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Abstract: In this article, the problem of simultaneously estimating and localizing multiple-input
multiple-output (MIMO) radar emitters is considered for a distributed multi-station passive local-
ization system, wherein the transmitted signal is unknown for receiver stations. To achieve highly
accurate and robust localization performance, a novel algorithm based on the direct position determi-
nation (DPD) algorithm, Karhunen–Loève (KL) transform, and feature matching (FM) is addressed to
jointly estimate the emitter position and the unknown signal waveform. First, we further derive the
objective function of the DPD method and present an enhanced strategy to exploit as much waveform
information as possible without any prior knowledge. By applying KL transform and FM techniques,
the proposed method achieves MIMO radar emitter identification and emitter localization. The
numerical results show that the proposed algorithm outperforms the existing DPD approaches which
ignore the transmitted signals, especially for a low signal-to-noise ratio (SNR).

Keywords: passive localization; direct position determination; feature matching; Karhunen–Loève transform

1. Introduction

Distributed multi-station passive localization (DMPL) has been widely researched due
to its advantages of flexible system configuration, high-degree-of-freedom signal processing
mechanism, and high accuracy [1–5]. As a high-performance localization technique, the
application of DMPL is closely related to the emitter signal model, type of interference, and
application scenarios. Most of the existing passive localization and localization technologies
neglect the processing of the waveform information of the emitter signal, and also lack
focusing on the localization of the radiation source of a novel radar system. The MIMO
radar, as one of the representatives of the novel radar system, has received widespread
attention ever since it was proposed.

The goal of the MIMO radar is to provide widely separated signals over multiple
intra-dependent paths to reduce fading effects due to fluctuations in the target cross-
section, or to obtain higher degrees of freedom using waveform diversity. It uses multiple
antennas to transmit orthogonal or incoherent waveforms, and uses multiple receiving
antennas to receive target echoes [6]. Without sacrificing the performance of phased array
radars, MIMO radars have two advantages over conventional radars: spatial diversity
gain and higher resolution. However, these greatly increase the difficulty of passive
localization of MIMO radar radiation sources. In this context, this article mainly studies the
problem of passive localization of MIMO radar radiation sources without knowing their
waveform information.

The concept of the MIMO radar was officially proposed by Andrew Fletcher, Frank
Robey from MIT Lincoln Laboratory in the United States, Eran Fishler, Alexander Haimovich,
and others from the New Jersey Institute of Technology in multiple articles published from
2003 to 2004 [7,8]. In [7], Eran Fishler et al. derived the CRLB of the MIMO radar for DOA.
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In 2007, Ilya Bekkerman, Joseph Tabrikian, and others proposed a new space–time coding
configuration, which greatly improved the performance of MIMO radar target detection
and DOA estimation under the condition of Gaussian white noise [9]. Daniel E. Hack et al.
from the US Air Force Laboratory studied the localization problem of DMPL systems
for MIMO signals occupying non-overlapping channels, and derived a new generalized
likelihood ratio test (GLRT) from the perspectives of reference and monitoring signals [10].

Since direct position determination (DPD) technology was first proposed by Anthony
J. Weiss in 2004 [11,12], many scholars have applied it to the localization of MIMO radar
emitters. Reference [13] combines the DPD algorithm with fractional Fourier transform
to locate MIMO radar emitters. However, the prerequisite of a known waveform model
as the LFM signal inevitably limits its practical application. In 2021, C Y. Zhao et al. pro-
posed a low-complexity algorithm based on block sparse recovery algorithm rules for the
localization of MIMO radar signals in distributed multi-station radar systems, where the
conjugate gradient algorithm can be used to estimate the radiation source of the MIMO
radar [14]. In 2022, Mohammad Sadeghi et al. proposed antenna arrangement methods
for coherent and incoherent MIMO radars to achieve the highest positioning accuracy
based on the determinant of maximizing the Fisher information matrix (FEM) [15]. In 2023,
Stefano Buzzi et al. (from Italy) derived a GLRT receiver for unknown target response, and
solved the design of introducing phase shift in reflective components in MIMO radar sys-
tems by maximizing the target detection probability with fixed false alarm probability [16].
Shaghayegh Kafshgari et al. proposed four optimized power allocation (PA) strategies
based on the closed form CRLB of MIMO radar system positioning, taking measurement
error statistics as an objective function or constraint so as to improve the radar positioning
performance [17]. In 2023, K Xiong et al. studied the localization problem of the MIMO
radar with a wide separation directional transmitter and omnidirectional receiver, and
proposed a distributed localization framework for the MIMO radar based on a mixed
measurement of incident angle and bistatic distance. Finally, the distributed constrained
total least square algorithm was used to achieve the localization of the MIMO radar signal
radiation sources [18].

In general, regarding the numerical solutions to the passive DPD method for the MIMO
radar emitter, one basic approach is to employ the intrinsic system characteristics of the
MIMO radar to improve the localization accuracy, such as spatial waveform diversity gain
and array error correction [14,15,17]. Other commonly used methods combine the MIMO
technique with other technologies in specific application contexts, such as synthetic aperture
technology and time–frequency analysis [13,18]. However, there is little research on the
passive localization of MIMO radar emitters in situations where waveform information is
unknown. The waveform diversity and other characteristics of the MIMO radar emitter
bring higher degrees of freedom, and so does the transmitted signal waveform, which
means less or completely unknown prior information of the MIMO radar emitter for
passive localization systems. Therefore, the joint estimation and localization of MIMO
radar emitters with unknown waveform parameters for widely separated receiver stations
has great significance.

In prior studies, several problems have been addressed regarding the MIMO radar
emitter localization. In [19], a novel approach is proposed to accurately estimate the
properties (position, velocity) of MIMO radar emitters by employing sparse modeling.
Motivated by [19], [20] uses a block sparse Bayesian learning method to estimate the
locations of MIMO radar emitters since the sparse representation coefficients exhibit block
sparsity. To combat and decrease the fading effects owing to multiple-path propagation,
two visual tools based on the CRLB value and the mutual error distributions are introduced
in [21], which can significantly increase the robustness of DPD while localizing several
emitters. The work presented in [22] designs a scheme based on particle group optimization
under Neyman–Pearson (NP) criteria.

This paper investigates the passive localization of MIMO radar emitters with unknown
waveform information and presents a direct localization algorithm based on KL transform
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and feature matching. Compared with prior studies, the proposed algorithm relaxes the
restriction on the emitter signal model. To be more specific, the proposed algorithm can
locate MIMO radar emitters in scenarios with less prior information. In order to address
the above issues, we develop a novel solution to estimate the emitter waveform to replace
the true waveform. Then, a non-parameterized strategy is proposed to reconstruct the
estimated waveform of the emitter. The main contributions of this article are summarized
as follows:

• To adapt to the high degree of freedom and difficulty in locating MIMO radar emitter
signals, this paper proposes an algorithm based on KL transform and feature matching
to capture signal features of MIMO radar emitters, which can reconstruct the waveform
of MIMO radar emitters without the waveform information.

• The proposed algorithm expands the localization accuracy of the DPD algorithm in situa-
tions where the signal waveform is unknown and reduces the computational complexity.

• The proposed algorithm proposes a localization framework for the distributed multi-
station passive localization system, which can locate multiple signal forms.

The rest of this paper is organized as follows. Section 2 states the signal model of the
MIMO radar signal emitter. In Section 3, the definitions of the DPD method are clarified
and the localization problem for the MIMO radar emitter is presented. Section 4 introduces
the proposed algorithm in detail. The effectiveness of the proposed algorithm was veri-
fied through simulation experiments in Section 5. Finally, the conclusion is presented in
Section 6.

The conventional notations used in the paper are listed in Table 1:

Table 1. The notations used in the paper.

L the number of receiver stations

K the number of pulses of the transmitted signal

rl the observed signal for the l-th receiver station

T the observation time

Ts the pulse repetition interval

Tq the pulse width

τl(p) the delay from the emitter to the l-th receiver

ϕk the initial phase of the k-th pulse signal

bl the attenuation coefficient of the channel

R(θ) the signal sample matrix

Vk(θ) the noise term of the intercepted signal sample

ρk(θ) the parameter information except the parameters to be estimated

U(θ) the implicit mathematical model

P(θ) the average power coefficient

Tk the sampling time interval

ns
l,k(θ) the starting index of the kth single pulse signal of the pulse sequence

ne
l,k(θ) the terminal index of the kth single pulse signal of the pulse sequence

Nl,k(θ) the pulse width of the kth single pulse signal extracted from rl.
Among the notations, L, K, T, Ts, Tq, τl(p), ϕk , bl , Tk , ns

l,k(θ), ne
l,k(θ), and Nl,k(θ) are scalars. rl and ρk(θ) are vectors.

R(θ), Vk(θ), U(θ), and P(θ) are matrices.

2. Signal Model

Consider a 2D Cartesian coordinate system where a non-cooperative stationary MIMO
radar emitter is transmitting signals. The emitter is located at p = (x, y). The signals are
intercepted by L widely distributed receiver stations, whose coordinates are pl =(xl , yl),
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(l = 1, 2, · · · , L). As shown in Figure 1, after the signals are intercepted by the base stations,
they are sent to the central processor to locate the emitter. For simplicity, it is assumed that
the emitter model is a collocated MIMO radar emitter [23]. The emitter radiates a pulse
signal s(t) outward with the pulse repetition interval (PRI) Ts. The transmitted signal s(t)
comprises K pulses u(t) with pulse width Tq, and can be expressed as

s(t) = ∑+∞
k=1 exp(jϕk)u[t− (k− 1)Ts] (1)

where k is the k-th single pulse signal of the transmitted pulse sequence, and ϕk is the initial
phase of the k-th pulse signal.
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For u(t), the following equation needs to be satisfied:

u(t) =
{

s(t), 0 ≤ t ≤ Tq
0, Tq ≤ t ≤ Ts

(2)

The observed signal for the l-th receiver station can be expressed as

rl(t) =
{

blsl(t) + nl(t), tls ≤ t ≤ tle
nl(t), else

(3)

where bl is the attenuation coefficient of the channel between the emitter and the l-th base
station. It is assumed that the observation time T is long enough, and at least one single
pulse in the pulse signal s(t) can be received. nl(t) represents the noise of the observed
signal with covariance matrix Rl = σl

2I, where I is the identity matrix. The noise and
signals are spatio-temporally uncorrelated and the receiver stations are distributed widely
enough to warrant mutual independence of noise vectors,

nl⊥nl′ , l 6= l′ (4)

In (3), tls and tle denote the starting and terminal times of the signal received by the
l-th base station in the time duration [0, T]. tls and tle are scalars related to the position of
the base station, which can be obtained by the following formula:

ts
l = t0 + τl(p) (5)
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te
l = t0 + τl(p) + Tq (6)

where τl(p) denotes the delay from the emitter to the l-th receiver, and can be expressed as

τl(p) =

√
(x− xl)

2 + (y− yl)
2

c
(7)

with c denoting the speed of light.
After sampling, the vector form of (3) can be expressed as

rl = blsl + nl (8)

where sl , [sl [0]sl [1] · · · sl [Ns − 1]]T ,

rl , [rl[0] rl[1] · · · rl[Ns − 1]]T ,
nl , [nl[0] nl[1] · · · nl[Ns − 1]]T

(9)

where Ns is the number of samples. [.]T represents the transpose operator.

3. Problem Formulation

As is indicated in [24], the unknown parameters and the position can be obtained
by the ML estimator, assuming that H0 corresponds to the noise hypothesis and H1 corre-
sponds to the emitters’ existence hypothesis.

For simplicity, here we assume that the noise model is the white, zero-mean complex
Gaussian noise. According to [4,24,25], the likelihood function of rl corresponding to H0
can be expressed as

p(r|H0)= C0exp
{
−1

2
rH

l R
−1
l rl

}
(10)

Similarly, we can construct the likelihood function corresponding to H1 as

p(r|H1; p, t0) = ∏L
l=1 p(rl|H1; p, t0) = C1∏L

l=1 exp
{
−1
2

(rl − blsl)
HR−1

l (rl − blsl)

}
(11)

where C0 and C1 are constants, and [.]H represents the operation of conjugation transpose.
Therefore, the likelihood ratio function can be given by

L(r; p, t0) =
p(r|H1; p, t0)

p(r|H0)
=

C1

C0
exp
{
−1
2

(rl − blsl)
HR−1

l (rl − blsl) +
1
2

rl
HR−1

l rl

}
(12)

The MLE function is based on maximizing the likelihood (12) over all attenuation

coefficients bl . Thus, it leads to the following ML estimation for each bl term: bl =
sl

HR−1
l rl

sl
HR−1

l sl
.

Let ∂L(rl)
∂bl

= 0, Rl = σl
2I, and assume |s|2 = 1. After simplification, under the

assumption that the signal waveform is known to the receivers, we can obtain the maximum
likelihood function as follows:

L(r; p, t0) ∝ ∑L
l=1

(
1

σ2
l

∣∣∣sl
Hrl

∣∣∣2)= ∑L
l=1

1
σ2

l

∣∣∣∑Ns−1
k=0 ejωk [τl(p)]s*[k]rl [k]

∣∣∣2 (13)

Therefore, the position of the emitter p and the parameters of signal can be jointly
estimated via the following function:

p̂ = arg max
p
{L(r; p, t0)} (14)
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From (14), it can be inferred that by conducting a grid search on the corresponding
area, the position of the emitter can be estimated. For the convenience of description, the
above DPD algorithm with known waveform information is referred to as the DPD-known
algorithm in the following text.

If the signal waveform is not known to the receiver stations, the maximum likelihood
function in (13) is not applicable. Define the following vectors:

dl ,
[
dl(0), · · · , dl(Ns − 1)

]T
(15)

s ,
[
s(0)e−jω0t0 , · · · , s(Ns − 1)e−jωNs−1t0

]T
(16)

where dl(k) , e−jωkτl(p)αl(p)rl(k).
Using these definitions, (12) can be equivalent to

L(r; p, t0) =
L
∑

l=1

∣∣∣sHdl

∣∣∣2
=

L
∑

l=1
sHdldl

Hs

= sH
(

L
∑

l=1
dldl

H
)

s

= sHDs

(17)

Here, the maximum likelihood function in (17) is maximized by selecting the vector
as the eigenvector corresponding to the largest eigenvalue of the matrix D. Hence, the
position of the emitter can be jointly estimated via the following function:

p̂ = arg max
p

λmax(D) (18)

where λmax(D) denotes taking the largest eigenvalue of the matrix D. The matrix D is a cost
function that includes the array response at each receiver, the location of the base station,
and the location of the unknown emitter.

Similar to the situation where signal waveform information is known, the maximum
eigenvalue of the matrix D can be obtained by searching the two-dimensional grid search of
the corresponding region; then, the position of the emitter can be obtained. Correspondingly
to the DPD-known algorithm, we refer to the DPD algorithm mentioned above in the case
of an unknown signal waveform as the DPD-unknown algorithm.

It should be noted that the problem formulations of the other channel models such as
Rayleigh, Rice, and non-Gaussian noise, etc., are also appropriate. As is indicated in [11,12],
the localization methods are the same as (14) and (18).

Remarkably, for the MIMO radar emitter signal model, the DPD-unknown algorithm
can still be used to achieve passive localization. However, because the signals transmitted
by the MIMO radar emitter are multiple and independent of each other, its localization
performance will obviously suffer significant losses without clear waveform information
of the MIMO radar signal, especially in low signal-to-noise ratios. Therefore, in order
to improve the localization accuracy of the MIMO radar emitter, it is necessary to adopt
some waveform estimation methods to obtain some prior information regarding MIMO
radar signals.

4. Algorithm Description

In this section, the efficient DPD approach based on KL transform and the FM tech-
nique is presented to solve the passive localization problem for MIMO radar emitters,
called DPD-KL-FM for brevity. First, KL transform is employed to estimate the signal
characteristics from a large number of signals observed by the receiver stations. Aiming
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to solve the problem that the unknown waveform of the MIMO radar emitter plagues the
application of the estimator in (18) for localizing the emitter position, we propose a strategy
based on the FM technique to find the target emitter and improve the performance of the
parameter estimation. At last, the objective function equation of the DPD algorithm is
further derived by applying a structure of the maximum Rayleigh quotient and the position
of the emitter is obtained. The DPD-KL-FM algorithm is described in detail below.

4.1. Definition of KL Transform

KL transform is a feature extraction method based on statistical characteristics [26]. It
has been applied and developed in the fields of feature extraction, data compression, signal
noise reduction, image rotation, etc. The outstanding advantage of KL transform is the
good correlation. In short, it is a simplified analysis method for the complex relationship
between variables. It is a special form of orthogonal linear transformation and the best
form of transformation in the sense of mean square error [27,28].

KL transform technology uses orthogonal transformation to reduce the dimension of
high-dimensional data sets, that is, the random process is described as a linear combination
of countless orthogonal functions, and then through the mathematical mapping relation-
ship, the correlations between the functions or variables are converted into fewer variables.
The following is a brief introduction to its mathematical principles.

Assuming that Y is the data sample to be estimated, it can be linearly represented by
the observed data sample X. The column vector length of X is N, that is, X can be written
as {x1, x2, · · · xN}. Then, the KL transform is defined as

Y = AX (19)

where A is the weight coefficient matrix, which can be expressed as a vector form.

A , [a1, a2, · · · , aN ]
T (20)

The weight coefficient matrix A must meet the following requirements: (1) A is an orthogo-
nal matrix. (2) AT A = 1.

In order to make the information in the observation sample X with a length of N
appear to be estimated to the greatest extent in the signal sample, according to information
theory, the variance in the signal can be used to measure the amount of information, and
the amount of information increases with the increase in the variance. Therefore, the weight
that maximizes the variance in Y can be obtained, that is,

A* = argmax
A

Var(Y) (21)

where Var(Y) can be calculated as follows:

Var(Y) =
1

N − 1∑N
i=1(Yi − x)2 (22)

where x is the average value of X, which can be calculated by the following formula:

x =
1
N ∑N

i=1 Yi = a1x1 + a2x2 + · · · aN xN (23)

where xN is the average of the Nth column vector of X, and xN = 1
N ∑N

i=1 xN,i.
Substituting (23) into (22), then Var(Y) can be written as

Var(Y) =
1

N − 1∑N
i=1[(a1x1,i + a2x2,i + · · ·+ aN xN,i)− (a1x1 + a2x2 + · · ·+ aN xN)]

2 (24)

After the expansion of (23), it can be simplified into the following form:
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Var(Y) = AT 1
N − 1∑N

i=1


(x1,i − x1)

2 (x1,i − x1)(x2,i − x2)

(x2,i − x2)(x1,i − x1) (x2,i − x2)
2 · · · (x1,i − x1)(xN,i − xN)

(x2,i − x2)(xN,i − xN)
...

. . .
...

(xN,i − xN)(x1,i − x1) (xN,i − xN)(x2,i − x2) · · · (xN,i − xN)
2

A (25)

Assuming that Σ is the covariance matrix of X, its value can be expressed by the
following formula:

Σ =
1

N − 1∑N
i=1


(x1,i − x1)

2 (x1,i − x1)(x2,i − x2)

(x2,i − x2)(x1,i − x1) (x2,i − x2)
2 · · · (x1,i − x1)(xN,i − xN)

(x2,i − x2)(xN,i − xN)
...

. . .
...

(xN,i − xN)(x1,i − x1) (xN,i − xN)(x2,i − x2) · · · (xN,i − xN)
2

 (26)

Thus, (25) can be equivalent to

Var(Y) = ATΣA (27)

It can be seen from (27) that in order to obtain the weight coefficient matrix A with
Var(Y) reaching its maximum value, the maximum eigenvalue of Σ is required. The
corresponding eigenvector of the eigenvalue is A*, which is required in (21).

4.2. Parameter Estimation Based on KL Transform and FM

According to the principle of KL transform introduced in the previous section, after
each receiving base station receives the transmitted signal of the MIMO radar signal emitter,
the KL transform can be used to reduce the dimension and estimate the sample data.

Combined with the signal model of the MIMO radar emitter, the parameters of the signal
rl(t) observed by the l-th receiver station include t0, Ts, Tq, signal amplitude, initial phase, etc.
Because the channel environment of each base station is different, the estimation of the signal
amplitude is meaningless here. In order to ensure the accuracy of the localization process,
the observation time is generally long, and the pulse repetition period Ts is relatively small.
Therefore, the number of pulses observed during the observation time is relatively large,
making it difficult to estimate the phase ϕk; so, it is no longer estimated in the KL transform.
Therefore, the parameters estimated using KL transform are t0, Ts, and Tq.

Firstly, the number of discrete samples of the single pulse contained in a certain
observation time T (suppose that T is long enough) is estimated. Assuming that θ is the
parameter to be estimated, let

ns
l (θ) =

⌊
T − τl(p)− t0

Ts

⌋
(28)

ne
l (θ) =

T − τl(p)− t0

Ts
− ns

l (ζ) (29)

where b·c represents the operation of rounding toward minus infinity, ns
l (θ) denotes the com-

plete number of pulse samples, and ne
l (θ) denotes the proportion of the pulse width of the

incomplete pulse sample to the complete pulse repetition period Ts in the observation time.
If it is a single pulse signal, then only ns

l (θ) can be used to determine whether the
pulse is complete. Then, Ts in (28) is the observation time T. If it is a multi-pulse signal,
the integrity of the pulse sample can be determined by combining the values of ns

l (θ) and
ne

l (θ). Thus, the number of pulse samples that can be extracted by the l-th receiver station
in the observation time T can be obtained as follows:

Nl(θ) =

{
ns

l (θ), ne
l (θ) < D

ns
l (θ) + 1, ne

l (θ) ≥ D
(30)
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where D is the duty cycle of the pulse signal, D ,
Tq
Ts

.
For the kth single pulse signal of the pulse sequence, the starting index and terminal

index can be calculated as follows:

ns
l,k(θ) =

⌈
ts
l,k(θ)

Tk

⌉
(31)

ne
l,k(θ) =

⌊
te
l,k(θ)

Tk

⌋
(32)

where Tk is the sampling time interval and d·e represents the operation of rounding toward infinity.
Furthermore, the pulse width of the kth single pulse signal extracted from the signal rl

received by the l-th receiver station within the observation time T can be calculated by the
following formula:

Nl,k(θ) ,

⌊
te
l,k(θ)− ts

l,k(θ)

Tk

⌋
=

⌊
Tq

Tk

⌋
(33)

where Nl,k(θ) represents the pulse width of the kth single pulse signal extracted from rl.
The Nl,k(θ) in (33) can also be calculated directly by Nl,k(θ) = ne

l,k(θ) − ns
l,k(θ), ac-

cording to the definition. It can be seen from (33) that the pulse width of the single pulse
signal in the signal rl is only determined by Tq. Therefore, Nl,k(θ) can also be equivalent to
Nl,k

(
Tq
)
. According to (31) and (32), the discrete form of the kth monopulse signal extracted

from rl can be expressed as follows:

rs
l,k(θ) = rl

[
ns

l,k(θ) : ne
l,k(θ)

]
, k = 1, 2, · · · , Nl(θ) (34)

Considering all L receiver stations, the total number of samples finally obtained in the
central processor can be represented by

N(θ) = ∑L
l=1 Nl(θ) (35)

Hence, the N(θ) pulse samples obtained by the central processor can be expressed by
the following signal matrix:

R(θ) ,
[
rs

l,1(θ), rs
l,2(θ), · · · , rs

l,k(θ), · · · , rs
L,NL(θ)

(θ)
]
,
[
rs

l (θ), · · · , rs
N(θ)(θ)

]
(36)

Then, applying the KL transform technique introduced in Section 4.1, the estimation
of the signal can be given by

Y = KL[R(θ)] (37)

Through (37), the estimation of the signal sample for the same observation time can be
obtained, KL[Rl(θ)], l = 1, 2, · · · , L. For each parameter θ, L signal samples are estimated;
then, feature matching is performed to determine whether it is from the same MIMO radar
signal emitter. According to the system characteristics and signal characteristics of the
MIMO radar emitter [29,30], the criteria for FM are as follows:

• The initial time t0 of the signal is different, while the signal frequency is the same
(similar within the allowable error conditions and the same below);

• The estimated value of the signal pulse width Tq is the same;
• The pulse repetition interval Ts of the signal is the same.

After FM, the signal that satisfies the condition can be inputted into R(θ), and then
positioned by the improved DPD algorithm.

Figure 2 shows the simulation diagram of the signal sample interception process after
KL transform and feature matching of the selected parameters. As shown in Figure 2,
the red vertical line represents the intercepted signal of the MIMO radar emitter. After
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KL transform and FM, the difference between the emitter signal and the noise signal is
significant, and thus it can be easily proposed. Based on Figure 2, Figure 3 shows the
signal waveform of the extracted MIMO radar emitter samples. It can be seen that the
complete waveform of the target signal is also correctly extracted, which paves the way for
the subsequent positioning process.
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4.3. Design of the Localization Algorithm

Recall that, in Section 3, the localization accuracy DPD-unknown algorithm was poor
due to the lack of prior information on the signal waveform. For MIMO radars that
transmit orthogonal or non-coherent waveforms, the shortcomings of the DPD-unknown
algorithm will be amplified more obviously. Therefore, in view of the above problems,
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a DPD algorithm based on KL transform and feature matching (DPD-KL-FM) is proposed
in this section. The proposed approach can estimate and locate the MIMO radar emitter
signal through the distributed multi-station passive localization system without prior
information, such as the emitter and its waveform information. The DPD-KL-FM algorithm
is introduced in detail below.

For the signal sample matrix R(θ) estimated using KL transform and FM in Section 4.2,
one section is intercepted and can be written as follows:

Rk(θ) = ρk(θ)U(θ) + Vk(θ), k = 1, 2, · · · , N(θ) (38)

where U(θ) is the implicit mathematical model corresponding to R(θ), Vk(θ) is the noise term
of the intercepted signal sample Rk(θ), and ρk(θ) denotes the parameter information except
the parameters to be estimated, such as initial phase, complex attenuation coefficient, etc.

Note that the value of U(θ) varies with the parameter θ. Therefore, only when the
feature matching is successful is the model’s estimation of all pulse samples consistent,
which also reflects the importance of the FM process in signal estimation and subsequent
localization performance.

For the convenience of later expression, (37) is written as the following matrix form,

R = UρT + V (39)

where R =
[
rs

1, · · · , rs
N(θ)

]
, ρ = [ρ1, · · · , ρ1]

T , and V =
[
V1, · · · , VN(θ)

]
.

For the sample signal model of the MIMO radar emitter in (39), the estimation of U is
transformed into an optimization problem by using the least square method. The objective
function of the optimization problem is as follows:

min
U,ρ

∥∥∥R−UρT
∥∥∥2

F
(40)

where ‖·‖F denotes the Frobenius norm.
According to the definition of the Frobenius norm, (40) can be equivalent to

min
U,ρ

tr
[(

R−UρT
)H(

R−UρT
)]

(41)

Then, the following objective function can be constructed to solve the problem,

f(U, ρ) = tr
[
RHR−RHUρT − ρ*UHR + ρ*UHUρT

]
(42)

According to the matrix theory, the minimum value of f (U, ρ) can be obtained when
point ρ is equal to zero,

∇ρf(U, ρ)|ρ=ρ̂ = 0 (43)

The implicit model of the signal sample matrix R(θ) can be obtained by (43); then, the estimated
value of U, which contains the signal waveform information, can be estimated as follows:

Û = max
U

UHRRHU

‖U‖2
2

(44)

According to the Cayley–Hamilton theorem in matrix theory and the solution of the
maximum value of the Rayleigh quotient in the Hermite matrix, Û can be obtained as follows:

Û = ϑλmax(RRH) (45)

where λmax
(
RRH) denotes the maximum value of matrix RRH , and ϑλmax(RRH) is the

corresponding eigenvector of the eigenvalue.
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After estimating the signal waveform of the MIMO radar emitter, the DPD algorithm
can be used for localization. Since the scenario assumed in this paper is that the waveform
information of the MIMO radar emitter is unknown, we can improve the model of the
DPD-unknown algorithm in Section 3 for the localization of the MIMO radar emitter.

According to the previous derivation, for MIMO radar emitters, the objective function
D(θ) can be written as

D(θ) = ∑L
l=1 ∑Nl

k=1

∣∣∣rH
l,k(θ)Ûl,k(θ)

∣∣∣2 (46)

where rH
l,k(θ) represents the signal fragment of the non-zero part of the k-th pulse sample

Ûl,k(θ) in the signal rl received by the l-th receiver station.
Obviously, for (46), the value of D(θ) increases with the growth of the search pulse

width Tq, which will lead to a decrease in the accuracy of the parameter estimation. The
reason for this is that as the number of pulse samples increases, more noise samples are
also brought, which reduces the parameter estimation and localization accuracy. In order
to solve the contradiction between the pulse width and the parameter estimation accuracy,
the average power coefficient P(θ) is introduced. P(θ) is defined as follows:

P(θ) =

∥∥Ûl,k(θ)
∥∥2

2
Tq

(47)

Equation (47) represents the average energy of the MIMO radar emitter signal sample
Ûl,k(θ) estimated within the search pulse width Tq. Then, a new objective function D(θ)
can be obtained,

∼
D(θ) = P(θ)D(θ) (48)

In summary, the estimator for the MIMO radar emitter can be expressed as

p̂ = arg max
p

λmax

(∼
D(θ)

)
(49)

The general pseudo-codes of the proposed DPD-KL-FM algorithm are provided in
Algorithm 1.

Algorithm 1 The DPD-KL-FM algorithm.

Input: System parameter D(θ); observation signal sample r

1. Obtain the signal from the base stations and sample it to obtain L discrete vectors;
2. The sample vector of each single pulse signal is extracted from all of the received signal

samples and a matrix is formed;
3. The signal samples are reduced and estimated via KL transform and FM;
4. The signal samples of the same MIMO radar emitter are determined via FM;
5. Reconstruct signal sample by (45) according to the estimated parameters ns

l,k(θ), ne
l,k(θ), etc.;

6. For each grid point:

Calculate the average power coefficient and objective function value;

Calculate
∼
D(θ) and replace D(θ) with

∼
D(θ).

End

7. Maximize D(θ) and compute the position of the MIMO radar emitter using (49)

Output: The position of the MIMO radar emitter p̂.

4.4. Analysis of Complexity

The complexity of the DPD-KL-FM algorithm is composed of the complexity of
a two-dimensional search and complexity of maximum likelihood estimation. The overall com-
putational complexity of the DPD algorithm is O

(
NxNyNpNτ

((
LNs(Ns + 1) +O f (L, Ns)

)))
,
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where Ns, Nx, and Ny denote the number of samples and the number of meshes on the x-axis
and y-axis, respectively. Since the KL transform and FM technique are used to reduce the
dimension and estimate the sample data, the overall computational complexity of the DPD-
KL-FM algorithm is O

(
NtoNTqNTsNxNy

)
, where t0, Ts, and Tq are the selected parameters

estimated using KL transform and the FM technique. Therefore, the complexity is determined
using a two-dimensional grid search and the parameters selected for KL transform and the
FM technique.

5. Simulation Results and Discussion

In this section, the performance of the proposed DPD-KL-FM algorithm is analyzed
and verified via simulation experiments. The analysis is mainly conducted from the fol-
lowing two aspects: Firstly, the influence of KL transform and the FM technique on MIMO
radar signal estimation is tested. The second aspect is to use Monte Carlo experiments to
verify the positioning performance of the proposed algorithm.

5.1. Effect of KL Transform and FM Technique on Waveform Estimation

As shown in Figure 4, the coordinates of the four base stations in the simulation are set
to (0, 0) m, (12,000, 0) m, (12,000, 12,000) m, and (4800, 12,000) m, and a collocated MIMO
radar emitter is located at (5000, 6000) m. In the experiment, the Gaussian pulse with pulse
width Tq = 5 µs is selected as the MIMO radar emitter signal, and the frequency of the
carrier signal is f0 = 3 MHz. Other simulation parameters are shown in Table 2.
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Table 2. Simulation parameters.

Signal Parameters Parameter Value

Pulse width Tq 5 µs

Pulse repetition interval Ts 150 µs

Starting time t0 10 µs

Sampling frequency fs 10 MHz

The frequency of the carrier signal f0 3 MHz

Time duration T 1 ms
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According to the above parameters, the single pulse signal in the signal rl received by
the l-th receiver station can be expressed as

sl(t) =
(

1
Tq

) 1
4
exp

(
−πt2

Tq
2

)
exp(j2π f0t), 0 ≤ t ≤ Tq (50)

Figures 2 and 3 in the previous section show the simulation diagrams of the signal
sample interception process after KL transform and feature matching of the selected param-
eters and the extracted MIMO radar emitter signal waveform. In order to reflect the effect
of KL transform and feature matching on signal waveform estimation more intuitively,
Figure 5 gives the simulation diagram of signal sample interception and waveform estima-
tion without KL transform and FM.
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Figure 5. The simulation diagrams of the signal sample interception process and the waveform
diagram of the extracted MIMO radar emitter signal which were obtained in two cases. (a) Simulation
diagram of signal sample screenshot process after KL transform and feature matching; (b) the signal
waveform of the extracted MIMO radar emitter sample after KL transform and feature matching;
(c) simulation diagram of signal sample screenshot process without KL transform and feature match-
ing; (d) the signal waveform of the extracted MIMO radar emitter sample without KL transform and
feature matching.
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Since the signal noise without KL transform and feature matching has a great influence
on the target emitter signal, in order to more generally present the gain effect of the
proposed algorithm on the emitter signal samples in the figure, two signal samples with
index numbers of 0–200 were randomly intercepted for the signals received by each base
station, as shown in Figure 5; by comparing Figure 5a,c, it can be seen that the proposed
method can distinguish the signal of the MIMO emitter well from the noise, so as to
facilitate the extraction and estimation of the target signal samples. The signal without
KL transform and feature matching is more disorderly. Comparing Figure 5b,d, it can be
found that the signal sample waveform of the MIMO radar emitter after KL transform
and feature matching is estimated more accurately. As shown in Figure 5, the samples
estimated without KL transform and feature matching are seriously damaged by noise.

5.2. Algorithm Localization Performance Analysis

In this section, the localization performance of the proposed DPD-KL-FM algorithm is
further analyzed and verified by Monte Carlo experiments. The DPD-known and DPD-
unknown algorithms introduced in Section 3 are used as comparison algorithms. Since the
DPD-known algorithm is based on the maximum likelihood estimation that the transmitted
signal information is completely known by the base stations, the DPD-known algorithm
can be considered to be completely known without estimation for the features used for
KL transform and FM, such as t0, Tq, etc. Hence, the performance of DPD-known can
be viewed as an upper bound for the performance of the proposed approach and the
DPD-unknown algorithm.

For each Monte Carlo experiment, we assume that the error between the estimated
position p̂ = (x̂l , ŷl) of the emitter and the actual position p = (x, y) is calculated as follows:

Ei =

√
(x̂i − x)2 + (ŷi − y)2 (51)

where Ei is the estimation of the emitter position of the i-th Monte Carlo trial.
The root mean square error (RMSE) of the estimated parameter is defined as

RMSE =

√
1
M∑M

i ‖p̂− p‖2 × 100% (52)

Two kinds of signals commonly used in MIMO radar emitters, rectangular square
wave signal and Gaussian signal, were selected as representatives to verify the performance
of the DPD-KL-FM algorithm. In these numerical examples below, the RMSE was computed
on 500 independent experiments.

The expression of the Gaussian pulse signal is given in (49), and the relevant signal
parameters remain consistent with those listed in Section 5.1, which describe the root mean
square error of the three algorithms at different SNRs. As shown in Figure 6, when the SNR
is high, the RMSEs of the three algorithms are low and they all maintain good localization
accuracy, and the localization performance is almost the same when the SNR is greater than
0 dB. However, as the SNR decreases, the localization performance of the DPD-unknown
algorithm deteriorates quickly. When the SNR is below −5 dB, even if the SNR changes
slightly, the value of RMSE will fluctuate greatly. In contrast, the performance of the
proposed DPD-KL-FM algorithm is relatively stable. When the SNR is above −10 dB, it is
very close to the upper bound of the localization performance, which proves the gain effect
of KL transform and the FM technique on the dimensionality reduction and estimation of
MIMO radar emitter signal samples.

In order to further test the performance of the DPD-KL-FM algorithm, the following
simulation experiments were carried out with a rectangular square wave signal as an
example. The parameters such as pulse width and center frequency of the signal are the
same as the above simulation experiments. The expression of rectangular square wave
signal is as follows:

sl(t) = exp(j2π f0t), 0 ≤ t ≤ Tq (53)
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Figure 7 shows the change in RMSEs with the SNR when the transmitted waveform of
the MIMO radar emitter is rectangular square wave. Note that the simulation experiments
of Figures 6 and 7 were conducted with Gaussian noise and non-Gaussian noise (impulse
noise, Rice noise, etc.) and there is almost no difference in the experimental results. Here,
we did not provide localization performance figures for each of the two scenarios; thus,
Figures 6 and 7 can be considered as the average of the two situations. Similar to the case
of Gaussian signals, the proposed DPD-KL-FM algorithm maintains excellent localization
performance. Compared with the DPD-unknown algorithm, the localization performance
is significantly improved, especially with a low SNR. More specifically, when the SNR is
−6 dB, the RMSE of the DPD-KL-FM algorithm is still less than 200 m, which is close to the
upper bound of the positioning performance. At this time, the RMSE of the DPD-unknown
algorithm exceeds 700 m. With a decrease in the SNR, the localization performance gap
will continue to expand. Therefore, it can be concluded that the localization performance
of the DPD-KL-FM algorithm is still far better than that of the DPD-unknown algorithm
when the transmitted signal of the MIMO radar is rectangular square wave.
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6. Conclusions

Aiming at solving the localization problem of MIMO radar emitters, especially when
the waveform information transmitted by MIMO radar emitters is completely unknown,
this paper proposed a novel DPD algorithm based on KL transform and FM techniques to
localize MIMO radar emitters with distributed receiver stations. To achieve highly accurate
and robust localization performance when the transmitted signal is unknown for receiver
stations, KL transform and FM can be adopted to jointly estimate the emitter position
and the unknown signal waveform. Moreover, the MIMO radar emitter can be found by
matching the estimated signal parameter features, so as to effectively utilize the emitter
signal information and eliminate the influence of noise on the localization performance.
The simulation results verify the effectiveness of the proposed algorithm.

The main limitation of this paper is that there is a trade-off between localization
performance and implementation complexity. Moreover, for more complicated scenes,
such as the distribution of the receiver stations being irregular or the multi-path not being
negligible, further work is underway to consider the boundary conditions and algorithms
with less computational complexity.
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