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Abstract: In this paper, we propose a methodology for computing the square root of a complex
number based on a piecewise linear (PWL) approximation method. The proposed method relies on
a software-based segmentor that automatically divides the three real square root functions used in
complex square root computation into the fewest segments with a predefined fractional bit width
and maximum absolute error (MAE). The coefficients, including the start point, end point, slope
and y-intercept of each segment, are stored for use in the implementation of the hardware design.
The proposed fully pipelined circuit is coded in the Verilog hardware description language (HDL).
The results of synthesis in TSMC (Taiwan Semiconductor Manufacturing Company) 65-nm CMOS
technology show that our design achieves savings of 64.21% in area, 16.67% in delay and 65.08%
in power compared to the existing methods. Moreover, implementation results on an FPGA (Field-
Programmable Gate Array) platform (XC7Z020-CLG400) show that the proposed design reduces the
number of LUTs by 29.38%, delay by 28.57% and power consumption by 53.47%.

Keywords: piecewise linear (PWL) approximation method; complex square root computation;
application-specific integrated circuits; mathematics computing

1. Introduction

Square root computations of complex numbers are commonly used in principal nu-
merical computations [1], signal processing algorithms [2], quantum defect theory [3],
and wave propagation [4]. When implemented in software, the complex square root
operation requires a long execution time, leading to difficulty in meeting requirements
for high speed and low latency. Therefore, various kinds of hardware implementations
have been proposed for computing complex square roots, such as the digit-recurrence
algorithm [5–7], 2D cubic convolution [8], and the coordinate rotation digital computer
(CORDIC) method [9–11].

The digit-recurrence algorithm, which is commonly used in real square root compu-
tation, was applied for the computation of the square root of a complex number for the
first time in [5]. Subsequently, Wang et al. designed a complex square root computation for
field-programmable gate array (FPGA) implementation using a radix-4 digit-recurrence
algorithm [6]. A radix-16 digit-recurrence algorithm was later proposed to reduce the
number of iterations [7]. Additionally, a 2D interpolation method was introduced to re-
duce the size of the prescaling lookup tables (LUTs). Various numbers of iterations can
be employed in the digit-recurrence algorithm to achieve different levels of precision.
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However, the execution of multiple iterations can lead to high latency. Although a high-
radix digit-recurrence approach reduces the number of iterations needed, it increases the
complexity of each iteration module. Ref. [8] proposed an FPGA design for a complex
square root unit using 2D cubic interpolation. The above architectures all contain recurring
modules; specifically, digit recurrence reuses each iteration unit, and interpolation reuses
a multiply-and-accumulate unit. Therefore, obtaining a valid output requires multiple
clock cycles. Ref. [7] applied CORDIC to implement the computation of a fixed-point
complex square root. Ref. [9] eliminated the need for hyperbolic CORDIC in [7]. Later,
Ref. [9] reused circular CORDIC to reduce the area occupied and adopted a double pipeline
concept to reduce latency. Similar to the architectures of the digit-recurrence algorithm and
the interpolation method, such circuit reuse necessitates multiple clock cycles to obtain
a valid output. Ref. [11] proposed a CORDIC-based very-large-scale integration (VLSI)
architecture design methodology for complex square root computation that is independent
of angle computation. The fully pipelined structures (yielding a valid output in every cycle)
based on the CORDIC algorithm that are presented in [10,11] perform well in terms of
throughput, but are weak in latency because of their numerous iterations.

In piecewise linear (PWL) approximation, a nonlinear function is divided into several
segments. In each segment, the nonlinear function is approximated by a linear function.
Previously, PWL methods have been proposed for the implementation of specific unary
functions, without generality. Ref. [12] proposed a universal PWL method relying on a
software-based segmentor with the self-adaptive ability to choose the smallest number of
segments under the constraint of a controllable maximum absolute error (MAE). Based
on [12], a piecewise linear approximation computation (PLAC) method was subsequently
proposed that made use of an optimized segmentor, a novel quantizer and a nonredundant
hardware architecture [13]. Later, PLAC was applied in a VLSI architecture for calculating
the Nth roots of floating-point numbers [14]. The absolute advantage of [14] when com-
pared with state-of-the-art architectures indicates that a PWL has natural advantage in
terms of hardware overhead, especially latency, when the computation does not require
high precision. Recently, a complex-valued neural network (CVNN) was proposed to
improve the performance of gradient regularization [15]. In the CVNN method, low latency
and high hardware efficiency are pursued rather than high precision in computations
involving complex numbers.

In this article, we propose a PWL-based architecture for computing the square root of
a complex number. The contributions of this paper are listed as follows.

• This is the first study in which a PWL method has been applied to implement the
computation of the square root of a complex number in pursuit of low latency.

• The complex square root computation is decomposed into several substeps involving
three real square root functions. A software-based segmentor approximates these real
square root functions using the fewest possible segments while meeting the specified
requirements of a predefined fractional bit width and MAE.

• In accordance with the fractional bit width of the slope defined in the segmentor, the
bit width of the multipliers is reduced to save hardware overhead. Additionally, the
multipliers are implemented with a two-stage pipelined architecture to reduce the
critical path.

• Because of the usage of the state-of-the-art PWL method and a formula with a simple
computational flow, our design has a significant advantage in delay. In addition,
because the front part of the circuit is shared between the real and imaginary parts
of the computation, the proposed architecture has an absolute advantage in hard-
ware overhead.

The rest of this paper is organized as follows. Section 3 introduces the software-based
segmentor. In Section 4, the proposed architecture is analyzed and compared with existing
designs. Finally, Section 5 concludes the paper.
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2. Theoretical Background
2.1. PWL Method

In the PWL method, a nonlinear function f (x) is divided into multiple segments. For
the calculation of the complex square root, the real square root functions used are nonlinear
functions calculated using the PWL method. For the segment with index i, the input x
belongs to the range [ci, di]. When x ∈ [ci, di], the nonlinear function f (x) is approximated
by a linear function hi(x) = ki × x + bi, where ki and bi are the slope and y-intercept,
respectively.

Two factors affect the approximation precision of the PWL method. The first is the
method used to generate the slope and y-intercept of each linear segment. In previous
methods, the generation of the slope and y-intercept has depended on the properties
of the target function. In [12,13,16], however, a method of generating the slope and y-
intercept was proposed that is completely independent of the properties of the target
function. In addition, the performance of this generation method was proven. In this paper,
we adopt this latter generation method for the slope and y-intercept. The other factor
influencing the approximation precision of the PWL method is the width of each segment.
The use of smaller segments increases the approximation precision, but simultaneously
increases the number of segments, leading to considerably higher area consumption for
coefficient storage.

2.2. Precision Criteria

For the evaluation of computation precision, the MAE is defined as

MAE = max(|PA− PE|). (1)

Additionally, the average absolute error (AAE) is defined as

AAE =
∑ |PA− PE|

length(PA− PE)
. (2)

In the above expressions, PA and PE denote the approximate and exact values, respectively.

3. Proposed Methodology

In this section, we propose a segmentor coded in MATLAB for the complex square
root function based on the optimized segmentor for nonlinear unary functions presented
in [16].

3.1. Optimized Segmentor for Computing the Real Square Root

The segmentor in [16] was proposed based on the PLAC method in [13] by incorpo-
rating quantization operations and optimizing the y-intercept after quantization. Imple-
mentation results reveal that a logarithmic converter based on the method in [16] shows
improvements over the one in [13] in all respects. Moreover, this segmentor can be easily
generalized to the implementation of other nonlinear functions, such as the real square root
functions involved in the complex square root computation. The segmentor for computing
the real square root, for which readers can refer to [16], is not described in this paper to
keep the paper reasonably concise. In [16], qw is the fractional bit width of the intermediate
data used in the computation. However, the multipliers in [16] have a large hardware
overhead. To reduce the bit width of the multipliers, we introduce a new parameter kw to
represent the fractional bit width of the slope. The final value of kw is smaller than qw.

3.2. Proposed Segmentor for Computing the Complex Square Root

The complex square root function is computed as follows:

√
c + di = p± iq, (3)
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where

p =

√√
c2 + d2 + c

2
, q =

√√
c2 + d2 − c

2
. (4)

In Equations (3) and (4), there are four real square root functions. However,
√

c2 + d2

is shared between the real and imaginary parts. Therefore, only three real square root
functions need to be calculated using the PWL method. The errors of the real and imaginary
parts of the complex square root are determined from the errors of the real square roots
calculated using the PWL method. That is, the errors of the real and imaginary parts will
be smaller if the errors of the real square roots are smaller. MAEcomplex and MAEde f are
the calculated and predefined MAEs, respectively, of the complex square root. MAEde f is
used to constrain the MAE of the hardware implementation and the value of MAEcomplex
after segmentation. The value of MAEcomplex after segmentation is equal to the MAE of the
hardware implementation and must be no larger than MAEde f . Accordingly, the segmentor
must modulate the MAEs of the real square root functions calculated with the PWL method
to ensure that MAEcomplex is no larger than MAEde f . To this end, in the segmentor for
computing the real square root, MAEun is used to constrain the MAE of each real square
root function calculated with the PWL method. The segmentor for the real square root
computation divides the inputs of each real square root function into the fewest number of
segments possible while ensuring that the calculated MAE of each real square root function
is no larger than MAEun. Meanwhile, the start points, end points, slopes and y-intercepts
of the segments are stored for the design of the hardware implementation. Before the
segmentor is applied, the values of kw and qw are predefined to determine the fractional
bit widths of the slope and intermediate data, respectively. In addition, MAEde f is used to
constrain the MAE of the circuit (MAEc). In other words, MAEc is guaranteed to be smaller
than a predefined MAE. The proposed segmentor for the complex square root function, as
illustrated in Figure 1, performs the following steps:

1. Initialization. As seen from Equations (3) and (4), the computations of the real and
imaginary parts of the complex square root function each involve two real square root
functions. The MAEs of these real square root functions will inevitably be smaller than that
of the complex square root function. Therefore, MAEun is initialized as MAEde f because
the final value of MAEun must be smaller than MAEde f . To reduce the execution time of
the segmentor, the bisection method is used. MAEun is always located at the center point
between the left and right edges of the bisection window, denoted by MAEl and MAEr,
respectively. The length of the bisection window is reduced by half after each comparison
of MAEcomplex and MAEde f . We use MATLAB R2019a to model the proposed segmentor.
MAEl and MAEr are initialized as 0 and MAEde f , respectively, to establish the largest
possible range for the value of MAEun.

2. MAEcomplex calculation. In this step, the computation of the hardware circuit
is completely simulated in software. MAEcomplex is calculated in accordance with the
simulated results and exact values. This step is introduced in detail in Section 3.3.

3. Conditional judgment. If MAEcomplex is larger than MAEde f , then MAEun is too
large to satisfy the predefined MAE for the complex square root function. Therefore,
MAEun should be reduced by shifting MAEr to MAEun and then moving MAEun to the
center of the new bisection window. Then, the process returns to step 2 to start a new loop.
If MAEcomplex is smaller than MAEde f , then the current value of MAEun constraining the
segmentation of the real square root function is sufficiently small to achieve the precision
specified by MAEde f . At this time, the gap between the left and right edges of the bisection
window is compared against a small value, defined as 10−5 in our design. If this gap is not
sufficiently small, MAEun can be further enlarged by shifting MAEl to MAEun and then
moving MAEun to the center of the new bisection window. Then, the process returns to step
2 to start a new loop. Once the gap is found to be sufficiently small, the most appropriate
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value of MAEun is considered to have been found, and this value will be used to segment
the real square root functions.

Start

MAEun =MAEdef

MAEl=0

MAEr=MAEdef

MAEcomplex>MAEdef

MAEr=MAEun

MAEun=(MAEl+MAEr)/2

MAEl=MAEun

MAEun=(MAEl+MAEr)/2

Y

N

N

Y

End

0 MAEdef

MAEl MAEun MAEr

Bisection window  

MAEun :

Calculate 

MAEcomplex

Pre-defined MAE for 
segmentation of real 
square root

Calculated MAE of 
complex square root

Pre-defined MAE for 
segmentation of complex 
square root

Left of bisection window

Right of bisection window

MAEdef :

MAEl :

MAEr :

MAEcomplex :

5
10

r l
MAE MAE

Figure 1. Calculation flowchart of the segmentor for the complex square root function.

3.3. Calculation of MAEcomplex

As stated in Section 3.2, the calculation of MAEcomplex relies on the simulation of the
hardware circuit. The hardware is simulated with a finite fractional bit width of

d f =
floor(d× 2qw)

2qw (5)

or

dr =
round(d× 2qw)

2qw , (6)

where df and dr are the truncated and rounded versions of d, respectively. The quantification
operation based on Equation (5) results in the maximum error of 2−qw, but does not incur
any extra hardware overhead. In contrast, the quantification operation corresponding to
Equation (6) consumes additional hardware resources, but incurs only a small precision
loss of 2−qw−1.

The real and imaginary parts of the input both lie in the range (1, 2), the same as in [8].
The input is discretized as c = 1 : 2−iw : 2− 2−iw and d = 1 : 2−iw : 2− 2−iw, where iw is the
fractional bit width of the input, set to 10 in our design. The pseudocode of the algorithm
for calculating MAEcomplex is presented in Algorithm 1, and the corresponding calculation
flow is illustrated in Figure 2. In the Simulation of the Hardware Circuit part, Tr(d, qw)
and Ro(d, qw) are used to express the truncation operation in Equation (5) and the rounding
operation in Equation (6), respectively. On line 1, R = c2 + d2 is calculated considering the
truncation operation. On line 2, the segmentor for the real square root function is used with
the real-time computed input range of the PWL function. On lines 5 and 9, the segmentor
also uses the real-time computed values based on the PWL method to minimize the compu-
tational burden. Once the start point, end point, slope and y-intercept, denoted by st1, ed1,
k1 and b1, respectively, have been obtained,

√
R (denoted by SR) is calculated using the

PWL method with the truncation operation of k1 × R. The value of R is compared against
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the start and end points of all segments to determine the index of the segment to which
it belongs, m1. Then, PB = SR+c

2 is computed, also considering the truncation operation.
Similar to lines 2 and 3, lines 5 and 6 calculate

√
PB. The real part of the complex function

calculated via the PWL method, PA, is obtained with the rounding operation to a fractional
bit width of iw. Lines 8 to 11, which calculate the imaginary part of the complex function,
follow a logic similar to that of lines 4 to 7 for the computation of the real part. For the calcu-
lation of MAEcomplex, the exact values of the complex square root, EV, are calculated using
the built-in MATLAB function. The MAE of the complex output, MAEcomplex, is defined as
the maximum MAE between the real and imaginary parts and is calculated on lines 11 to 15.

Algorithm 1: Proposed segmentor.
Input: iw, qw, kw, MAEun
Output: MAEcomplex

/* Simulation of Hardware Circuit: */
1 R(i, j) = Tr(c(i)2, qw) + Tr(d(j)2, qw); Traverse all values of i and j
2 [st1, ed1, k1, b1] = seg_real(min(R), max(R), qw, kw, qw, MAEun);
3 SR(i, j) = Tr(k1(m1)× R(i, j)) + b1(m1); Traverse all values of i and j
4 PB(i, j) = Tr((SR(i, j) + c)/2);
5 [st2, ed2, k2, b2] = seg_real(min(PB), max(PB), qw, kw, qw, MAEun);
6 PA(i, j) = Tr(k2(m2)× PB(i, j)) + b2(m2); Traverse all values of i and j
7 PA = Ro(PA, iw);
8 QB(i, j) = Tr((SR(i, j)− c)/2); Traverse all values of i and j
9 [st3, ed3, k3, b3] = seg_real(min(QB), max(QB), qw, kw, qw, MAEun);

10 QA(i, j) = Tr(k3(m3)×QB(i, j)) + b3(m3); Traverse all values of i and j
11 QA = Ro(QA, iw);

/* Calculation of MAEcomplex: */
12 EV(i, j) = sqrt(complex(c(i), d(i))); Traverse all values of i and j
13 PE = real(EV);
14 QE = imag(EV);
15 Errreal = (PA− PE);
16 Errimag = (QA−QE);
17 MAEcomplex = max(max|Errreal |, max|Errimag|)

Square

Square

c

d

iw

iw

Add

c
2

qw

d2

qw

Sqrt
R

qw

Add

Add

c

iw

SR

qw

/2

/2

c
iw

+

+

+

qw

qw

Sqrt
qw

Sqrt
qw

PB

QB

iw

QA

iw

PA

Figure 2. Calculation flowchart of the pseudocode in Algorithm 1. The symbols qw and iw denote the
fractional bit widths. Sqrt denotes the square root calculated using the PWL method in our design.

3.4. Parameter Selection

The execution time of the software-based segmentor is approximately 11 seconds using
a Dell XPS 13 laptop with an Intel(R) Core(TM) i7-10710U CPU and 16 GB of RAM. The
execution time depends on the performance of the computer used to model the proposed
segmentor and is unrelated to the performance of the hardware implementation of the
complex square root calculation.

In our design, the fractional bit widths of the input and output are both set to 10. To
achieve accuracy within 1 ulp, MAEde f is defined as 2−10 to ensure that the MAEs of the
circuit for the real and imaginary parts are both smaller than 2−10.
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In addition to the predefined maximum absolute error MAEde f , the fractional bit
widths of the slope and other intermediate data, denoted by kw and qw, respectively, need
to be predefined. The segmentor automatically divides the three real square root functions
used in the complex square root computation into the fewest possible segments given the
predefined values of kw, qw and MAEde f . It is obvious that smaller values of kw and qw
will lead to a larger number of segments. In the parameter selection step, we first set kw to
be the same as qw. Different qw values lead to different numbers of segments, as shown in
Figure 3a. The error of the proposed method consists of two components: the segmentation
error and the quantification error. As an approximate computing method, the PWL method
is the origin of the segmentation error. The segmentation error decreases with an increasing
number of segments. The quantification error is introduced by the truncation and rounding
operations in the circuit. In the simulator, we use Equations (5) and (6) to simulate these
two operations in the circuit. Thus, the MAE calculated by the simulator also contains
both errors. Smaller fractional bit widths (qw and kw) will result in a larger quantification
error. However, the sum of the two errors must be no larger than MAEcomplex (2−10 in our
design). When kw/qw changes from 12 to 18, the quantification error decreases; in turn,
the number of segments can decrease from 36 to 30 because a larger segmentation error
can be accommodated. Thus, the number of segments slowly decreases with increasing qw.
Notably, however, the segmentor cannot converge when qw is smaller than 12. Therefore,
qw is set to 12 and held unchanged for the selection of kw. Figure 3b shows how the number
of segments varies with various values of kw. The error introduced by the quantification
of the slope is part of the quantification error. In Figure 3b, the values of kw are scanned
for set values of qw ranging from 12 to 18. Because we select 12 as the value of qw, we
focus on the curve corresponding to the case in which qw is set to 12. With larger values
of kw, the quantification error and the number of segments both decrease. As seen from
Figure 3b, when the value of kw is smaller than 6, the segmentation error is limited to a
small value. Thus, the number of segments can be greatly reduced from 232 to 73 when
kw changes from 5 to 6. However, the segmentation error of the PWL method becomes
much larger when kw is larger than 6. Thus, the number of segments becomes saturated
when kw is larger than 6. To optimize the bit width settings, the end point of the flat part of
the curve in Figure 3b is selected. In accordance with the above selection method, qw and
kw are set to 12 and 7, respectively. The values of qw and kw mainly affect the bit widths
of the computing resources. Thus, larger qw and kw values would lead to an increase in
delay. Meanwhile, the number of segments output by the segmentor mainly affects the
required storage size. Based on these considerations, in practical applications, the values
can be selected in accordance with the requirements of the hardware implementation.
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Figure 3. (a) The relationship between the number of segments and kw or qw when kw is equal to qw.
(b) The relationship between the number of segments and kw.
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4. Hardware Implementation and Comparison
4.1. Implementation Results and Comparison

We replicated the architectures in [8,10,11] with the same fractional bit widths of the
input and output and a precision comparable to that of our design. We list the parameters
and errors in Table 1. The three replicated architectures and our design were all coded
in the Verilog hardware description language (HDL) and synthesized using Synopsys
Design Compiler (DC) in TSMC 65-nm CMOS technology. The synthesis results are listed
in Table 2. Moreover, we implemented the designs in Vivado 2017.4 based on a Xilinx
Zynq-7000 SoC XC7Z020-CLG400 FPGA. In Vivado, the synthesis and implementation
steps are successively executed. Then, the implementation results are reported by Vivado.
The Vivado implementation results are listed in Table 3.

Table 1. Error comparison of our design and existing designs.

Design Total Number of Segments Number of Iterations qw MAEreal AAEreal MAEimg AAEimg

Proposed 52 – 12 8.76×
10−4

2.64×
10−4

9.62×
10−4

2.66×
10−4

[8]
Interpolation

– – 11 1.25×
10−3

3.28×
10−4

1.26×
10−3

3.28×
10−4

−29.38% – −100% −29.92% −19.51% −23.65% −18.90%

[10]
CORDIC

– 34 14 1.99×
10−3

3.37×
10−4

1.50×
10−3

4.91×
10−4

−59.62% −70.48% −0% −41.60% −21.66% −51.66% −45.82%

[11]
CORDIC

– 35 14 1.01×
10−3

2.71×
10−4

1.32×
10−3

2.90×
10−4

−56.32% −65.23% −100% −13.27% −2.58% −27.12% −8.28%

[17]
CORDIC

– 36 13 1.00×
10−3

2.75×
10−4

1.29×
10−3

3.27×
10−4

−56.16% −62.53% −100% −12.40% −4.00% −25.43% −18.65%

Table 2. Performance comparison of our design and existing designs based on the results when
synthesized in TSMC 65-nm CMOS technology.

Design Area (µm2) Delay (ns) Power (mW) ADP (pJ ×µm2)

Proposed 9451 11 2.72 282,773.92

[8]
Interpolation

26,409 13.2 7.79 2,715,584.65

−64.21% −16.67% −65.08% −89.59%

[10]
CORDIC

46,773 34 7.76 12,340,588.32

−79.79% −67.65% −64.95% −97.71%

[11]
CORDIC

51,402 27 8.90 12,351,900.60

−81.61% −59.26% −69.44% −97.71%

[17]
CORDIC

39,165.48 29 6.88 7,814,296.57

−75.87% −62.07% −60.47% −96.38%
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Table 3. Performance comparison of our design and existing designs based on the results when
implemented in Vivado based on a Xilinx Zynq-7000 SoC XC7Z020-CLG400 FPGA.

Design LUTs Registers DSP Delay (ns) Power (W)

Proposed 577 420 0 66 0.141

[8]
Interpolation

817 333 8 92.4 0.303

−29.38% – −100% −28.57% −53.47%

[10]
CORDIC

1429 1423 0 180.2 0.212

−59.62% −70.48% −0% −63.37% −33.49%

[11]
CORDIC

1321 1208 3 167.4 0.197

−56.32% −65.23% −100% −60.57% −28.43%

[17]
CORDIC

1316 1121 5 136.3 0.248

−56.16% −62.53% −100% −51.58% −43.15%
The designs represented in this table have the same parameters as those represented in Table 2.

4.2. Details of Hardware Implementation

The hardware architecture of our design is illustrated in Figure 4, with the sel and
PWL parts shown in Figure 5. The hardware architecture of our design exhibits good
correspondence with the simulation of the hardware circuit in the segmentor illustrated
in Algorithm 1. In our design, the fractional bit width of the intermediate data is 12, in
accordance with the selection process described in Section 3.4. The fractional bit widths
of the input and output are again set to 10. To shorten the critical path, all multipliers are
implemented with a two-stage pipelined architecture. One of the two 11-bit multipliers
calculating the squares of the two inputs is implemented with 4 6-bit multipliers and one
22-bit adder. Each multiplier in the PWL module occupies 2 6× 8 multipliers and one
22-bit adder.
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Figure 4. Hardware architecture of the proposed design for the computation of the complex square
root function.

Initially, two multipliers concurrently calculate the squares of the real and imaginary
parts of the input. An adder is used to obtain the sum of these two squares, R = c2 + d2,
as shown on line 1 in Algorithm 1. Once R has been located in its corresponding segment,
the real part of the input, x, is both added to and subtracted from the y-intercept of the
selected linear function without waiting for the results of k1 × R. Concurrently, a multiplier
with a two-stage pipelined architecture is used to calculate k1 × R. Then, the output of
the multiplier is added to b1 + x and b1 − x in parallel. After a rightward shift by one
bit, PB and QB in Algorithm 1 are calculated. The above circuit calculates the real and
imaginary values in parallel. It has the same results as lines 2–4 and 8 of Algorithm 1, but
the steps here are different because of the parallelization of the calculation of k1 × R with
the addition/subtraction between b1 and x. Finally, two PWL circuits are simultaneously
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employed to calculate
√

PB and
√

QB, corresponding to lines 6 and 10 in Algorithm 1.
Before the output is returned, it is truncated to 10 fractional bits after adding one (2−11) to
the 11th fractional bit.

.

.

.

st2

st3

stn

S1

S2
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011..1

001..1

000..0

.

.

.

k1, b1
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k3, b3

kn, bn

D

D

D

+

+

+

D
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m1Dm2D

D

x

k

b

k×x+b

(1: 1)S n

1n
S

Figure 5. Hardware architecture of the PWL and sel parts in Figure 4. The symbols with the format
stn in the comparator indicate the start point of the nth segment. The symbols Sn indicate the sign bit
of the nth comparator.

In total, our design includes five two-stage multipliers, seven adders, 49 comparators
and three multiplexers. In addition, the segmentor outputs the start point, end point,
slope and y-intercept of each segment. As shown in Figure 5, the start points of the
second-to-last segments are used as the inputs to the comparators. The slopes and y-
intercepts of all segments are selected by the signs of the comparators. If the number
of segments is n, then n − 1 start points, n slopes and n y-intercepts are stored on chip.
Three real square roots are calculated via the PWL method according to lines 2, 5 and 9 in
Algorithm 1. The total number of segments (NS) is 52. Thus, the required storage space
is (NS− 3)× qw + NS× (kw + qw) = 1576 bits. As shown in Figure 4, all multipliers in
our design are implemented with a two-stage pipelined architecture. Figure 5 shows the
implementation of each PWL circuit requires four clock cycles. As a result, the total number
of clock cycles required by the proposed architecture is 11.

To compare our design with the architectures in [8,10,11], we replicated these three
hardware implementations with errors at the same level as in our design. The synthesis
results are listed in Table 2. Additionally, ADP, defined as ADP = area× delay× power,
is introduced as a composite indicator of hardware implementation performance. The
fractional bit width of [8] was set to 11. The number of iterations and the fractional word
length in the replicated architectures of [10,11] were set to 11 and 14, respectively. The
MAE and AAE values of the circuits considered for comparison and our design are listed
in Table 2. Our design shows absolute predominance in precision compared with the
replicated designs of [8,10,11].

In the design of [8], the five most significant bits of the fractional part are used to
generate interpolation nodes, and the other five least significant bits are used to calculate
interpolation coefficients. Therefore, the size of the coefficient table is (25 + 2)2 × 11× 2 +
11× 4× 25 = 26,840 bits, which is 17 times that of our design. In addition, there are eight
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multipliers, two compressors and two adders in this design. The design in [8] also requires
11 clock cycles. However, it recycles computing resources. Five clock cycles are needed to
produce one valid output. In contrast, our design generates one output per cycle because it
is a fully pipelined architecture. In summary, our design achieves savings of 64.21% in area,
16.67% in delay, 65.08% in power, and 89.59% in ADP compared with [8].

In the design of [10], three kinds of CORDIC units are executed sequentially in the
following order: circular vectoring mode (CV) CORDIC, hyperbolic vectoring mode (HV)
CORDIC, and circular rotation mode (CR) CORDIC. To guarantee convergence, the fourth
iteration is executed twice. Because the number of iterations of the CORDIC units is set to
11, the total number of clock cycles for [10] is 34. The architecture of [11] includes one CV
CORDIC unit and two HV CORDIC units. Each HV CORDIC unit needs one additional
iteration. The two HV CORDIC units are executed in parallel. The two multipliers for
the scale factors of the CV and HV CORDIC units require two clock cycles. Moreover, the
intermediate adders require two more clock cycles. Hence, the architecture of [11] requires
27 clock cycles to produce its first output. Therefore, our proposed architecture saves 23
and 16 clock cycles compared with the designs in [10,11], respectively. Each iteration in the
architectures of [10,11] needs six 16-bit adders (one sign bit, one integer bit and 14 fractional
bits) and three 2:1 multiplexers. In [10], two additional 16-bit adders are used in addition
to 34 iteration modules. Therefore, the design of [10] consumes 206 16-bit adders and 102
2:1 multiplexers. In the hardware architecture presented in [11], three 16-bit multipliers
and six 16-bit adders are required in addition to 35 iteration modules. In total, the design
in [11] requires three 16-bit multipliers, 216 16-bit adders and 105 2:1 multiplexers. The
synthesized results @1 GHz in Table 2 show that our design achieves area, delay, power,
and ADP savings of 79.79%, 67.65%, 64.95%, and 97.71%, respectively, compared with [10]
and 81.61%, 59.26%, 69.44%, and 97.71%, respectively, compared with [11].

To more intuitively compare our design with the architectures based on the CORDIC
algorithm, we implemented a circuit for complex square root computation with the same
computing flow as our design in Figure 2. However, the square root computations were
implemented by means of the HV CORDIC algorithm instead of the PWL method as in
our design. The same HV CORDIC hardware architecture was used as in [17]. The number
of iterations and the fractional bit width were set to 11 and 13, respectively. The fourth
iteration must be calculated twice; thus, each HV CORDIC unit needs 12 iterations. After
the iterations, the output is multiplied by the reciprocal of the scale factor to obtain the
square root. In total, this architecture contains 219 adders and five multipliers. Because the
real and imaginary parts are calculated in parallel, the delay of this architecture is 29 clock
cycles. Our design achieves savings of 75.87% in area, 62.07% in delay, 60.47% in power,
and 96.38% in ADP compared with this architecture.

5. Conclusions, Limitations, and Future Research

In this article, we have proposed a VLSI architecture for the computation of the com-
plex square root based on a PWL method. The segmentor for nonlinear unary functions
in [16] is optimized by reducing the fractional bit width of the slopes of the linear functions
to reduce the hardware overhead of the multipliers. Based on this, a segmentor for com-
plex square root computation has been proposed and coded in MATLAB. The proposed
segmentor automatically achieves the fewest possible segments to meet a specified MAE
requirement given a predefined fractional bit width of the slope. Finally, based on the
output of the segmentor, a fully pipelined circuit can be implemented. Comparisons of
our design with existing implementations indicate that our design incurs less overhead in
terms of area, delay and power while achieving higher precision.

The proposed computation flow for the complex square root is suitable for computa-
tions of different precisions. In our design, the precision is 1 ulp (unit in the last place) of
10 fractional bits. To our knowledge, the PWL method can be employed when the precision
is lower than 1 ulp of 16 fractional bits. If the proposed method is used to calculate the
complex square root with a precision lower than 1 ulp of n fractional bits where n ≤ 16,
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MAEde f in Figure 1 is set to 2−n. Otherwise, the design process is the same as that described
in this article. The fractional bit widths and the number of segments must be larger if
the precision is higher than that of the design in this paper. The hardware architecture in
Figures 4 and 5 is also suitable for different bit widths and numbers of segments. In the
higher-precision situation, a piecewise higher-order polynomial approximation method
should be used in place of the PWL method. The segmentor in [16] should be replaced by
that in [18], which is based on a piecewise parabolic approximation method. Additionally,
the hardware architecture in Figure 5 should be replaced by that in [18] to calculate the
piecewise parabolic approximation method.

Notably, the proposed method is also suitable for the computation of other arithmetic
operations on complex numbers with different computation flows. In accordance with the
complex arithmetic formula, the calculation process in Figure 2 should be adjusted through
a process similar to that for the proposed segmentor shown in Figure 1.

However, different arithmetic operations on complex numbers cannot share a unified
hardware architecture based on this approach. Therefore, we will conduct additional
research seeking a universal, uniform and high-performance hardware implementation for
complex arithmetic.
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The following abbreviations are used in this manuscript:

PWL Piecewise linear
FPGA Field-programmable gate array
CORDIC Coordinate rotation digital computer
VLSI Very-large-scale integration
PLAC Piecewise linear approximation computation
CVNN Complex-valued neural network
MAE Maximum absolute error
MAEun Predefined MAE for the segmentation of a real square root function
MAEcomplex MAE of the complex square root computation
MAEde f Predefined MAE for the segmentation of a complex square root function
MAEl Left edge of the bisection window
MAEr Right edge of the bisection window
MAEc MAE of the circuit
MAEreal MAE of the circuit for computing the real part
MAEimg MAE of the circuit for computing the imaginary part
AAE Average absolute error
AAEreal AAE of the circuit for computing the real part
AAEimg AAE of the circuit for computing the imaginary part
kw Fractional bit width of the slope
qw Fractional bit width of the other intermediate data excepting the slope
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