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Abstract: Network clustering for mining protein complexes from protein–protein interaction (PPI)
networks has emerged as a prominent research area in data mining and bioinformatics. Accurately
identifying complexes plays a crucial role in comprehending cellular organization and functionality.
Network characteristics are often useful in enhancing the performance of protein complex detection
methods. Many protein complex detection algorithms have been proposed, primarily focusing on
local micro-topological structure metrics while overlooking the potential power-law distribution
characteristic of community sizes at the macro global level. The effective use of this distribution
characteristic information may be beneficial for mining protein complexes. This paper proposes
a network clustering algorithm for protein complex detection fused with power-law distribution
characteristic. The clustering algorithm constructs a cluster generation model based on scale-free
power-law distribution to generate a cluster with a dense center and relatively sparse periphery.
Following the cluster generation model, a candidate cluster is obtained. From a global perspective,
the number distribution of clusters of varying sizes is taken into account. If the candidate cluster
aligns with the constraints defined by the power-law distribution function of community sizes, it
is designated as the final cluster; otherwise, it is discarded. To assess the prediction performance
of the proposed algorithm, the gold standard complex sets CYC2008 and MIPS are employed as
benchmarks. The algorithm is compared to DPClus, IPCA, SEGC, Core, SR-MCL, and ELF-DPC in
terms of F-measure and Accuracy on several widely used protein–protein interaction networks. The
experimental results show that the algorithm can effectively detect protein complexes and is superior
to other comparative algorithms. This study further enriches the connection between analyzing
complex network topology features and mining network function modules, thereby significantly
contributing to the improvement of protein complex detection performance.

Keywords: data mining; network clustering; protein complex detection; power-law distribution;
topological characteristics

1. Introduction

Cells rely on the interaction of multiple proteins for life activities. A protein complex,
formed through interactions, consists of molecules with similar functions. Detecting protein
complexes in protein–protein interaction (PPI) networks facilitates the exploration of the
relationships between network structures and function modules. Moreover, it plays a
crucial role in annotating the proteins with unknown functions and gaining insights into
the organization and functionality of cells [1].
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Researchers have proposed many experimental methods to identify the interactions
between proteins, including yeast two-hybrid (Y2H) [2,3] and tandem affinity purification
(TAP) [4]. These methods have generated a vast amount of protein–protein interaction
(PPI) data, which serve as valuable support for the application of data mining techniques
in protein complex detection.

A PPI dataset is usually abstracted as an undirected network, wherein proteins are
nodes and the interactions between proteins are edges. A PPI network contains different
protein function modules [5]. Generally, a protein complex is a biological functional
module [6] comprising two or more proteins that share the same function. Proteins in
the same protein complex exhibit strong connections, whereas the proteins belonging
to different complexes have weaker connections. Detecting protein complexes from PPI
networks aims to discover sets of proteins with dense connections. This process can be
viewed as a network clustering task, wherein clusters are determined based on topological
features, where the connection strength within a cluster is greater than that between
clusters [7,8]. This process yields disjoint or overlapping clusters as its outcome [9].

Various network clustering algorithms for identifying protein complexes have been
developed. In general, these algorithms include graph partition algorithms, density-based
local search algorithms, and algorithms based on graph embedding [10–12].

The clustering algorithm based on graph partition divides nodes into clusters ac-
cording to an objective function, aiming to identify an optimal partitioned network. It
maximizes the similarity between nodes within each cluster while minimizing the similar-
ity between different clusters. One well-known algorithm in this category is the Markov
algorithm (MCL) [13,14]. MCL begins by constructing the initial flow matrix based on
a PPI network and then simulates random flow through the network using the concept
of random walk to partition the entire network into sub-graphs with high connectivity
probability. The collection of nodes within each sub-graph represents a protein complex.
However, MCL does not handle overlapping clusters. To address this limitation, the soft
regularized MCL (SR-MCL) algorithm was developed, which enables the identification of
overlapping clusters.

The density-based local search clustering algorithm focuses on identifying dense
sub-graphs based on the characteristic of connection density. Among the various network
clustering methods, one approach aims to find k-closely connected sub-network modules,
such as the Closely Connected Percolation Method (CPM) [15]. CPM initially identifies
closely connected subnets within the network and subsequently identifies k-closely con-
nected subnet modules based on these initial subnets. A few approaches are also known
as the seed expansion method. They select a node as a seed and expand around the seed
to a cluster according to certain rules. One example of the seed expansion method is the
density peak clustering (DPClus) algorithm [16]. DPClus introduces the concept of “cluster
periphery” in protein interaction networks. It assigns edge weights based on common
neighbor counts between interacting proteins, while node weights are determined by the
sum of their adjacent edges’ weights. The peripheral value of a node within a cluster is
determined as the ratio of its adjacent nodes to the total number of nodes in the cluster.
The algorithm starts by selecting the highest-weighted node as the seed for the initial
cluster. Edge weights are influenced by common neighbor counts, and node weights reflect
the density of immediate neighbors. If nodes satisfy both the custom threshold for local
density and the threshold for cluster peripheral value, DPClus iteratively adds the nodes to
obtain the final cluster. To account for the minimum diameter and average node distance
characteristics of protein complexes, the improved DPClus algorithm (IPCA) [17] enhances
DPClus through the integration of sub-graph diameters and interaction probabilities, which
provide insights into the density of the network. Other methods in this category include
SEGC [18], Core [19], etc.

Network clustering algorithms based on graphs embed map network nodes onto a
lower-dimensional vector space by encoding their properties [20]. This mapping preserves
the topological characteristics of the nodes as much as possible. Subsequently, a network
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clustering was performed in this transformed vector space [21,22]. One example of such an
algorithm is the ensemble learning framework for density peak clustering (ELF-DPC) [23].
ELF-DPC first maps the PPI network to the vector space and constructs a weighted network
to identify core edges. By integrating structural modularity and trained voting regression
models, the algorithm creates an ensemble learning model. ELF-DPC then expands the
core edges into clusters based on this learning model.

The PPI network, as a type of complex network, exhibits intricate network topology
characteristics [24–26]. The fundamental features used to describe the network topol-
ogy are primarily derived into three levels. Firstly, micro-topological structure metrics
focus on individual nodes or edges, including measures such as node degree and central-
ity [27,28]. Secondly, meso-topological metrics analyze groups of nodes, such as community
structure [29], modules, and motifs. Lastly, macro-topological metrics consider the entire
network, encompassing aspects such as degree distribution and community size distribu-
tion. Developing a network clustering algorithm that incorporates these network features
can enhance the accuracy of community detection [30]. At present, seed expansion methods
can effectively utilize network features. However, existing algorithms mainly consider local
micro-topological structure features [31] and ignore the potential distribution characteristics
of community size at a macro-global level. The distribution of community sizes in the PPI
network exhibits a certain correlation with power-law distribution [32].

In this paper, we present a novel network clustering approach that incorporates the
characteristics of power-law distribution to identify protein complexes. Our proposed
algorithm, named GCAPL, encompasses two main stages: cluster generation and cluster
determination. During the cluster generation stage, the GCAPL algorithm incorporates
node degree and clustering coefficient to assign weights to nodes. The unclustered nodes
with the highest weight were selected as seeds. Following that, a cluster generation model
leveraging the scale-free power-law distribution was given to discovery clusters with
dense centers and sparse peripheries. Through an iterative process, candidate nodes were
added to the seeds to form candidate clusters using the cluster generation model. In the
cluster determination stage, we constructed a power-law distribution function about the
distribution of cluster sizes and the cluster total number. The function acts as a criterion to
regulate the presence of clusters of various sizes. By applying the power-law distribution
function, we can assess whether a candidate cluster qualifies as a final cluster.

This paper makes several significant contributions: (1) Integrating multiple available
basic micro-topological structural information into the k-order neighborhood of a node for
seed selection; (2) Constructing a cluster generation model considering scale-free power-law
distribution to obtain inherent organization information of functional modules; (3) Giving
a cluster determination model based on macro-topological structure characteristic of the
number distribution of clusters of different sizes to constrain final clusters; (4) Verifying
the proposed network clustering algorithm fused with topological structural information
could effectively mine functional modules by the experiment results on the real datasets.

The other sections of our paper are as follows. Section 2 introduces preliminary
concepts and symbols. Section 3 presents a network clustering algorithm fused with power-
law distribution characteristics. Section 4 reports the relevant experiments to verify the
effectiveness of the network clustering algorithm. Section 5 provides conclusions.

2. Preliminary

A PPI network is represented by an undirected network G = (V, E), with V as the set of
proteins (nodes) and E as the set of interactions (edges) between proteins. Dia(G) represents
the diameter of the network G, which corresponds to the maximum value in the shortest
path between any two nodes in the network G. The k-adjacent nodes set of a given node vi
is denoted as NEk(vi), and it is defined by

NEk(vi) =

{
NE(vi) i f k = 1
NEk−1(vi) ∪

{
vj ∈ V

∣∣distance
(
vi, vj

)
= k

}
i f k > 1

(1)
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where distance(vi, vj) represents the length of the distance between nodes vi and vj.
The clustering coefficient of vi [33] is

CCE(vi) =
2|ES(H(vi))|

|NE(vi)|(|NE(vi)| − 1)
(2)

where H(vi) represents sub-graph created by the directly adjacent node set NE(vi), and
ES(H(vi)) =

{(
vj, vl

)∣∣vj, vl ∈ NE(vi),
(
vj, vl

)
∈ E

}
. A network’s clustering coefficient

CCE(vi) is calculated as the average value of the clustering coefficients of all nodes in the
node set V, i.e., CCE(G) = ∑

|V|
i=1 CCE(vi). In order to facilitate readers’ reading of this

paper, some main symbols and their corresponding meanings are listed in Table 1.

Table 1. Main symbols and their corresponding meanings.

Symbols Meaning

G = (V, E) Network G is composed of a collection of nodes V and
set of edges E.

vi Node i in a certain node set.(
vi, vj

)
The edge between nodes i and j.

distance
(

vi, vj

)
The shortest path distance between nodes i and j.

NEk Set of k-neighbors.
ES(M) The set of edges within sub-graph M.
CCE The clustering coefficient for a node
ND The degree of a node in the network.
w(.) The weight for a node or an edge
Xsize Set of cluster sizes
Ynum Set of cluster numbers

CT(u, M)
The tightness measure of node u with respect to

sub-graph M.
CS(v) Node set generated by the selected seed v.
Dia(G) The diameter of a network G

PC Final cluster set
λ Rate of change

3. Methods

GCAPL algorithm consists of two stages: cluster generation and cluster determination.
In the first stage, the algorithm calculates the weights of nodes and edges by incorporating
micro-topological structure metrics. A seed is the node that has the highest weight among
the unclustered nodes. The seed is expanded by a cluster generation model considering a
scale-free power-law distribution to a candidate cluster. In the second stage, we established
the cluster determination model with a power-law distribution of the cluster numbers
with different cluster sizes. This cluster decision model was utilized to determine the final
clusters. Figure 1 shows the algorithm flow chat.

3.1. Cluster Generation

In the cluster generation stage, the GCAPL algorithm initially selects seeds based on
node weights and subsequently expands these seeds using the cluster generation model to
obtain candidate clusters.

To identify a suitable seed node, a node with a higher weighted degree may be a good
seed node in network community mining. A node with a higher weighted degree may
serve as a useful seed node in network community mining. The weighted degree of a node
vi is calculated based on its directly adjacent edges and the weights associated with these
edges, and was defined as:

w(vi) = ∑
vj∈NE(vi)

w
(
vi, vj

)
(3)
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For an edge
(
vi, vj

)
, the endpoints of the edge and the common adjacent nodes be-

tween these endpoints are tightly surrounding this edge. We can obtain the edge weight of(
vi, vj

)
according to the importance of these nodes in topological characteristics. The micro-

topological structure metrics, such as clustering coefficient and node degree, are employed
to capture the topological characteristics and assign weights to nodes. For a dense submod-
ule in a network, nodes with high clustering coefficients and low node degrees may serve
as important central nodes. The topological characteristics of a node vi is expressed by the
ratio of its clustering coefficient CCE(vi) to its node degree ND(vi), i.e., CCE(vi)/ND(vi).
More comprehensively, the global information of a network is introduced. A network G’s
clustering coefficient FC(G) is defined as the average value of the clustering coefficients of
all nodes in the node set V, i.e., FG(G) = CCE(G). Similarly, the G’s node degree FD(G) is
the average of all node degrees in the network, i.e., FD(G) = ND(G). In the network G,

the connection strength of a node vi is related to CCE(vi)

CCE(G)
× ND(G)

ND(vi)
. Therefore, the weight of

the edge
(
vi, vj

)
can be defined as follows:

w
(
vi, vj

)
= CCE(vi)

CCE(G)
× ND(G)

ND(vi)
+

CCE(vj)
CCE(G)

× ND(G)

ND(vj)
+

∑
u∈NE(vi)∩NE(vj)

CCE(vu)

CCE(G)
× ND(G)

ND(vu)

(4)

Furthermore, Equation (4) from the previous section only considers the information of
the node’s direct neighbors. To highlight the importance of an edge within a large network
module, the edge weight in its t neighborhood can be defined as follows:

wt(vi, vj
)
= wt−1(vi)×

CCE(vi)

CCE(G)
× ND(G)

ND(vi)
+

wt−1(vj
)
× CCE(vj)

CCE(G)
× ND(G)

ND(vj)
+

∑
u∈NE(vi)∩NE(vj)

wt−1(u)× CCE(vu)
CCE(G)

× ND(G)
ND(vu)

(5)
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Here, t is a predefined parameter that determines the extent of the neighborhood.
After the t-th iteration, the node weight can be defined as:

wt(vi) = ∑
vj∈NE(vi)

wt(vi, vj
)

(6)

Initially, the node weights are set to w0(vi) = 1 for all nodes, indicating that the initial
importance of all nodes is the same.

Once the node weight calculation is completed, the next step is to select a seed node v
from the node set V whose node weight is highest. Following that, the seed node is used to
establish the cluster generation model, which allows for the expansion of the seed into a
candidate cluster.

The cluster generation model aims to expand seed nodes into candidate clusters
based on connection strength. The obtained seed node v serves as the initial cluster
CS(v), and candidate nodes from the neighborhood NE(C(v)) are considered for addition
based on the compactness of CS(v) and the connection strength between CS(v) and a
candidate node u to expand the initial cluster CS(v). The compactness g of the cluster
CS(v) quantifies the connection density within the cluster and is defined as g(u, CS(v)) =
|NE(u) ∩V(CS(v))|/|V(CS(v))|, where V(CS(v)) represents a set of nodes that make up
C(v), and |NE(u)| denotes the node u’s direct neighbor nodes. The connection strength
h of a candidate node u reflects the peripheral edges of the cluster and is defined as
h(u, CS(v)) = |NE(u) ∩V(CS(v))|/|NE(u)|. The cluster generation model requires a
variable function to combine the compactness of the cluster and the peripheral edges of the
cluster, so that as the cluster size increases, the contribution of the cluster’s compactness to
the cluster generation gradually decreases while the contribution of the cluster’s peripheral
connections to the cluster generation gradually increases. A suitable choice for this function
is the scale-free power-law distribution function, which is a monotonic function. It serves
as a foundation for constructing the variable function that effectively fuses the above two
kinds of connection information. A power-law distribution function is y = cx−k and let
c = 1/λ, k = ND(v), x = V(CS(v))− 1, then we can define the variable function as:

β(CS(v)) =
1

λ× ND(v)
√

V(CS(v))− 1 + 1
(7)

where λ is a parameter to control the change of β(CS(v)). Then, define the cluster genera-
tion model as:

CT(u, CS(v)) = β(CS(v))g(u, CS(v))+
(1− β(CS(v)))h(u, CS(v))

(8)

When β(CS(v)) is set to 1, CT tends to prioritize the formation of dense clusters. On the
other hand, when β(CS(v)) is set to 0, nodes with lower degrees are more likely to be added
to CS(v). The β(CS(v)) enables the cluster generation model to find both dense clusters
and clusters with dense cores and sparse peripheries, providing flexibility in capturing
different types of cluster structures. For each candidate node u and threshold µ ∈ [0, 1],
if CT(u, CS(v)) > µ and Dia([CS(v) ∪ {u}]) ≤ δ (δ is a user-defined threshold), then the
node u is added to the cluster CS(v). This process is repeated for each node in NE(CS(v)),
resulting in the initial formation of a candidate cluster CS(v).

3.2. Cluster Determination

In complex networks, the distribution of community size exhibits heterogeneity.
Smaller communities tend to be more abundant in number, while larger communities
are relatively scarce. This inverse relationship between size and number also holds in PPI
networks, where the sizes and numbers of protein complexes are inversely proportional. It
is assumed that the number of complexes follows a power-law distribution that is defined
as follows:

y = cx−k (9)
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where x and y represent positive random variables.
Let the size of a protein complex be Xsize. The corresponding number of the complexes

under this size is given by a cluster determination model:

Ynum = cXsize
−k (10)

where c and k are positive parameters.
The cluster determination model aims to effectively regulate the number of clusters,

considering their varying sizes, from a global perspective. To accomplish this, we defined
two sequences: Xsize =

{
x1

size, x2
size, . . . , xn

size
}

is a predefined sequence with uniform values
representing the cluster sizes, and Ynum =

{
y1

num, y2
num, . . . , yn

num
}

is a sequence obtained
through the cluster generation model representing the corresponding cluster numbers.

Let the cluster CS(v)’s size be denoted as |V(CS(v))| and errorsize be a parameter that
refers to the allowable difference or deviation in the size of a cluster. Following that, we can
find a value xi

size with |V(CS(v))| ∈
[
xi

size − errorsize, xi
size + errorsize

]
in Xsize, assuming

that y
′
num clusters of size xi

size have been generated at the current stage. We calculated the
maximum number of clusters yi

num corresponding to a given cluster size xi
size according

to the power-law distribution function. If y
′
num ≤ yi

num, the candidate cluster CS(v) is
considered a final cluster. Otherwise, CS(v) is discarded.

The two stages of cluster generation and cluster determination are repeated alternately
until all nodes have been clustered.

3.3. Complexity Analysis

The GCAPL algorithm utilizes linked lists to construct a graph. First, it calculates
the weights of all nodes using Formula (6). Following that, it selects the node with the
highest weight as the seed and treats it as the initial cluster. Subsequently, following the
cluster generation model, neighbor nodes of the initial cluster are incrementally added
to create candidate clusters. Finally, the algorithm determines the final clusters by the
cluster determination model. The specific process of the GCAPL algorithm is shown in
Algorithm 1.

Algorithm 1: GCAPL Algorithm.

Input: Network G = (V, E), Parameters iter, λ, µ for cluster generation, Parameters c, k, errorsize
for Cluster determination
output: Set of final clusters PC
1: Initialize PC = ∅, and the unclustered nodes set, UV = V;
2: Compute edge and node weights by utilizing information within the t-neighborhood;
3: Determine the cluster size set Xsize =

{
x1

size, x2
size, . . . , xn

size
}

;
4: Calculate the upper limit of the number of clusters Ynum =

{
y1

num, y2
num, . . . , yn

num
}

,
corresponding to the cluster size Xsize using Equation (9);
5: while UV 6= ∅, do
6: Select a node v with the largest weight in UV as a seed, and the initial cluster is CS(v);
7: Iteratively select the node set AN among the neighbor nodes of CS(v), such that each node u
in AN satisfies CT(u, H) > µ and Dia([CS(v) ∪ {ui}]) ≤ δ;
8: CS(v) = CS(v) ∪ AN;
9: Compute the cluster CS(v)’s size as |V(CS(v))|, and compute the number of generated
clusters with size |V(CS(v))| as y

′
num;

10: Find xi
size in Xsize, and |V(CS(v))| ∈

[
xi

size − errorsize, xi
size + errorsize

]
11: Compute the number of generated clusters of size |V(CS(v))| as y

′
num

12: if y
′
num ≤ yi

num then
13: PC = PC ∪ {CS(v)},UV = UV − CS(v)
14: return PC



Electronics 2023, 12, 3007 8 of 16

The time cost of the GCAPL algorithm lies in two parts: cluster generation and
cluster determination.

Assuming a network G has n nodes and m edges. In the cluster generation stage, the
node weighting process revealed a time cost of O(k × ND × n) = O(k × m). The time
cost of seed selection based on node weights is O(n× log n). The expansion of seeds into
clusters also has a time cost of O(n× log n). Therefore, O(|PC| × n× log n) is the total time
complexity of the cluster generation phase.

In the cluster determination phase, the worst-case scenario is when each candidate
cluster size needs to be compared with each element in the sequence Xsize. As a result,
this phase revealed a time cost of O(n× |Xsize|). Therefore, algorithm GCAPL’s overall
time complexity is O(|PC| × n× log n), considering both the cluster generation and cluster
determination phases.

4. Experiments and Results
4.1. Datasets

The protein interaction networks used in the experiments are presented in Table 2.
These datasets were processed to remove self-intersections and duplicate interactions.

Table 2. Datasets of protein interaction networks.

Gavin02 [34] Gavin06 [35] K-Extend [36] BioGRID [37]

Proteins 1352 1430 3672 4187
Interactions 3210 6531 14,317 20,454

The gold standard complex datasets CYC2008 [38] and MIPS [39] were utilized for
parameter analysis and evaluation of the clustering results.

4.2. Evaluation Metrics

The evaluation of the effectiveness of the GCAPL algorithm was performed using the
F-measure and Accuracy metrics as evaluation criteria.

The F-measure [40] provides a balanced measure of precision and recall. It serves as a
quantitative metric of the agreement between a predicted complex set and a benchmark
complex set, capturing the level of similarity between them. Precision measures the
agreement between the generated clusters and known complexes, while recall quantifies
the agreement between the known complexes and the generated clusters.

Given the generated cluster as PC =
{

PC1, PC2, . . . , PCp
}

and the gold standard complex
as TC = {TC1, TC2, . . . , TCl}, the affinity score within the neighborhood NA

(
PCi, TCj

)
is em-

ployed for quantifying the similarity between the generated cluster PCi and the standard com-
plex TCj, and NA

(
PCi, TCj

)
=
∣∣PCi ∩ TCj

∣∣2/
∣∣PCi|×|TCj

∣∣, i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , l}.
A higher NA

(
PCi, TCj

)
value indicates a stronger resemblance between PCi and TCj. As-

suming a threshold of µ = 0.2 [40,41], if NA
(
PCi, TCj

)
≥ µ, PCi and TCj can be considered

as matched. Let MC represent the set of correct predictions, where each generated cluster
exhibits some correspondence with at least one known protein complex in the set TC, and
MC =

{
PCi
∣∣PCi ∈ PC ∧ ∃j

(
TCj ∈ TC ∧ NA

(
PCi, TCj

)
≥ µ

)}
. Additionally, let MCO be the

set of known complexes, where each complex matches at least one complex in the generated
cluster set PC, and MCO =

{
TCj

∣∣TCj ∈ TC ∧ ∃i
(
PCi ∈ PC ∧ NA

(
PCi, TCj

)
≥ µ

)}
.

Precision is quantitatively calculated as the ratio of the number of correctly predicted
instances to the total number of predicted instances, i.e., Precision = |MC|/|PC|. Recall is
defined as Recall = |MCO|/|TC|. F-measure is quantitatively calculated as

F−measure = 2× Precision× Recall/(Precision + Recall) (11)
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Accuracy, as another evaluation metric, is computed as the geometric mean of the
positive predictive value (PPV) and sensitivity (Sn). PPV represents the proportion of
correctly identified positive instances among the predicted instances, while Sn measures
the proportion of correctly identified positive instances among all actual positive instances.

Suppose T is a p× l matrix, in which the i-th row of T represents the i-th prediction
cluster PCi and the j-th column represents the j-th annotation complex TCj. Tij denotes the
count of shared proteins between the predicted complex PCi and the known complex TCj
and quantifies the degree of overlap or similarity between these two complexes. PPV is
characterized by

PPV =
∑

p
i=1 ∑l

j=1

(
Tij ×maxl

j=1

(
Tij

∑l
j=1 Tij

))
∑

p
i=1 ∑l

j=1 Tij
(12)

Sn is defined as

Sn =
∑l

j=1

(∣∣TCj
∣∣×maxp

i=1

(
Tij

|TCj|

))
∑l

j=1
∣∣TCj

∣∣ (13)

Accuracy [39] is then calculated as

Accuracy =
√

PPV × Sn (14)

4.3. Parametric Analysis

GCAPL encompasses several predefined parameters, including c, k ∈ [2, 3], errorsize,
iter, λ ∈ [0, 1], and µ ∈ [0, 1]. The coefficients c and k correspond to the coefficients and
exponents of the power-law distribution function, respectively. The errorsize is a cluster
size error. The iter refers to the count of repetitive steps. The λ stands for an adaptive
parameter. The µ is defined as the compactness threshold. The BioGrid dataset serves
as a standard protein interaction network dataset, wherein all interactions are derived
from reliable and precise low-throughput theoretical interactions. Consequently, on this
dataset, the parameter optimization aims to maximize the value of F−measure + Accuracy,
prompting a thorough parameter analysis to identify the optimal parameter value.

The analysis of parameters c, k, and errorsize was performed to investigate the impact
of these parameters on the algorithm. The coefficient c and the exponent k were utilized
to generate the sequences Xsize and Ynum based on the power-law distribution function.
Meanwhile, the parameter errorsize was employed to regulate the error tolerance in cluster
size. Initially, the analysis focuses on varying c and k while keeping the parameter errorsize
constant. Subsequently, the investigation shifts to studying the influence of the parameter
errorsize while maintaining c and k at constant values.

We first fixed errorsize = 6, and experiments were conducted on the BioGrid PPI
network to investigate the impact of the parameters c and k. The values of c ranged from
100 to 250, while k varied from 2.0 to 3.0. These experiments aimed to assess how the
changes in c and k influenced the results and outcomes of the study. When the values of
c = 200 and k = 2.2 are set, the F−measure + Accuracy metric attains a higher value. Next,
we first fixed c = 200, k = 2.2 and F−measure + Accuracy is maximized at errorsize = 6.
We set c = 200, k = 2.2, errorsize = 6. In Figure 2a, the impact of parameters c and k on
F − measure + Accuracy is illustrated, with errorsize = 6. The relationship between the
parameter errorsize and F − measure + Accuracy are depicted in Figure 2b, with c = 200
and k = 2.2.
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Next, we kept the values of c = 200, k = 2.2, and errorsize = 6 fixed, and analyzed the
real-valued discrete parameters: the number of iterations iter, the adjustment parameter
λ ∈ [0, 1] of the change rate, and the tightness threshold µ ∈ [0, 1]. Considering the
interdependence among these parameters, an orthogonal matrix was employed to identify
the optimal parameter combination with a high likelihood. During the experimental
design phase, each parameter variable was treated as an independent factor. Feasible
values corresponding to these factors are assigned as distinct levels. The complete set
of parameter combinations represents the experimental space. An orthogonal array L36
(63 × 37) is employed, which comprises 36 parameter combinations. There are parameters,
iter ∈ {1, 2, 3, 4, 5, 6}, λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, that
we exclusively consider the initial three columns of the orthogonal array to facilitate the
analysis. Among the 36 parameter combinations, the one with the highest F−measure +
Accuracy is selected as the optimal configuration. Through the experiments, the parameters
are set to iter = 2, λ = 0.1, and µ = 0.4.

4.4. Power-Law Distribution Analysis

This subsection examines the power-law distribution of network clustering results,
taking the BioGRID dataset as an example. The clustering result of this dataset was utilized
to explore the relationship between the cluster size and number.

Assume that the cluster size is represented by x and the corresponding number of
clusters is denoted by y. According to Equation (9), we have y = cx−k. By performing
logarithm operations on both sides of the equation, it represents that

ln y = ln c− k ln x (15)

It was observed that ln y and ln x exhibit a linear relationship. Thus, the analysis of
the power-law distribution of x and y was transformed into a linear relationship analysis of
ln x and ln y.

In the clustering result of the BioGRID dataset, we took the logarithm of the cluster
size x and the corresponding cluster number y, resulting in transformed variables x′ = ln x
and y′ = ln y. To explore whether there is a linear relationship between x′ and y′, a
linear fitting method was performed on x′ and y′. The results of the linear fitting analysis
conducted on x′ and y′ is shown in Figure 3, providing valuable insights into the nature of
their relationship.
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Table 3 presents the calculated p-value and R2 for the linear fitting analysis conducted
on x′ and y′. A small p-value indicates a strong fit of the clustering result, demonstrating
good fitting effectiveness. Similarly, a large value of R2 suggests a favorable fit. In Table 3,
the obtained p-value is 9.9× 10−7, and the value of R2 is 0.5. Thus, the sizes of clusters
generated by the proposed algorithm in the PPI network follow a power-law distribution,
along with the corresponding numbers of these clusters.

Table 3. Fitting effect of x′ and y′.

Criteria Value

p-value 9.90771462 × 10−7

R2 0.5001443526421876

4.5. Comparative Experiment

To assess the algorithm’s performance, we compared the GCAPL algorithm with
several other algorithms, namely DPClus, IPCA, SEGC, Core, SR-MCL, and ELF-DPC.

Figure 4a–d present the experimental results on the Gavin02, Gavin06, K-extend, and Bi-
oGRID datasets, using CYC2008 as the standard set. The results demonstrate that, compared
to other algorithms, the GCAPL algorithm achieves comparable or higher F-measure and
Accuracy values. The GCAPL algorithm performs well in terms of F−measure + Accuracy.
Compared with other algorithms, the F-measure + Accuracy of GCAPL exhibits an average
improvement of 13.12%, 6.97%, 14.43%, and 14.39% on Gavin02, Gavin06, K-extend, and
BioGRID. In addition, the SEGC algorithm demonstrates lower F-measure and Accuracy
performance compared to GCAPL on the Gavin02, K-extend, and BioGRID datasets. On the
Gavin06 dataset, the DPClus algorithm performs better than other algorithms, except for the
GCAPL algorithm. The GCAPL algorithm has a similar framework to the two algorithms
mentioned above, and incorporating macro-topological information contributes to improv-
ing complex detection performance. By considering both the micro-topological structure of
a network and the macro-topological structure feature of the power-law distribution, the
GCAPL algorithm effectively detects protein complexes.

Figure 5a–d illustrate the evaluation results of the DPClus, IPCA, SEGC, Core, SR-MCL,
ELF-DPC, and GCAPL algorithms on the Gavin02, Gavin06, K-extend, and BioGRID datasets,
respectively, using MIPS as the standard set. The GCAPL algorithm consistently exhibits
superior values of F-measure and Accuracy across the four different PPI datasets compared to
compared algorithms. Compared with other algorithms, the F-measure + Accuracy of GCAPL
exhibits an average increase of 9.90%, 7.01%, 14.34%, and 13.63% on Gavin02, Gavin06,
K-extend, and BioGRID. This indicates that the GCAPL algorithm performs well in terms
of its ability to detect protein complexes.



Electronics 2023, 12, 3007 12 of 16

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

ro-topological structure feature of the power-law distribution, the GCAPL algorithm 
effectively detects protein complexes. 

Figure 5a–d illustrate the evaluation results of the DPClus, IPCA, SEGC, Core, 
SR-MCL, ELF-DPC, and GCAPL algorithms on the Gavin02, Gavin06, K-extend, and 
BioGRID datasets, respectively, using MIPS as the standard set. The GCAPL algorithm 
consistently exhibits superior values of F-measure and Accuracy across the four different 
PPI datasets compared to compared algorithms. Compared with other algorithms, the 
F-measure + Accuracy of GCAPL exhibits an average increase of 9.90%, 7.01%, 14.34%, and 
13.63% on Gavin02, Gavin06, K-extend, and BioGRID. This indicates that the GCAPL 
algorithm performs well in terms of its ability to detect protein complexes. 

  
(a) (b) 

  
(c) (d) 

Figure 4. CYC2008 as benchmarks. Evaluation results by different algorithms on (a) Gavin02; (b) 
Gavin06; (c) K-extend; (d) BioGRID. 

  
(a) (b) 

Figure 4. CYC2008 as benchmarks. Evaluation results by different algorithms on (a) Gavin02;
(b) Gavin06; (c) K-extend; (d) BioGRID.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

ro-topological structure feature of the power-law distribution, the GCAPL algorithm 
effectively detects protein complexes. 

Figure 5a–d illustrate the evaluation results of the DPClus, IPCA, SEGC, Core, 
SR-MCL, ELF-DPC, and GCAPL algorithms on the Gavin02, Gavin06, K-extend, and 
BioGRID datasets, respectively, using MIPS as the standard set. The GCAPL algorithm 
consistently exhibits superior values of F-measure and Accuracy across the four different 
PPI datasets compared to compared algorithms. Compared with other algorithms, the 
F-measure + Accuracy of GCAPL exhibits an average increase of 9.90%, 7.01%, 14.34%, and 
13.63% on Gavin02, Gavin06, K-extend, and BioGRID. This indicates that the GCAPL 
algorithm performs well in terms of its ability to detect protein complexes. 

  
(a) (b) 

  
(c) (d) 

Figure 4. CYC2008 as benchmarks. Evaluation results by different algorithms on (a) Gavin02; (b) 
Gavin06; (c) K-extend; (d) BioGRID. 

  
(a) (b) 

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17 
 

 

  
(c) (d) 

Figure 5. MIPS as benchmarks: Evaluation results by different algorithms on (a) Gavin02; (b) 
Gavin06; (c) K-extend; (d) BioGRID. 

In summary, the GCAPL algorithm has good performance in detecting protein 
complexes. The GCAPL algorithm uses not only micro-topological structure metrics but 
also the macro-topological structure characteristic of the power-law distribution about 
clusters, and it can obtain be er results in complex detection. The GCAPL algorithm 
further explores the relationship between network topological characteristics and func-
tional modules in PPI networks, which is of great significance for improving the accuracy 
of protein complex detection. 

4.6. Examples of Predicted Complexes 
In this subsection, four predicted protein complexes with different sizes detected by 

the GCAPL algorithm are exhibited, and their corresponding network topology struc-
tures are shown in Figure 6. The predicted complex in Figure 6a is a fully interconnected 
network. Figure 6b shows a cluster that has a dense sub-graph with a relatively sparse 
periphery. Figure 6c,d show two clusters that are dense sub-graphs. Table 4 presents the 
Gene Ontology annotations of these predicted protein complexes in three aspects of bio-
logical processes, molecular functions, and cell components with corresponding signifi-
cance p-values. The obtained p-values are notably small, indicating that these clusters 
have significant biological significance. The effectiveness of the GCAPL algorithm is 
demonstrated in its ability to identify protein complexes with multiple network struc-
tures. 

  
(a) (b) 

Figure 5. MIPS as benchmarks: Evaluation results by different algorithms on (a) Gavin02; (b) Gavin06;
(c) K-extend; (d) BioGRID.



Electronics 2023, 12, 3007 13 of 16

In summary, the GCAPL algorithm has good performance in detecting protein com-
plexes. The GCAPL algorithm uses not only micro-topological structure metrics but also
the macro-topological structure characteristic of the power-law distribution about clus-
ters, and it can obtain better results in complex detection. The GCAPL algorithm further
explores the relationship between network topological characteristics and functional mod-
ules in PPI networks, which is of great significance for improving the accuracy of protein
complex detection.

4.6. Examples of Predicted Complexes

In this subsection, four predicted protein complexes with different sizes detected by
the GCAPL algorithm are exhibited, and their corresponding network topology structures
are shown in Figure 6. The predicted complex in Figure 6a is a fully interconnected network.
Figure 6b shows a cluster that has a dense sub-graph with a relatively sparse periphery.
Figure 6c,d show two clusters that are dense sub-graphs. Table 4 presents the Gene Ontology
annotations of these predicted protein complexes in three aspects of biological processes,
molecular functions, and cell components with corresponding significance p-values. The
obtained p-values are notably small, indicating that these clusters have significant biological
significance. The effectiveness of the GCAPL algorithm is demonstrated in its ability to
identify protein complexes with multiple network structures.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17 
 

 

  
(c) (d) 

Figure 5. MIPS as benchmarks: Evaluation results by different algorithms on (a) Gavin02; (b) 
Gavin06; (c) K-extend; (d) BioGRID. 

In summary, the GCAPL algorithm has good performance in detecting protein 
complexes. The GCAPL algorithm uses not only micro-topological structure metrics but 
also the macro-topological structure characteristic of the power-law distribution about 
clusters, and it can obtain better results in complex detection. The GCAPL algorithm 
further explores the relationship between network topological characteristics and func-
tional modules in PPI networks, which is of great significance for improving the accuracy 
of protein complex detection. 

4.6. Examples of Predicted Complexes 
In this subsection, four predicted protein complexes with different sizes detected by 

the GCAPL algorithm are exhibited, and their corresponding network topology struc-
tures are shown in Figure 6. The predicted complex in Figure 6a is a fully interconnected 
network. Figure 6b shows a cluster that has a dense sub-graph with a relatively sparse 
periphery. Figure 6c,d show two clusters that are dense sub-graphs. Table 4 presents the 
Gene Ontology annotations of these predicted protein complexes in three aspects of bio-
logical processes, molecular functions, and cell components with corresponding signifi-
cance p-values. The obtained p-values are notably small, indicating that these clusters 
have significant biological significance. The effectiveness of the GCAPL algorithm is 
demonstrated in its ability to identify protein complexes with multiple network struc-
tures. 

  
(a) (b) 

Electronics 2023, 12, x FOR PEER REVIEW 15 of 17 
 

 

  
(c) (d) 

Figure 6. Examples of predicted protein complexes: (a) cluster a; (b) cluster b; (c) cluster c; (d) 
cluster d. 

Table 4. Gene ontology annotations of the four predicted protein complexes. 

ID 
Processes Functions Components 

Gene Ontology 
Term p-Value 

Gene Ontology 
Term p-Value 

Gene Ontology 
Term p-Value 

a 
endosome 

organization 
(GO:0007032) 

154.04 10−×  
molecular function 

(GO:0003674) 
0.00194 BLOC complex 

(GO:0031082) 
191.06 10−×  

b 
DNA repair 

(GO:0006281) 
91.37 10−×  

DNA binding 
(GO:0003677) 

89.64 10−×  
nucleus 

(GO:0005634) 0.00506 

c 
protein targeting to 

peroxisome 
(GO:0006625) 

351.14 10−×  
Binding 

(GO:0005488) 
0.00206 microbody part 

(GO:0044438) 
293.31 10−×  

d 
DNA-templated 

transcription 
(GO:0006351) 

222.39 10−×  
DNA binding 
(GO:0003677) 

76.11 10−×  
nuclear 

chromosome part 
(GO:0044454) 

361.59 10−×  

5. Conclusions 
Detecting protein complexes is of great significance for understanding biological 

mechanisms. This paper proposes a network clustering algorithm fused with power-law 
distribution for protein complex detection. The algorithm begins by calculating node 
weights, taking into account micro-topological structure metrics. Subsequently, the al-
gorithm selects the non-clustered nodes with the higher weights as seeds and forms ini-
tial clusters around the seeds. Next, the algorithm greedily adds candidate nodes into the 
initial clusters based on the characteristics of scale-free power-law distribution to gener-
ate candidate clusters. A power-law distribution function, based on the mac-
ro-topological structure feature of power-law distribution about cluster size and number, 
is established to guide the cluster generation process. The power-law distribution func-
tion is employed to determine whether a candidate cluster qualifies as a final cluster. 
Compared with other algorithms, the F-measure + Accuracy of GCAPL improves by an 
average of 12.23% and 10.97% on the CYC2008 and MIPS benchmarks, respectively. The 
experimental analysis reveals that the proposed algorithm exhibits distinct advantages 
over other approaches. 

The GCAPL algorithm mainly considers the biological network whose community 
size conforms to the power-law distribution characteristics. The algorithm does not take 
into account other distribution characteristics of the community size and fully considers 

Figure 6. Examples of predicted protein complexes: (a) cluster a; (b) cluster b; (c) cluster c; (d)
cluster d.



Electronics 2023, 12, 3007 14 of 16

Table 4. Gene ontology annotations of the four predicted protein complexes.

ID

Processes Functions Components

Gene Ontology
Term p-Value Gene Ontology

Term p-Value Gene Ontology
Term p-Value

a
endosome

organization
(GO:0007032)

4.04× 10−15
molecular
function

(GO:0003674)
0.00194 BLOC complex

(GO:0031082) 1.06× 10−19

b DNA repair
(GO:0006281) 1.37× 10−9 DNA binding

(GO:0003677) 9.64× 10−8 nucleus
(GO:0005634) 0.00506

c

protein
targeting to
peroxisome

(GO:0006625)

1.14× 10−35 Binding
(GO:0005488) 0.00206 microbody part

(GO:0044438) 3.31× 10−29

d

DNA-
templated

transcription
(GO:0006351)

2.39× 10−22 DNA binding
(GO:0003677) 6.11× 10−7

nuclear
chromosome

part
(GO:0044454)

1.59× 10−36

5. Conclusions

Detecting protein complexes is of great significance for understanding biological
mechanisms. This paper proposes a network clustering algorithm fused with power-law
distribution for protein complex detection. The algorithm begins by calculating node
weights, taking into account micro-topological structure metrics. Subsequently, the algo-
rithm selects the non-clustered nodes with the higher weights as seeds and forms initial
clusters around the seeds. Next, the algorithm greedily adds candidate nodes into the
initial clusters based on the characteristics of scale-free power-law distribution to generate
candidate clusters. A power-law distribution function, based on the macro-topological
structure feature of power-law distribution about cluster size and number, is established to
guide the cluster generation process. The power-law distribution function is employed to
determine whether a candidate cluster qualifies as a final cluster. Compared with other
algorithms, the F-measure + Accuracy of GCAPL improves by an average of 12.23% and
10.97% on the CYC2008 and MIPS benchmarks, respectively. The experimental analysis
reveals that the proposed algorithm exhibits distinct advantages over other approaches.

The GCAPL algorithm mainly considers the biological network whose community
size conforms to the power-law distribution characteristics. The algorithm does not take
into account other distribution characteristics of the community size and fully considers the
preferential attachment. The above information may further improve the performance of
our algorithm to detect protein complexes. In addition, in real PPI networks, the connections
between nodes are subject to constant changes, leading to variations in network topological
structures. To mine functional modules in dynamic PPI networks, our future work will
also focus on constructing dynamic networks and developing dynamic protein complex
identification methods.
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