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Abstract: This article proposes a new method that can guarantee strong privacy while minimizing
information loss in transactional data composed of a set of each attribute value in a relational database,
which is not generally well-known structured data. The proposed scheme adopts the same top-down
partitioning algorithm as the existing k-anonymity model, using local generalization to optimize
safety and CPU execution time. At the same time, the information loss rate, which is a disadvantage
of the existing local generalization, is further improved by reallocating transactions through an
additional bottom-up tree search process after the partitioning process. Our scheme shows a very fast
processing time compared to the HgHs algorithm using generalization and deletion techniques. In
terms of information loss, our scheme shows much better performance than any schemes proposed
so far, such as the existing local generalization or HgHs algorithm. In order to evaluate the efficiency
of our algorithm, the experiment compared its performance with the existing local generalization
and the HgHs algorithm, in terms of both execution time and information loss rate. As a result
of the experiment, for example, when k is 5 in k-anonymity for the dataset BMS-WebView-2, the
execution time of our scheme is up to 255 times faster than the HgHs algorithm, and with regard to
the information loss rate, our method showed a maximum rate of 62.37 times lower than the local
generalization algorithm.

Keywords: anonymization; transaction data; set value; de-identification; personal information

1. Introduction

This study set out to deal with the anonymization issue of semi-structured transaction
data. Many researchers have proposed solutions to the issue [1]. In 2008, Manolis Terrovitis
of Nikos Mamoulis [2–4] observed that when an attacker had partial knowledge about the
subsets of items purchased by an individual, the direct disclosure of Database D would
make public the identity of a person related to a certain transaction. For instance, Bob
purchased a set of items including coffee, bread, brie cheese, diapers, milk, tea, scissors, and
light bulbs at a supermarket on a certain day. Bob’s neighbor Jim was on the same bus as him
and saw some of his items (e.g., brie cheese, scissors, and light bulbs) in the shopping bag.
Bob would not want Jim to find out the rest of the items he purchased. If the supermarket
decided to make public the transaction information with only one transaction including
brie cheese, scissors, and light bulbs, Jim could immediately infer that this transaction was
made by Bob and find out the entire content of his shopping bag. A proposed solution
to this issue was called km-anonymity (Global Generalization). When the attacker has
maximum knowledge of the maximum number of items ‘m’ in a certain transaction (in a
set of transaction records), the attacker will be prevented from distinguishing the number
of transaction sets and transactions ‘k’ in Database D. Likewise, Database D, for the set of
items under ‘m’, should include minimum ‘k’ number of transactions, including the set. In
this example, Jim cannot distinguish Bob’s transaction in the minimum five transaction
sets in D that has 53-anonymity. This definition of anonymity emphasizes the fact that the
attacker can identify a person based on some of the sensitive set values about which the
attacker has prior knowledge of in the set value data. In some cases, however, it would be
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impossible for the attacker to determine in advance the threshold of the number of items in
transactions of which he or she has prior knowledge. In such a case, it is impossible to select
a safe value for m itself. Another example is when certain transactions can be excluded that
are not connected to an individual based on some items of a set. The attacker, for instance,
may have knowledge of certain items purchased only by people 65 years or older and
other items purchased only by people living in a certain area. In such a case, km-anonymity
cannot protect individuals from attacks. Puri et al. [5] used a bottom-up strategy based
on global generalization to further strengthen km-anonymity. Vartika et al. [6] proposed
a (k, m, t)-anonymity algorithm to effectively prevent skewness attacks and disclosure of
identity and attributes on transactions. This algorithm clusters k records of combinations of
m items. Then, it was constructed by adding a threshold value t for the distance between
the distributions of sensitive attributes within the cluster. Andrew et al. [7] proposed a
greedy heuristic protection method against an attack, in which elected representatives
in communication with data owners and collectors cooperate and collude, based on the
above clustering.

Y. Xu et al. [8,9] proposed the (h, k, p)-consistency as a more specific privacy criterion
to anonymize set value data. The (h, k, p)-consistency guarantees that a database containing
insensitive p item combinations includes a minimum k number of transactions, and that a
maximum h% of transactions include some sensitive items. In other words, this approach
models the attacker’s prior knowledge of the parameter p and provides the flexibility of
anonymization. km-anonymity concerns special cases of h = 100% and p = m, but this
method has the problem of high rates of information loss by employing suppression tech-
nology for all the items whose distribution is relatively small, in order to reinforce safety.
The next chapter offers examples of such cases. In addition, this model is based on the
assumption that it cannot be directly applied to issues not based on the assumption because
there are categories of quasi-identifiers and sensitive information. Cao et al. [10] proposed
a ρ-uncertainty model to provide privacy protection from attribute disclosure as opposed
to (h, k, p)-consistency. The ρ-uncertainty model limits the likelihood that an individual
correlates with a sensitive item that is less than a threshold ρ. Related anonymization tech-
niques include the global generalization-based algorithm and suppression-based algorithm
in [10], partial suppression through divide and conquer proposed by Jia et al. [11], and the
personalized ρm- and (ε, σ)-ρm-uncertainty models [12] have also been proposed.

Yeye He and Jeffrey F. Naughton [13] proposed the k-anonymity technique—or the
“Local Generalization” technique—to solve the issues raised in [2,4,8,9] above. Based on
the “Local Recording” technique defined by the anonymization categorization proposed
by [14], this technique provides a definition that k-anonymity will be satisfied if each
transaction is the same as a minimum k − 1 number of other transactions. Unlike km-
anonymity, which only protects personal privacy when the attackers have knowledge of
items under the number of m, k-anonymity requires no limits to the number of items that
the attacker may have knowledge of in the absence of the parameter m. In general, a
lower m of km-anonymity inevitably means weaker privacy provided by km-anonymity.
k-anonymity, however, guarantees privacy more strongly than km-anonymity. While km-
anonymity takes a bottom-up approach, k-anonymity uses a top-down greedy partitioning
(tree separation) algorithm and, thus, takes much less time to perform CPU functions than
the existing techniques [2–4,8,9]. Since k-anonymity takes a top-down partition approach,
it has the weakness of huge information loss by applying the same generalization to
the domains partitioned under the generalization tree structure of each transaction item,
especially the items of unique values. Junqiang Liu and Ke Wang [15] pointed out this
disadvantage of k-anonymity and proposed a new technique called the HgHs (Heuristic
generalization with Heuristic suppression) algorithm. This technique finds optical heuristic
cutting (tree separation) points in a generalization tree structure and applies generalization
and suppression techniques to them. Although it guarantees less information loss than
the k-anonymity technique, it focuses on CPU performance. As a different approach
from the proposed method, Loukides and Gkoulalas-Divanis [16] aimed to achieve km-
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anonymity by using generalization and suppression through a clustering-based anonymizer.
Yao et al. [17] proposed bucketization, which separated the relationship between attributes
without modifying the published data by dividing the dataset into non-overlapping subsets.
These techniques are commonly referred to as anatomy [18] and slicing [19], and they are
often used to anonymize a fixed number of attributes in relational databases. Recently,
these disassociation-based techniques [20–28] have been proposed, some of which are
applied to electronic health data anonymization [21,22], some of which are improved
horizontal partition algorithms [20,26], and some are being considered for improving the
km-anonymity-based vertical segmentation algorithm [28]. In addition, Refs. [23–25] are
being proposed to prepare for the risk of property disclosure that can be experienced
with disconnected data. J. Andrew et al. [29] proposed a fixed-spacing approach to protect
sensitive medical numeric attributes and an l-diversity slicing approach to protect categories
and sensitive attributes. In some studies, it is possible to carry out an analysis using a
reconstructed dataset by disconnecting all cells with set values, but this is very time
consuming [20].

This study proposes a new technique to reduce information loss to the minimum for
transaction data with set values that guarantees strong privacy. The proposed algorithm
optimizes security and CPU performance time by adopting a top-down segmentation
algorithm such as the existing k-anonymity, rather than the anatomy and slicing-based
previously discussed. In addition, the disadvantages of the existing k-anonymity are
improved by reallocating transactions in the additional bottom-up tree search process after
top-down partitioning. Compared to the existing k-anonymity, bottom-up tree search takes
additional time, but the added time is a type of correction work to optimize the information
loss of the remaining transactions after the anonymization of the final transaction. This
algorithm takes very little time compared with the old k-anonymity algorithm for the entire
process and cuts down processing time considerably compared with the HgHs technique.
In terms of information loss, the proposed technique shows superior performance to other
techniques developed so far, including the old k-anonymity algorithm and the HgHs
technique. Figure 1 and Table 1 shows the outcomes of the proposed algorithm based on
the work of Junqiang Liu and Ke Wang [15].
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Table 1. Comparison with existing anonymization processing technology in the transactional
Database D, composed of each item in Figure 1 (* is for suppression).

TID Transaction
Database D

2∞-Anonymity
(Global

Generalization) [1,2]

2∞-Anonymity
(Suppression) [4,5]

2-Anonymity
(Local

Generalization) [6]

HgHs
[8]

Proposed
Algorithm

1 b, c, d T *, *, d T P P

2 a, f, g T a, f, g P, f, g P, f, g P, f, g

3 d, f, y, z T d, f, *, * K, f, M P, f, M K, f, M

4 c, d, f, x T *, d, f, * K, f, M P, f, M K, f, M

5 a, b, c, f, g T a, *, *, f, g P, f, g P, f, g P, f, g

6 e, i T e, * T e, * T, i

7 e T e T e T

8 i T * T * i

In Table 1, 2∞-anonymity (global generalization) [2,4] is vulnerable to excessive distor-
tions in the presence of outliers. In k∞-anonymity, m represents km-anonymity, which is
the longest transaction length. In the third column in Table 1, for example, all the items
are generalized to the top level due to outliers e and I to achieve 2∞-anonymity. Since
2∞-anonymity (suppression) [8,9] or (h, k, p)-consistency uses a technique to suppress all
the items, all the occurrences of b, c, i, x, y, and z in the fourth row in Table 1 are sup-
pressed as * indicates. In 2-anonymity (local generalization) [13], which uses a top-down
partitioning generalization technique—the same safety indicator as 2∞-anonymity—there
is an information loss with b, c, and d generalized into T and with e, i, and e generalized
into T in the fifth column in Table 1. HgHs [15] finds optimum heuristic cutting (tree
separation) points and applies generalization and suppression techniques to them, having
more information loss and a longer performance time than the proposed algorithm. In
the sixth column in Table 1, K was generalized to a higher level of P, unlike the proposed
algorithm whose T and i generalized into e and * with i suppressed, which suggests that
generalizing a value is more useful than suppressing one in terms of information loss.
The seventh column in Table 1 shows the performance results of the proposed algorithm.
Satisfying the 2-anonymity requirement, it generalized b, c, and d into P rather than T and e
and I into T, instead of treating them with T and i rather than e and * and suppressing i
compared with local generalization to minimize information loss. These outcomes indicate
that the proposed algorithm not only satisfies the 2-anonymity requirement, but it also
causes the least information loss compared with older techniques.

In Section 2, we will examine the k-anonymity (local generalization) [13] technique
and the HgHs [15] technique as related works. In Section 3, the proposed algorithm is
introduced; in Section 4, the improvement points of the algorithm are analyzed; in Section 5,
the experimental result of the proposed algorithm is presented; and in Section 6, we will
offer conclusions.

2. Related Works
2.1. k-Anonymity (Local Generalization) [13]

The k-anonymity algorithm is used to determine transactions that should be grouped in
a generalization hierarchical tree with a top-down greedy partitioning algorithm. Figure 2
and Table 2 generalize all transactions to the root level of the hierarchy. Since all transactions
share the same expression (“ALL”) after being generalized into a root, a single partition
always leads to anonymization provided there are at least k number of transactions in the
database. The initial partition is conveyed from this starting point to the next Anonymize
routine, in which the current partition is made into a sub-partition, with Anonymize called
recursively in all the outcome sub-partitions. The dividing process will end when dividing
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is no longer possible. Figure 2 and Table 2 is an example of the algorithm proposed in
paper [13] and Figure 3 shows the pseudo-codes of the algorithm.
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This algorithm, however, adopts a top-down partition approach, as mentioned in the
introduction. It applies the same generalization to the domains partitioned once under the
generalization tree structure of each transaction item and items with a unique value, thus
causing huge information loss.
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2.2. HgHs (Heuristic Generalization Heuristic Suppression) [6]

The basic idea of the proposed technique is to integrate the global generalization
technique [2,4] with the technique to suppress all items [8,9] to reinforce km-anonymity.
Its detailed algorithm has two stages: generalization cuts and suppression scenarios (SSs).
[Stage 1] searches for the cut of the smallest information loss in the generalization hierarchy
tree with an external loop called full subtree generalization. [Stage 2] assesses if items
satisfy km-anonymity in a subtree within the cut through an internal loop called total item
suppression and deletes the items that do not satisfy it. As described in the [15], this
algorithm is not efficient for processing large volumes of personal information threats
due to its breadth-first search approach. Its CPU performance time is comparatively long,
despite smaller information loss than the k-anonymity technique.

3. The Proposed Algorithm

The proposed algorithm, which is named LGR (Local Generalization and Reallocation),
has improved the weaknesses of the old k-anonymity technique by adding a bottom-up tree
search process after partitioning, and reallocating transactions while optimizing safety and
CPU performance time by choosing the same top-down partitioning algorithm as the old
k-anonymity (local generalization) [13]. Since it employs the top-down partition approach,
the old k-anonymity technique applies the same generalization to domains partitioned
once within the generalization tree structure of each item in transactions, especially for
items with unique values. Its weakness comes from huge information loss. The proposed
algorithm reallocates transactions in an additional bottom-up tree search process after
top-down partitioning, thus improving the weakness of the old k-anonymity algorithm.

In Figure 4, when the anonymization algorithm starts, the Anonymize(partition) pro-
cedure is called first. In this procedure, a generalized tree for the transaction items to be
processed is constructed and a partitioning process (tree splitting) is performed. Then,
the Pick_node() procedure is called. At this time, partitions are sequentially selected from
the first partition among the divided partitions, and the partitions selected through the
Expand_node() procedure are expanded (drilled down) to lower nodes of the tree. In the
Distribute_data() procedure, each transaction is allocated to the extended partition, and
for the transactions allocated through the Balance_partition() procedure, the k-anonymity
privacy model is checked to see whether it is satisfied for the value of k given in advance.
At this time, if the allocated transactions satisfy k-anonymity, the transaction is finalized
and the Final_partition() procedure is called. Otherwise, it rolls back, calls the Expand_node()
procedure, and then checks whether k-anonymity is satisfied. Even in this case, if there
is no satisfy partition, the state is saved and the Sub_partition() procedure is called. The
Sub_partition() procedure calls the Pick_node() procedure to select the next divided parti-
tion. The above process is repeated for all partitions while continuously drilling down the
tree. Finally, the Final_partition() procedure minimizes information loss by reprocessing
(replacing the partition with the least information loss with a normalized value) for the
partitions for which k-anonymity is not satisfied until the end through the Balance_partition()
procedure. The algorithm ends after assigning all transactions to all partitions through the
above process.

The proposed algorithm is almost the same as the k-anonymity (local generalization) [6]
until the Balance_partition() routine; however, there are the following differences between
them: the proposed algorithm first performs the FinalQ_data() routine when there are no
more nodes to expand a drill-down or generalization hierarchy tree in the Balance_partition()
routine, and stores a kind of candidate transaction that is finally generalized and its partition
in separate FinalQ. When there are no other partitions to allocate the corresponding trans-
actions within the divided partition in a drill-down process through the Balance_partition()
routine, the proposed algorithm performs the WaitForQ_data() routine and stores the final
drilled down partition and its transactions in a separate WFQ. Then it moves to the next
Final_partition() routine, in which it searches each partition stored in WFQ bottom-up and
matches them with the partitions stored in FinalQ to additionally check whether there are
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partitions that satisfy k-anonymity. When there are no partitions that satisfy it in this process,
the corresponding transactions and partitions will be moved from WFQ to FinalQ. When
there are partitions that satisfy it, it moves on to the next step. In the last step, the proposed
algorithm generalizes the remaining partitions in WFQ (only the ones right below the root
remain) starting with the partitions of the smallest information loss up to the top-level
root. By repeating this until k-anonymity is satisfied, the proposed algorithm sends the
transactions and partitions of WFQ to FinalQ, whose transactions will be disclosed outside
for the first time. Figure 5 shows the pseudo-codes of the proposed algorithm.
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Figure 6 provides an example of the proposed algorithm being applied to the original
Database D in Figure 1 and Table 1. In Figure 6, Rounds 1–6 represent the process of finding
an optimal partition that satisfies k = 2 anonymity through top-down searches for the roots
of a generalization hierarchy tree with the Anonymize (partition) routine in Figure 5. Round
1 starts at Root T of a tree, divides nodes in the class right below T, and allocates transactions
t1~t8 to each divided partition. Round 2 repeats top-down searches again, expanding nodes
to lower classes. Here, Partitions [P, Q] can choose between [P, J, M] and [H, K, Q] each. NCP
(Normalized Certainty Penalty), which represents the information loss, is measured in [Q]
-> [J, M] and [P] -> [H, K] for the allocated transactions, t2, t3, t4, and t5. It is drilled down
(expanded) to the partition with a smaller value or smaller information loss.
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There are a variety of measurements developed for information loss. The proposed
paper [13] used the NCP measurement [30] used in km-anonymity [2,4]. NCP is defined as
follows for categorical attributes such as a generalization tree structure:

NCP(P) =
{

0,
∣∣up

∣∣ = 1∣∣up
∣∣/|I|, otherwise

}
(1)

where up represents the node of an item generalization class where item p (e.g., a1, a2, b1,
and b2 in Figure 2) is generalized. |up| and |I| represent the number of leaves in the
bottom and overall tree hierarchical structure. In the hierarchical structure in Figure 2, for
instance, the information loss NCP(a1) will be 2/4 when a1 is generalized from Transaction
t to A. |up| has two leaves under A, a1 and a2, |I| has all four leaves: a1, a2, b1, and b2. The
NCP for the entire database adds weight to the information loss of each generalized item
by using an item-shaped ratio under the influence of all the items of the database. When
the total number of Item p occurrences in the database is Cp, the information loss of the
entire database due to generalization can be expressed in the following equation:

NCP(D) =
∑p∈I Cp·NCP(p)

∑p∈I Cp
(2)

The information loss range of a certain generalization (cut) is 0~1 and can be easily
measured. For example, the information loss of <{a1, a2} -> A > is 2 × 0.5 + 3 × 0.5 + 0 + 0/11
= 2.5/11 in Table 2. This NCP measurement is used in the algorithm proposed in this study.
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Figure 6. An example of the proposed algorithm being applied to the original Database D in Figure 1
and Table 1 (the procedure diagram of the proposed algorithm’s application by step).

Round 3 repeats the same process as Round 2, expanding to [H, K] -> [H, c, d]. The
results do not satisfy k = 2 anonymity. It rolls back to the upper class, repeating the process
to see partitions in the upper class satisfy k = 2 anonymity. Since there are no more partitions
that satisfy it, Partition [H, c, d] stops expansion and is stored in the waiting queue WFQ
along with the corresponding transaction t1. Round 4 sees the resume of expansion for [P, J,
M]. The final [P, f, g]: t2, t5 satisfies k = 2 anonymity, and is thus stored in FinalQ: {[P, f, g]:
t2, t5}. Round 6 repeats the same expansion process as Round 5. Partition [K, f, M]: t3, t4
satisfies k = 2 anonymity, and is thus stored in FinalQ: {[K, f, M]: t3, t4}. Since there are no
more nodes to be expanded, the Anonymize(partition) routine will end. The Final_partition()
routine in Rounds 7–11 goes through two major processes. In the first process, the remaining
partitions (and the transactions allocated to them) in WFQ for not matching 2-anonymity
roll back bottom-up in a hierarchy tree. They are compared with the partitions in FinalQ,
and the ones that match 2-anonymity are moved from WFQ to FianlQ. Partitions that find
no match in this process fail and will move on to the next process. The second process
generalizes the partitions (and transactions allocated to them) one by one that are divided
no more and remain in WFQ, starting with the ones that have the smallest information loss
toward an upper class in search for partitions (and the transactions allocated to them) that
satisfy k = 2 anonymity. The partitions that satisfy it will move from WFQ to FinalQ. In
Round 7, the remaining partitions, [e, i], [e], and [i], are divided no more and do not satisfy
k = 2 anonymity, thus being sent to WFQ. In the Final_partition() routine, each partition
in WFQ rolls back and matches a partition in FinalQ to find transactions that satisfy k = 2
anonymity. Round 8 allocates Partition [P]: t1 to FinalQ and removes it from WFQ, since the
partition satisfies k = 2 anonymity. In Round 9, [e]: t7 and [i]: t8 have the lowest NCP for
the remaining transactions (t6, t7, and t8) in WFQ. From these, [e]:t7 is allocated to T. From
the other transactions, [e, i] containing [e] is updated to [T, i] in WFQ. Round 10 checks
whether the remaining partitions ([T, i], [T], and [i]) in WFQ satisfy k = 2 anonymity. All of
the partitions {[T, i]: t6, [T]: t7, [i]: t8} satisfy the k = 2 anonymity, and they are all allocated
to FinalQ and removed from WFQ. The final Round 11 ends the Final_partition() routine,
since WFQ is empty, printing out the values in FinalQ and finally disclosing them.
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4. Analysis of the Proposed Algorithm

The proposed algorithm employs the k-anonymity (local generalization) [8] algorithm
as seen in the example in Table 1. It has smaller information loss than the algorithm
detailed in reference [13] and the HgHs [15] algorithm, thus providing analysts with
greater utility in an analysis of open data. In the case of the existing k-anonymity (Local
Generalization) [8] algorithm, it adopts a top-down partition approach, resulting in a
significant loss of information. This is because the generalization tree structure applies
the same generalization only within the partitioned domain once (for items within each
transaction), and especially for items with unique values. However, in the proposed
algorithm, information loss is minimized by reallocating transactions for all items that
do not satisfy k-anonymity through an additional bottom-up tree search process after
the existing top-down partitioning process. Transactions that do not satisfy k-anonymity
are stored in a separate WFQ after the existing top-down partitioning process through
the Balance_partition() procedure. Then, the Final_Partition() procedure generalizes all
transactions to satisfy k-anonymity for each transaction in the WFQ, and releases the final
result. In terms of CPU performance time, the proposed algorithm is much faster than
the HgHs [15] that basically employs the breadth-first search approach. The proposed
algorithm costs more than the k-anonymity (Local Generalization) [13] algorithm, since it
goes through an additional Final_partition() routine. This process, however, relates to some
of the remaining transactions after the completed expansion of a hierarchy tree, which
means that the proposed algorithm does not require a very long performance time.

In terms of safety, the proposed algorithm has the same performance as the k-anonymity
(Local Generalization) [13] algorithm and the HgHs [15] algorithm by similarly meeting the
security requirements of k-anonymity. As described in the introduction, the proposed algo-
rithm boasts much higher safety than the old 2∞-anonymity (Global Generalization) [2,4]
and 2∞-anonymity (suppression) [8,9] algorithms. In other words, k-anonymity has no
need to limit the number of items that may be exposed to the attacker in the absence of
the parameter m, unlike the km-anonymity, which protects personal privacy only when
the attacker has knowledge of the items under the number m. In general, a lower m of km-
anonymity inevitably means weaker privacy provided by km-anonymity, but k-anonymity
guarantees stronger privacy than km-anonymity.

The proposed algorithm is appropriate when quasi-identifiers and sensitive informa-
tion cannot be distinguished, applying k values of k-anonymity to the entire transaction.
If a given dataset can distinguish quasi-identifiers from sensitive information, it will be
possible to additionally apply l-diversity [31] while satisfying k-anonymity.

5. Experiment Results
5.1. Experiment Environment and Design

This study compared the proposed algorithm with the local generalization method
proposed in [13] and the HgHs method proposed in [15] to assess its efficiency by measuring
implementation time and information loss or data quality. For information loss, the NCP
metric, which was defined in [30,32], was applied in the same way as the existing methods
in [13,15]. Algorithms were realized with Python. For implementation time, an experiment
was conducted with 12th Gen Intel(R) Core(TM) i9-12900KS 3.40 GHz PC with 64GB
memory under the Windows 10 environment.

As for data used in the experiment, BMS-POS and BMS-WebView-2 [33] used in [13,15]
were used. BMS-POS is the sales and transaction log of an electronics retailer with 515,597
for up to 1657 items. Each record holds a maximum of 164 items. An item is categorical
data, a type of up to 4-digit product code purchased by a customer, with a distribution
ranging from 0 to 1404. For example, if the product code is ‘1402′, the major category is
‘1′, the middle category is ‘4′, the small category is ‘0′, and the subcategory is ‘2′. Based
on this, we constructed a generalization tree with a maximum depth of 5 (see Figure 7).
The experiment used a total of 345,204 left after preprocessing and refinement including
data errors.
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Figure 7. An example of a generalization tree for product code in BMS_POS data (The blue numbers
in the figure mean, for example, when the product code is ‘1402’, the major category is ‘1’, the middle
category is ‘4’, the small category is ‘0’, and the sub category is ‘2’).

BMS-WebView-2 holds a total of 77,512 transactional data for a maximum of 3340 items.
These are months of click stream data collected from an e-commerce website. Just as with
BMS-POS, it is a kind of product code purchased by the customer, and the distribution
range is 55,267~330,285. Based on this, a generalization tree with a maximum depth of 7
was constructed. Each record holds a maximum of 161 items. The main specifications of
the data used in the experiment are shown in Table 3.

Table 3. The main data specifications used in the experiment.

Data Name Number of
Transactions

Maximum
Transaction Size

Total Number of
Leaf Nodes in the

Generalization Tree

Maximum
Depth of Gener-

alization Tree

BMS-
WebView2 77,512 161 3340 7

BMS-POS 345,204 86 1657 5

Table 4 is an example of some experimental data, and denotes ‘|’ as a separator for
classification by category.

Table 4. Some examples of original data used in experiments.

BMS-POS BMS-WebView-2

166|167 84475|84211|86919|86927|86943
168|169 56109|22699

166|175|179|180|181|182|183|184|185 55455
194 91795|81991

185|192|193|197|198|199 84947|84999

To implement the proposed algorithm, data structures such as the generalization tree,
WFQ, and FinalQ, which were discussed in Figure 7, are required. For this purpose, trees
and queues were defined and used. A generalization tree must be prepared in advance,
in order to generalize the lower category data entered as transaction data to the upper
category. Since there is no fixed number of subcategories that can be linked by classification,
the nodes in the generalization tree are implemented such that multiple subnodes can be



Electronics 2023, 12, 3047 14 of 18

linked. WFQ is defined as a queue data structure because it requires data to be output
in the order in which it was entered. At this time, a circular queue is defined so that
input and output can be repeated. Data entered into FinalQ is posted to the transaction
data in order, so it does not have to follow the characteristics of the Queue to exit in the
order entered. Therefore, FinalQ does not define a circular queue. Most of the features
required by the proposed algorithm are implemented inside the generalization tree class to
optimize performance. However, since we need to utilize both the generalization tree class
and the circular queue class, we implement the three functions data input, partition, and
generalization as separate functions.

• Data input function: Data for constructing the generalization tree and transaction data
to be generalized are entered in the anonymization of transaction data. Since these
two data are input as a csv file, refer to the csv library for csv file input in Python. The
generalization tree is built right at the input stage, and in the case of transactional data,
the performance improves the most when running the algorithm after storing it in the
generalization tree class.

• Partitioning function: Partitioning is the first step in generalizing transactional data
using a generalization tree. In the partitioning process, starting from the root, all com-
binations consisting of subnodes are found, and among them, only those combinations
that can generalize the transaction data are selected and partitioned. This process
is repeated from the divided partition to the lowest leaf node, and the partitioning
process ends when one or more leaf nodes exist in all partitions. Candidates capable of
partitioning are determined through the k-anonymity test, and when there are several
candidates capable of partitioning, the optimal partitioning direction is determined
through a comparison of NCPs. If there is only one candidate for indivisibility, divide
in that direction.

• Generalization function: Generalization is a function that generalizes transactions that
do not satisfy k-anonymity when the partitioning process is completed. Generalization
was implemented to first calculate the occurrence frequency of each data in the split
result data, make it into a dictionary, and roll back the data while checking k-anonymity.
Rollback is a process of generalizing data corresponding to nodes at a lower level in
the generalization tree to higher nodes one by one. The rollback process proceeds
recursively until the data goes up to the root node, and ends when it becomes the
root node. When the rollback process ends, most transactions satisfy k-anonymity, but
other transaction data may be rolled back and fail to satisfy k-anonymity. To prevent
this, the final rollback process is performed once more, and if k-anonymity is not
satisfied based on the entire data, batch rollback is implemented.

5.2. Experiment Results

Figures 8 and 9 show the experiment results that are in line with the analysis results in
Section 4. Figure 8 shows the measurements of the three algorithms in (a) implementation
time; and (b) NCP information loss rates for each k value of k-anonymity with BMS-POS
data. The method [6] using local generalization was the fastest in implementation. The
proposed algorithm recorded lower NCP information loss rates than the [13,15] algorithms,
thus providing superior results. Figure 9 shows comparison results of the three algorithms
for each k value of k-anonymity with the BMS-WebView-2 data in (a) a detailed implementa-
tion time of up to 1000; (b) an implementation time of up to 500,000; (c) NCP information
loss rates; and (d) measurements of NCP information loss rates between the proposed
algorithm and the local generalization algorithm [13]. In terms of implementation time,
reference [13] was the fastest, but the proposed method was close to it, with a slight dif-
ference. The proposed method recorded a relatively faster performance compared with
the HgHs [15] method. When k of k-anonymity was 3 in the real experiment, the proposed
method took 411 s, whereas the HgHs [15] method took 468,889 s. When k was 5, the
proposed method took 417 s and the HgHs [15] method took 106,338 s. In Figure 8a, a rather
peculiar point was that the execution time gradually decreased as the value of k increased
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in the case of HgHs [15]. Analysis shows that the reason for this is that a lot of time was
spent in the initial process of finding the optimal cut with the least information loss through
an external loop called ‘full subtree generalization’. Afterwards, the process of evaluating
whether or not k-anonymity is satisfied in the subtree in the cut and deleting items that are
not satisfied was judged to be processed very quickly. The proposed algorithm showed
relatively much faster performance than the HgHs [15] algorithm, considering that the
k-anonymity model uses 3, 5, and 10 for k values in most actual applications. In terms
of NCP information loss rates, the proposed method recorded low information loss rates,
which were close to those of the [15] method, and also showed outstanding results that
were very different from the [13] method. One important point in Figure 9c is that the
information loss rate does not change significantly, even when the value of k increases in
the case of the proposed method, whereas the information loss rate increases in the case
of HgHs [8] (when k values are 3, 5, 10, 25, and 30, the information loss rates are 0.29,
0.38, 0.5, 0.93, and 2.44, respectively). This is interpreted as the fact that the generalization
level does not change, even if the value of k increases after the optimal cut is initially set
through an external loop called ‘full subtree generalization’. Therefore, it was confirmed
that the proposed method performed much better than the existing methods [13,15] when
considering both the execution time and information loss aspects.
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Table 5 shows the results of each processing for the original example data (3-anonymity
standard) presented in Table 4. In the case of BMS_POS data in Table 5, for example, when
the product code is ‘166′, the k value of k-anonymity exceeds the criterion 3 set in the test, so
the result is ‘166′ without loss of information. In the case of ‘167′, ‘168′, and ‘169′, they are
generalized to ‘16′ because they do not satisfy k-anonymity. In the case of BMS-Webview-2
data, 5-digit product code data is mostly generalized to 4-digit data. However, when the
number of items increases, such as ‘82475|84211|86919|86927|86943′, it is generalized to
a two-digit code, that is, ‘84|86|’, to satisfy 3-anonymity.
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Table 5. Experimental results for some examples of the original data used in the test (when the k
value of k-anonymity is 3).

Data Name Example of Raw Data Result of Anonymisation

BMS_POS

166|167 16
168|169 16

166|175|179|180|181|182|183|184|185 166|17|18
194 19

185|192|193|197|198|199 18|19

Web-View-2

84475|84211|86919|86927|86943 84|86
56109|22699 5610|2269

55455 5545
81795|81991 8179|8199
84947|84999 8494|8499

6. Conclusions

The proposed algorithm employs the k-anonymity (Local Generalization) algorithm.
It has less information loss than the existing algorithms, thus providing analysts with



Electronics 2023, 12, 3047 17 of 18

greater utility in an analysis of open data. In the case of the existing k-anonymity (Local
Generalization) algorithm, it adopts a top-down partition approach, resulting in a great
loss of information. This is because the generalization tree structure applies the same
generalization only within the partitioned domain once (for items within each transac-
tion), and especially for items with unique values. However, in the proposed algorithm,
information loss is minimized by reallocating transactions for all items that do not satisfy
k-anonymity through an additional bottom-up tree search process after the existing top-
down partitioning process. In terms of CPU performance time, the proposed algorithm
is much faster than the HgHs algorithm that basically employs the breadth-first search
approach. The proposed algorithm costs more than the k-anonymity (Local Generaliza-
tion) algorithm, since it goes through an additional Final_partition() routine. This process,
however, relates to some of the remaining transactions after the completed expansion of
a hierarchy tree, which means that the proposed algorithm does not require a very long
performance time. In terms of security, the proposed algorithm has the same performance
as the k-anonymity (Local Generalization) algorithm and the HgHs algorithm by similarly
meeting the safety requirements of k-anonymity. The proposed algorithm boasts much
higher safety than the existing 2∞-anonymity (Global Generalization) and 2∞-anonymity
(suppression) algorithms. In other words, k-anonymity has no need to limit the number of
items that may be exposed to the attacker in the absence of the parameter m, unlike the
km-anonymity that protects personal privacy only when the attacker has knowledge of
the items under the number m. In general, a lower m of km-anonymity inevitably means
weaker privacy provided by km-anonymity, but k-anonymity guarantees stronger privacy
than km-anonymity. Future work will further expand the proposed algorithm, apply an
additional l-diversity model, and propose a pseudonymization algorithm that complies
with domestic laws and EU GDPR.
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