

3.4. Network

Drawing the attention mechanism into the visual network to build the attention
network can elevate the object perception. Our attention architecture (CBAMNet) is a
convolutional block attention module and is mainly based on the deep residual network
(DenseNet-121). The network includes a convolutional layer and four attention blocks.
The spatial attention (SA) mechanism and channel attention (CA) mechanism are used for
residual concatenation in the attention blocks. One generates the channel attention map,
which can effectively draw attention to the global information. The other focuses on the
spatial feature maps of the attention space and target space, respectively. The CA and SA
are independent of each other and are combined in sequence to enhance attention to the
position and feature information of the objects in the workspace. The output features are
merged and input into two action networks, and then the visualization maps of the shifting
and grasping action are generated. The pixel-wise prediction value Q and probability of the
action are obtained by using the greedy strategy. The purpose of self-training is to achieve
a better target value:

Qiy1(st,ar) = Req1(st,8141) + ymaxaQ(s¢1,a;0141) ®)

where Q;1 is the predicted value of the executed action, Ry, 1 (s, a¢) is the reward value
obtained after executing action a;, 6y, is the network parameter at time ¢t + 1, and the
maximum predicted value Q is derived from selecting the optimal action.

The value function shows how much the agent conducts behavior « in state s, whereas
the Q function in the deep Q network shows how much the agent performs behavior in state
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s. Prioritized experience replay is introduced to improve the decision-making process. The
advantage function shows how much better a robot performs behavior a. The adversarial
network DQN considers the Q network to be divided into two parts. The first part is only
related to the state s and has nothing to do with the specific action a. This part is called
the value function and is denoted as V (s, w, «). The second part is related to state s and
action a. Its symbol is A(s,a, w, B) and it is known as the advantage function. The final Q
function can then be rewritten as follows:

Q(s,a,w,a, B) = V(s,w,a) + A(s,a,w, B) (6)

where w is the network parameter, « is the network parameter of the unique part of the
value function, and f is the network parameter of the unique part of the advantage function.

In the network architecture (see Figure 2), we propose an estimated Q value more
precisely and use the advantage function to determine whether the currently selected
activity receives a higher reward value than other behaviors. The efficiency and execution
time can be increased by removing unimportant experience sequences using the priority
sorting method.
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Figure 2. Overview. To construct height maps, the visual 3D data captured by a statically mounted
RGB-D camera are orthographically projected. The height maps are then input into the FCN after be-
ing rotated by 16 orientations. The attention mechanism is utilized to raise the target’s expressiveness,
extract the workspace features, and produce the target affordance map after the action network. The
dense pixel-level map predicted by the full convolutional network has several alternative locations
where the grasp can be executed at a given angle.

4. Experiments

Usually, there are multiple objects presented in the actual grasping scene, which brings
significant difficulties to object grasping. We carried out model training in the simulation
environment to lessen the loss of the robot. The trained model would then be transferred
to the actual robot arm. We verified how to improve the grasping success rate in real-word
experiments.

4.1. Experimental Setup

We used a simulated six-DOF robot arm (UR5) and a two-finger parallel gripper
(RobotIQ 2F-85) with an adjustable range of 0-85 mm to train the model. The performance
of our proposed method was evaluated in various scenes in a simulation. The v-rep3.6
simulation platform, which is based on bullet 2.8, was used for all experiments. An Intel
RealSense D435 depth camera was placed at the end effector.

4.2. Training

In the simulated environment, we conducted extensive experiments to evaluate the
performance of the trained grasping policies. We varied the clutter densities, object config-
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urations, and task requirements to assess the robustness and adaptability of the policies.
In the simulation environment, multiple objects are randomly generated, and their states
are uncertain per episode. There are adhesion and stacking cases of the objects. The shift-
ing action is used as the grasping operation to create a better space and finally succeed
in grasping.

The primary CBAM-Dueling DON was trained with 10,000 grasp attempts. Multi-
ple objects were placed in both random and challenging arrangements in a workspace
(I m x 1 m) in training. We executed 10 runs for each object per episode. The durations
for grasp attempts were around 9 s, resulting in an overall training time of 25 h. The
exploration rate discount was set as 0.99. The momentum coefficient in this experiment was
set as 0.95 and the network parameters were updated using stochastic gradient descent. To
avoid a bad algorithm training effect caused by insufficient sample data, the training was
initiated when the number of sequence samples stored in the replay buffer reached 5000 and
the maximum replay buffer capacity was set as 580,000. For verifying the model in the
subsequent replay, a mini-batch sample (32) was randomly chosen from the replay buffer.
Each layer was followed by ReLU, batch normalization, and dropout (between 0.2 and 0.4).
The Adam optimizer was employed for training, and its learning rate was 1074,

Table 1 displays the detailed training parameters.

Table 1. Parameter settings.

Parameter Value
Learning rate 0.0004
Momentum coefficient 0.95
Exploration rate (start) 0.01
Exploration rate discount 0.99
Discount factor 0.9
Replay buffer capacity 580,000
Mini batch 64
Max episode 10,000
Optimizer Adam

We directly trained the model simulation on 10 objects and unknown objects were
grasped during evaluation. For various object tests, we placed them randomly in the
workspace. In addition, we created 30 different scenes for DQN [26], A3C [2], CNN [30],
and our method to make 10 grasping attempts. The grasp success rates are presented in
Figure 3. To our surprise, exhaustive experimental results indicate that our grasping method
achieves higher success rates than DQN [28], A3C [31], and CNN [32] for a wide variety of
objects in clutter. Interestingly, when we only trained robot grasping for 10,000 episodes
(see Figure 3), it yielded the strongest overall performance.

We also evaluated the task completion time, which measures the time taken by the
robot to complete a specific robotic task involving grasping objects in the cluttered scene.
The trained grasp policies demonstrated faster task completion times compared to baseline
methods. This improvement can be attributed to the efficient exploration and exploitation
capabilities of the RL agent, which enabled it to identify and execute successful grasps
more quickly. The integration of multi-objective optimization further contributed to task
efficiency by finding a balance between grasp success rates and other relevant objectives.



Electronics 2023, 12, 3065

8of 11

08 Y

0.6

Grasping success rate
=
|
.
I~ A
=y
A
=
VAR

——DQN ——CNN]
—— A3C Ours
0.0 I I
0 2000 4000 6000 8000 10,000

Number of training steps
Figure 3. Training curve comparison for various approaches.

4.3. Real-World Experiments

Our real experiments consisted of a ROBOTIQ-85 gripper on a FLEXIV rizon4 robot
arm. An Intel RealSense D435 camera captured RGB-D images at a resolution of 1280 x 720.
The camera was attached to the end-effector, affording a good visual coverage of the
graspable objects. In each grasp attempt, our network received the visual signals from the
depth camera mounted on the robot end-effector (shown in Figure 4). We contrast our
approaches with the approaches described in [31-33] for grasping the unknown objects,
which performed better than other baselines in our simulation studies.

Unknown objects

Approach object execute grasping action Success grasp
Figure 4. The invisible object in a cluttered environment is either a toy or a novel object never seen

in training.

We executed three experiments (10 items, 20 items, and 30 items) to empty the objects
in the workspace for further analysis. According to Table 2, we can see that our system
achieves around 90.4% average grasping success with 511 grasp attempts, much higher
than 3DCNN (85%). Our method is easily generalized to handle grasping manipulation
for invisible objects in clutter. In particular, while our method has never been trained on
these novel objects (30 items), it is able to achieve a grasping success rate of 87.2%. We
address multi-object grasping tasks, attention mechanisms for exact feature extraction,
and sparse rewards by remodeling the reward. This decreases the number of randomly
predicted grasps in the background. Overall, the grasping success rate in real experiments
is generally lower than that in simulation. We attribute this mostly to the fact that clutter
and a variety of objects are present.
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Table 2. Quantitative results considering the grasp success rate on the test object.

Average Success Rate/Grasping Success Rate of Emptying Objects

Auth Total Grasps .
uthors P Time per Item 10 Items 20 Items 30 Items
Coordinator [33] 509 85% (17.3 s) 94.5% 81% 79.5%
3DCNN [31] 471 87% (12.7 s) 92.5% 89.5% 79%
UCB [32] 523 82% (15.8 s) 89% 83% 75%
Ours 511 90.4% (8.9 s) 96% 88% 87.2%

4.4. Experimental Validation

To validate the effectiveness of the proposed methodology, we performed exten-
sive experiments in both the simulated environment and with the physical robot plat-
form. The experiments are designed to evaluate the grasp success rates, grasp success
rates of object emptying in different scenes, and task completion times per item. The
performance was evaluated with three metrics: (1) the average % grasp efficiency for
i success ful - numbers

ins getion  numbers
Yo successful numbers
n(total numbers)
total time
number of successful objects
grasping if the robot grasps all the objects within the threshold of action numbers or not
before exceeding the threshold. For all of these metrics, the higher the better.

In the simulated environment, we conducted several experiments with varying clutter
densities, object configurations, and task requirements. These experiments allowed us to
assess the robustness of the trained grasp policies under different conditions. We compared
the performance of our methodology with baseline methods, such as traditional grasp plan-
ning algorithms or handcrafted heuristics, to demonstrate the superiority of the proposed
approach. For the real-world experiments, we transferred the trained grasp policies from
the simulation to the physical robot platform. This transfer involves adapting the policies
to the specific characteristics and constraints of the physical robot. The evaluation metrics
were computed, and the performance of the trained grasp policies was compared to that of
the baseline methods in the real-world setting.

Overall, the experimental setup encompasses both the simulated environment and
the physical robot platform, enabling a comprehensive evaluation of the proposed method-
ology’s performance in both settings. It demonstrates the effectiveness, robustness, and
generalization capabilities of the proposed methodology in real-world scenarios.

all test runs, defined as , (2) the success rate of object empty-

ing, defined as , and (3) the grasping time per item, defined as

. The environment will be reset for the next epoch of

5. Discussion

The results obtained from the experiments highlight the effectiveness and robustness
of the proposed methodology for robust grasp operation in cluttered environments using
deep reinforcement learning. By integrating perception modules, the RL agent could
leverage an accurate grasp ability assessment, leading to significantly improved grasp
success rates compared to the baseline methods. The perception modules played a crucial
role in providing the necessary information for object detection in both simulated and
real-world experiments. The task completion times achieved by the trained grasp policies
demonstrated efficiency and expedience. The RL agent’s exploration and exploitation
capabilities enabled it to quickly execute successful grasps, contributing to faster task
completion. The multi-objective optimization framework further facilitated task efficiency
by finding a suitable trade-off between grasp success rates and other objectives.

It is worth noting that while the trained grasp policies exhibited a strong performance,
there are still limitations and challenges that need to be addressed. Many robotic grasping
tasks require the use of perception information, but designing effective features can be
difficult and time consuming, especially when working with RGB-D data. In future work,
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our approach can be extended to a broader range of such problems. For instance, the
perception modules may encounter difficulties in accurately perceiving highly occluded or
visually ambiguous objects. Additionally, the grasp policies may be sensitive to variations
in object properties, such as shape, texture, or weight. Further research and improvements
in perception and grasp planning algorithms can address these challenges and enhance the
overall performance of the methodology.

6. Conclusions

In this paper, we present a framework for a self-supervised robot grasping task in
cluttered scenes. The results obtained from the extensive experiments in both simulated and
real-world settings demonstrate the effectiveness, robustness, efficiency, and transferability
of the proposed methodology for robust grasp operations in cluttered environments using
deep reinforcement learning. The task success percentage for the real robot is 90.4%, which
is significantly higher than that of the baselines. The attention-based dueling DQN approach
can be accurately transferred to the real world and even generalized to unknown items.
The sparse reward problem is successfully solved by the proposed method, which also
increases the learning efficiency and grasping success rate. Future research will investigate
how the proposed system model can be used to handle a robotic manipulator with more
than two links and utilize simulation-based methodology to effectively learn and even
generalize unidentified objects.
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