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Abstract: With the advent and rapid growth of automation, unmanned ground vehicles (UGVs) have
emerged as a crucial technology, with applications spanning various domains, from agriculture to
surveillance, logistics, and military operations. Alongside this surge in the utilization of robotics,
novel complications inevitably emerge, posing intriguing questions and challenges to the academic
and technological sectors. One such pressing challenge is the coverage path planning (CPP) problem,
particularly the notion of optimizing UGV energy utilization during path planning, a significant yet
relatively unexplored aspect within the research landscape. While numerous studies have proposed
solutions to CPP with a single UGV, the introduction of multiple UGVs within a single environment
reveals a unique set of challenges. A paramount concern in multi-UGV CPP is the effective allocation
and division of the area among the UGVs. To address this issue, we propose an innovative approach
that first segments the area into multiple subareas, which are then allocated to individual UGVs. Our
methodology employs fine-tuned spanning trees to minimize the number of turns during navigation,
resulting in more efficient and energy-aware coverage paths. As opposed to existing research focusing
on models that allocate without optimization, our model utilizes a terrain-aware cost function, and
an adaptive path replanning module, leading to a more flexible, effective, and energy-efficient path-
planning solution. A series of simulations demonstrated the robustness and efficacy of our approach,
highlighting its potential to significantly improve UGV endurance and mission effectiveness, even in
challenging terrain conditions. The proposed solution provides a substantial contribution to the field
of UGV path planning, addressing a crucial gap and enhancing the body of knowledge surrounding
energy-efficient CPP for multi-UGV scenarios.

Keywords: UGV navigation; path planning; coverage path planning

1. Introduction

The profound impacts of technology and scientific advancements on society are in-
disputable, transforming the ways we live, work, and interact. Over the last few decades,
these breakthroughs have fueled the emergence of an automated society, with robotics
taking center stage [1,2]. The adoption and application of robotics and automation systems
have skyrocketed, permeating every facet of life, from manufacturing and logistics [3]
to agriculture [4,5] and healthcare [6]. In essence, these technological innovations have
redefined the concept of work, replacing traditional, manual, and often laborious tasks
with automated, efficient, and precise robotic operations.

One of the fundamental components of robotics, directly contributing to its efficacy and
utility, is the concept of navigation, specifically, coverage path planning (CPP) [7–9]. In simple
terms, CPP refers to the task of devising a path for a robot to cover an entire accessible
area within a predetermined environment. This technology underpins several applications,
including field surveillance, environmental monitoring, and precision agriculture, among
others. Achieving optimal CPP is critical as it enables effective area coverage, reduces
operational time, and minimizes energy consumption. However, this task becomes more
complicated in multi-robot situations. Multi-robot CPP involves not only finding optimal
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paths for individual robots (such as UAVs [10], UGVs [11], and hybrid robots [12]) but
also effective allocation and division of the area among multiple robots [13]. These con-
siderations are critical to avoid duplication of work, prevent robot collisions, and ensure
a balanced workload among the robots, contributing to the overall operational efficiency
and effectiveness.

In the realm of CPP and robot navigation in general, two major classes of algorithms
are prevalent: online and offline. Offline algorithms necessitate comprehensive knowledge
of the environment prior to operation commencement, involving the precomputation
of a global plan. They are particularly suited to static environments where the layout
and obstacles remain unchanged. This paradigm is particularly suitable for agricultural
applications, patrolling vehicles, etc. [4,5]. Conversely, online algorithms allow for real-time
decision making based on sensor inputs, without the requirement of total environmental
understanding prior to deployment. These are adapted for dynamic environments replete
with uncertainty, offering quick responses to environmental changes [14–16]. Even though
these algorithms can typically adapt to the dynamic constraints of the environment, such
as moving obstacles, they may lack the comprehensive perspective provided by offline
planning and can often lead to suboptimal global solutions.

The scientific community has devoted considerable effort to addressing the offline
multi-UGV CPP problem, with several intriguing strategies and methodologies emerging
over the years [8–13,17–22]. A fundamental insight that underpins many of these method-
ologies is that the multi-UGV CPP problem can, under certain circumstances, be reduced
to multiple single-robot CPP problems. In essence, if the area of interest can be effectively
partitioned into distinct, nonoverlapping subareas, each UGV can independently execute
its coverage task, effectively transforming the multi-UGV CPP into a set of single-UGV
CPP problems.

One of the most dominant approaches to solving the single-UGV CPP, and therefore
the multi-UGV CPP, is the spanning tree coverage (STC) [20]. The attractiveness of the STC
method lies in its unique advantages. Primarily, STC can guarantee full coverage of the
area of interest, as the spanning tree constructed in this method covers all the cells in the
area without redundancy. This results in a coverage path that ensures every cell is visited
at least once and reduces the probability of missing any cell.

Although the spanning tree coverage (STC)-based method forms a solid base, it fails to
encompass the entirety of the complexities inherent in multi-UGV coverage path planning
(CPP). The majority of multi-UGV CPP applications employ an algorithm to distribute the
area among available robots, following which they construct the minimum spanning tree
(MST) for each assigned area [11–13,21,22]. MSTs indeed ensure that the generated paths
are of a minimal length; however, they often overlook the criticality of the number of turns
within these paths. In other words, while MSTs are efficient in minimizing path length,
they do not inherently focus on optimizing energy utilization.

Energy efficiency in the context of UGVs and CPP extends beyond simple distance
minimization. The concept of energy efficiency becomes particularly complex when factor-
ing in variables such as terrain constraints, the specific capabilities and characteristics of
the UGVs, and the number of turns a coverage path contains. The energy consumed by
a robot does not solely rely on the length of the path it traverses; it also depends on the
maneuvers it has to make along the way. More often than not, minimizing the number of
turns in a given path can substantially reduce a robot’s total energy consumption. This is a
crucial aspect that MSTs, focused on minimizing path length, typically do not consider.

While the relationship between path length and energy efficiency seems intuitive,
in practice, this correlation is not always linear. This implies that the shortest path does
not necessarily equate to the most energy-efficient one. Hence, path planning for UGVs
demands an approach that balances both the need for shorter paths and fewer turns, thereby
enhancing overall energy efficiency. As such, energy awareness in path planning constitutes
an essential leap forward from mere geographical optimization to a more nuanced and
effective form of CPP.
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This paper attempts to provide a solution to the multi-UGV energy-aware CPP prob-
lem by introducing a model that distinguishes itself in two vital aspects:

• A sophisticated postprocessing technique is employed to refine the coverage areas
assigned to the UGVs. This step further optimizes the clustering results by eliminating
unnecessary area blending, thereby increasing the efficiency of the path-planning
process. The postprocessing algorithm meticulously reassesses the boundaries of each
cluster, adjusting them to ensure the optimal and most balanced division of the envi-
ronment among the UGVs, without compromising the integrity of the coverage task.

• The proposed model incorporates a spanning tree node exchange (STNE) mechanism
that significantly enhances the final coverage paths of the UGVs. This mechanism
meticulously swaps certain nodes of STs belonging to different adjacent clusters to
further reduce the number of turns made by the UGVs during their coverage tasks,
thereby reducing energy consumption.

The structure of the remaining manuscript is as follows: Section 2 reviews relevant
research and previous works in the field of CPP. In Section 3, we provide a rigorous defini-
tion of the problem under consideration. The proposed algorithm and its methodology are
extensively discussed in Section 4. Section 5 showcases the empirical results, demonstrating
the efficacy of our proposed algorithm. Finally, Section 6 presents the concluding remarks.

2. Literature Review

Over the past few decades, CPP has emerged as a critical field of study in robotics,
prompting a surge in research exploring various aspects of this multifaceted problem [6–19].
The literature reveals a wide array of approaches to CPP, ranging from grid-based methods
to graph-based ones, each exhibiting its strengths and shortcomings. However, the body
of research overwhelmingly demonstrates that spanning tree coverage (STC) has held
a prominent position in addressing the CPP problem. STC, characterized by its ability
to ensure complete and nonredundant coverage of an area, has been widely applied in
various robotic applications, including search and rescue, surveillance, and environmental
mapping, among others.

The DARP algorithm [21] represents a notable approach in the domain of multi-robot
coverage path planning. It offers a systematic solution by dividing the total environment
into distinct subareas, each allocated to a specific robot. The primary objective of DARP is to
minimize the total coverage time, accomplished by intelligently dividing the environment
based on its characteristics and the robotic fleet’s capabilities. However, this algorithm
makes predetermined assumptions about the number of robots and their initial positions,
leading to potential limitations in more complex environments.

The authors of [17] present a modified version of the DARP algorithm, a widely
recognized approach in the field of multi-robot coverage path planning. They extend
the original algorithm to better accommodate environments with varying coverage time,
owing to factors such as diverse terrains or the necessity for detailed measurements. These
modifications reportedly enhance both the convergence rate and time in comparison to
the original DARP algorithm. Extensive simulations substantiate these improvements, not
only in weighted environments but also in unweighted scenarios.

The study presented in [22] tackles the multi-UGV CPP problem by focusing on
minimizing mission time, which is influenced by the number of turns taken by the robots.
The proposed solution partitions the environment into thin rectangular “ranks”, matched
to the UGVs’ coverage tool size, through a heuristic that minimizes turns. A variant of the
multiple traveling salesperson problem (m-TSP) is then used to further minimize the UGV’s
mission time. Comparative analysis with real indoor environments demonstrates a turn
reduction of 6.7% and a coverage time reduction of 3.8% on average for teams of 1-5 UGVs.
Even though these results are promising, the proposed method exhibits high complexity
(as it does not utilize the common STC technique) and has paths of overlapping areas.

Based on the literature review, it is evident that many of the aforementioned ap-
proaches have inherent limitations, particularly in terms of energy efficiency and robustness
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to complex real-world environments. A noticeable gap remains in research for methods
that holistically consider energy consumption in both single-UGV CPP and multi-UGV
CPP. While these studies have made progress, there is a need for better and more efficient
CPP algorithms. Our proposed algorithm seeks to fill these gaps and offer a more complete,
energy-efficient, and robust solution to the multi-UGV CPP problem.

3. Problem Definition

This section formally defines the multi-robot UGV CPP problem within a static envi-
ronment. In this scenario, the environment is represented as a binary matrix, and a set of
identical robots is available for task execution. The fundamental challenge is to divide the
environment into distinct, contiguous subareas, each of which is allocated to a specific robot.
These subareas must satisfy conditions of full environment coverage, nonoverlap, and
four-neighbor continuity within each navigable cell cluster. The mathematical formulation
of this problem is discussed in more detail below, along with its requirements and goals.

First, we consider a known and static environment E with dimensions M× N repre-
sented by a binary matrix of size 2l (where l is the operation size of each robot).

E = [em,n] (1)

where em,n ∈ {0, 1} for all 1 ≤ m ≤ M and 1 ≤ n ≤ N.
In this representation,

em,n = 0 (2)

denotes an obstructed cell, whereas
em,n = 1 (3)

indicates an accessible cell. We consider a collection of UGVs

R = {r1, r2, . . . , rk} (4)

where k is the total number of UGVs. Each UGV can have a different movement speed
when moving straight, denoted as

Vstraight =
{

vstraight 1 , vstraight 2 , . . . , vstraight k

}
(5)

Similarly, each UGV can have a different turning speed, denoted as

Vstraight =
{

vturn 1 , vturn 2 , . . . , vturn k

}
(6)

We are interested in finding the following features:

• A collection of subareas

Z = {z1, z2, . . . , zk} (7)

where each subarea zi is a contiguous subdivision of E assigned to the robot ri. Each
subarea zi ensures four-neighbor continuity among all its navigable cells. That is, for every
pair of navigable cells du1,v1 and du2,v2 in zi, there is a sequence of navigable cells duq ,vq ,
q = 1, . . . , w, such that du1,v1 = du1,v1 , duw ,vw = du2,v2 , and duq ,vq indicates the four neighbors
of duq+1,vq+1 for all

q = 1, . . . , w− 1 (8)

The environment E is the amalgamation of all subareas Z, that is,

E = ∪k
i=1zi (9)
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The intersection of any two different subareas zi and zj for i 6= j is vacant, i.e.,

zi∩zj = ∅ (10)

for all i 6= j. The goal is to identify a bijective mapping g : R→ Z such that for all, 1 ≤ i ≤ k,
complying with the constraints stated above.

• The trajectories (paths) of the robots: We denote a trajectory of a UGV ri by a sequence
of cells in Zi as

Ti = (t1, t2, . . . , tL) (11)

where Ti is the total number of cells in the trajectory, and each cell tj is an element of Zi and
is accessible, i.e.,

tj ∈ {(m, n) | em,n = 1} (12)

for j = 1, 2, . . . , L.
To minimize the number of turns during a trajectory, we have to define the straight-line

movement of a UGV. A straight-line movement for a UGV ri is a sequence of cells in Ti,
which all lie on the same axis, i.e., either all cells have the same row index m or all cells
have the same column index n. We denote a straight-line movement by

Si = (s1, s2, . . . , sP) (13)

where P ≤ L is the total number of cells in the straight-line movement, and each cell sj is
an element of Ti. Formally, a sequence Si is a straight-line movement if and only if either
∀sj, sk ∈ Si; if sj =

(
m, nj

)
and sk = (m, nk), then

∣∣nj − nk
∣∣ = |j− k| for

j, k = 1, 2, . . . , P (14)

or ∀sj, sk ∈ Si; if sj =
(
mj, n

)
and sk = (mk, n), then

∣∣mj −mk
∣∣ = |j− k| for

j, k = 1, 2, . . . , P (15)

It is evident that a trajectory may contain more than one single line path on a different
axis. Furthermore, the minimization of turns within a UGV’s trajectory can be expressed
using the following equation:

Ti ≤ Ti0, ∀i ∈ 1, . . . , nr
min ∑nr

i=1 Ti
(16)

In traditional geometric distances such as Euclidean or Manhattan, the distance be-
tween two points is determined under the presumption of free and unobstructed space.
However, in the context of an environment with obstacles, this assumption often falls short.
Consequently, we employ the normalized distance derived from a breadth-first search (BFS)
algorithm. This approach gives an accurate measure of distance between cells, explicitly
considering the impact of any intervening obstacles on the actual path a robot would need
to traverse, hence offering a more realistic measure in the context of coverage path planning
(Algorithm 1).
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Algorithm 1: Calculating the normalized four-neighbor distance between two points

1. Input: Binary matrix A with dimensions X by Y, starting point (x1, y1), and target point
(x2, y2)

2. Output: minimum distance D between the starting and target points
3. Function 4_neighbor_actual_distance(A, x1, y1, x2, y2):
4. Step 1: Initialize a distance matrix D with dimensions X by Y, set all elements

to infinity
5. Step 2: Initialize a queue Q
6. Step 3: Set D [x1, y1] = 0 and add (x1, y1) to Q
7. Step 4: While Q is not empty:
8. Step 4.1: Dequeue a point (x, y) from Q
9. Step 4.2: Loop through each of its four neighbors (xn, yn) in the environment A:
10. Step 4.2.1: If (xn, yn) is an obstacle (A[xn, yn] = 0), skip this neighbor
11. Step 4.2.2: If D [xn, yn] > D [x, y] + 1:
12. Step 4.2.2.1: Update D [xn, yn] = D [x, y] + 1
13. Step 4.2.2.2: Add (xn, yn) to Q
14. Step 5: Return D[x2, y2] as the minimum distance D between the starting and

target points
15. End Function

The formulation outlined above presents a systematic approach to address the multi-
UGV CPP problem in a static environment. It incorporates key constraints regarding area
partitioning, UGV, and trajectory allocation. The subsequent sections will delve into the
proposed algorithmic solution, taking this problem formulation as the basis.

4. The Proposed Algorithm

This section presents the proposed methodology for addressing the multi-UGV CPP
problem as defined in Section 3. The methodology that we present consists of two key
components. Both components are essential for optimizing the overall efficiency of the
generated UGVs paths. Section 4.1, “Area Allocation and Fine-Tuning”, highlights an
approach to allocate and modify the coverage area among multiple UGVs, in order to
minimize subarea blending. Section 4.2, “Node Exchanging”, discusses an auxiliary method
that can further refine the paths by enabling exchanges between adjacent nodes. This
results in a reduced number of turns during navigation and hence less energy consumption.
Figure 1 depicts an overview diagram of the proposed methodology.

4.1. Area Allocation and Fine-Tuning

The first step in solving the multi-UGV CPP problem is the division of the area
into multiple subareas and their subsequent fine-tuning. While a range of area division
algorithms, such as DARP [17,21] or MSTC * [13], could feasibly be employed in this stage
of the algorithm, the decision to utilize a modified version of the affinity propagation
(AP) [23] algorithm was predicated on its inherent flexibility and adaptability. AP is a
clustering algorithm for data points, similar to k-means [24]. Even though they have
comparable levels of performance, AP does not require the predetermination of the number
of clusters. However, an in-depth discussion of the AP algorithm itself is beyond the scope
of this paper. The primary focus of this section is to delineate the optimization method
used following the allocation of the initial subareas.

In an optimal situation (Figure 2), the division of the total area would result in perfectly
shaped subareas, where each assigned area resembles a rectangle. This form, due to its
linearity and simplicity, inherently facilitates the operation of the employed UGVs and leads
to optimal navigation paths. An example of an ideal area division with a minimum number
of turns is depicted in Figure 3. It is worth noting, however, that in realistic situations where
more than two UGVs are employed for a task, and the environment contains irregularly
shaped paths and numerous obstacles, regular area division algorithms and ST generators
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cannot work. A more realistic environment is visualized in Figure 2, where the number of
robots is increased to three, and obstacles are introduced to the environment.
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Figure 3. A visual representation of an example of a 10 × 10 binary environment (as defined in
Section 2); black cells denote an obstacle, and white cells denote an accessible area (a). In (b), the
initial area is divided into three equally capable UGVs, in our case, using AP (however, any area
division algorithm can be used with slightly different results based on the parameters). In (c), we can
see the final generated MSTs using Kruskal’s algorithm.
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The proposed algorithm is able to reduce the number of turns within each subarea.
Such minimization results in an efficient, streamlined coverage path for each UGV, leading
to substantial energy savings, enhanced productivity, and an overall optimized performance
of the multi-UGV system. It is worth noting that even in equally sized subareas, the
generated STs could lead to potentially more or fewer turns for the UGVs (Figure 4).
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Figure 4. A visual representation of how differently shaped (but equally sized) areas can potentially
contain trajectories with a different number of turns. All areas (a–c) have the same number of cells,
but their shape affects the generated STs and therefore the number of turns.

The main objective of the fine-tuning process is to reduce a phenomenon known as
“area blending”. In the context of multi-UGV CPP, and more specifically, area division, area
blending refers to the number of cells that belong to a specific cluster, but their neighbors
belong to another cluster. This phenomenon usually leads to unfavorable trajectories for
UGVs, as they may need to perform more turns during their paths, therefore increasing the
energy cost and time for the operation. Figure 5 depicts an example of a 3 × 3 environment
with area blending.
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Figure 5. A visual representation of an example of a 3× 3 environment. In (a), the initial environment
is depicted (there are no obstacles, so every cell is accessible). In (b), the initial area is divided into
two subareas, one for each UGV. The resulting ST for the yellow UGV consists of eight turns for both
UGVs. In (c), the number of cells assigned to each UGV stays the same, but the cell shifts position.
This results in six turns for the yellow UGV and eight turns for the blue UGV. In (d), instead of
shifting the position of the cell, it is reallocated to the blue UGV. Even though the area allocation is
now not equally divided, the number of turns is the lowest: four for the yellow UGV and eight for
the blue UGV.

To overcome this issue, the optimization scheme uses a redistribution strategy based
on the proximity characteristics of each cell. In particular, the cells for which three out
of four neighbors belong to another group are redistributed. This criterion ensures that
only those cells are redistributed, in order to maintain the overall order of the clusters
established by using the initial area division algorithm (Algorithm 2).
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Algorithm 2: Reduce blending in the originally divided environment

1. Input: Environment E, Subareas Z, number of subareas n
2. Output: Environment E’, Subareas Z’
3. for i from 1 to M do
4. -for j from 1 to N do
5. --cell = E [i, j]
6. --Check only non-boundary cells.
7. --if i > 1 and i < M and j > 1 and j < N then
8. ---cluster_count = empty Dictionary (Find number of neighbors)
9. ---for k from −1 to 1 do
10. ---- for l from −1 to 1 do
11. -----Exclude the cell itself
12. -----if not (k == 0 and l == 0) then
13. ------neighbor_cluster = E [i + k, j + l]
14. ------if neighbor_cluster in cluster_count then
15. -------cluster_count [neighbor_cluster] += 1
16. ------else
17. -------cluster_count [neighbor_cluster] = 1
18. ---max_cluster = key of maximum value in cluster_count
19. ---Check if the maximum neighboring cluster has 3 neighbors
20. ---if max_cluster!= cell and cluster_count [max_cluster] >= 3 then
21. ----E [i, j] = max_cluster
22. return E

This fine-tuning process is repeated iteratively until no further beneficial reallocations
are identified, resulting in a set of well-defined, contiguous subareas for each UGV. The
outcome of this process is a significant reduction in area blending, leading to more efficient
coverage paths and reduced energy expenditure.

While this fine-tuning process adds a degree of complexity to the area division stage
of the proposed algorithm, it is an essential component of the overall solution. By taking
the time to refine the subareas at this stage, the proposed algorithm sets the stage for
the subsequent generation of efficient coverage paths, which will be discussed in the
following sections.

4.2. Node Exchanging

Even though the process mentioned in the previous subsection performs a subarea
fine-tuning and reduces area blending within the clusters, the shapes of the new subareas
are not further modified. As shown in Figure 4, differently shaped subareas can have a
higher or lower number of turns. This section aims to detect problematic shapes within
the STs of the subareas and exchange them with the neighboring ST. In each ST, only an
ending node (EN) can be exchanged. Depending on the shape of the ST, the ENs can be
categorized as follows (Figure 6):

• Linear terminal node (LTN): In this configuration, the node results in a total of two
directional alterations. Upon its removal, the path still retains the same number of
turns, indicating no change in the overall turning count.

• Angular terminal node (ATN): Initially, this node structure results in a total of four
directional shifts. However, when this particular node is eliminated from the path, the
total turn count is reduced to two, demonstrating a decrease in the overall number
of turns.

• Intersection terminal node (ITN): This node configuration leads to four turns in the
initial path structure. Interestingly, the elimination of this node results in the complete
eradication of turns, thereby reducing the total turn count to zero.
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To minimize the number of turns in the resulting paths, the NE mechanism iterates on
the generated STs and performs the following process:

1. Each NE indicates that one subarea relinquishes an end node, which is subsequently
adopted by a different (neighboring) subarea.

2. Prioritization is accorded during the node-discarding process, where ITNs are dis-
carded first, followed by ATNs. The discarded node, now assimilated by an adjacent
subarea, integrates into a new ST, forming a modified shape at the end node. Ideally,
LTNs are preferred, ATNs are the next best option, and ITNs are considered the
least desirable to minimize the turn count. Following this, the said adjacent subarea
discards an end node to a different subarea, and this process continues in a cyclic
manner. After the completion of a cycle, the count of nodes associated with the related
subarea approximates (n/nr). If the number of turns fails to satisfy Equation (16), the
current exchange cycle is discarded, and a new one is initiated.

3. Every node eligible for exchange in a subarea undergoes an exchange before moving
on to the subsequent subarea.

4. The NE process is terminated when further exchanges cease to reduce the total number of
turns within the specified area of interest, or when the maximum iteration count is reached.

A visual representation of the NE process is depicted in Figure 7 (along with the
previous steps).
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(b) indicates the initial area divided into three subareas for each UGV; (c) shows the STs as they
are generated using Prim’s or Kruskal’s algorithm. Instead of directly generating the STs once the
area is divided, the proposed algorithm reallocates the appropriate cells to reduce area blending
(d). Then, in (e), the STs are generated again. In the final part of the process, the node exchange
is performed once the STs are generated. Eligible nodes are exchanged. In this example, one node
was eligible for exchange. The final STs are depicted in (f). In this example, the yellow UGV had
a 22.2% reduction in the number of turns, the blue UGV had a reduction of 18.6%, and finally, the
green UGV had a reduction of 10.5%. The reduction in the number of turns is based on the size of
the environment, the number of UGVs, and the number and location of obstacles. In general, more
complicated environments have the potential for more optimizations.

5. Experimental Results

In this section, we present the empirical outcomes of the extensive testing and valida-
tion of the proposed methodology, conducted using a robust computational framework
implemented in C# (version 11) and Java (version 19). These programming languages were
chosen due to their capacity to handle the intricate operations, data structures, and interac-
tions inherent in our multi-UGV CPP solution. The computational experiments were carried
out on an Intel Core i7 8700K processor with 16 gigabytes of random-access memory (RAM),
providing the necessary computational power to run our resource-intensive simulations.

The proposed methodology proved to be proficient in reallocating UGV subareas and
fine-tuning the generated STs to minimize the number of turns within a trajectory. This was
compared with A*-DARP+STC [25] and [17]. The simulation environment adopted was
similar to [20] and consisted of three similar-sized (64 × 64) environments each showcasing
unique features. The obstacle ratios of environments (a), (b), and (c) were 10.1%, 29.6%,
and 43.5%, respectively. These environments were generated employing a pseudo-random
process, resulting in a distinct mix of accessible regions and obstacles. Table 1 presents the
findings of the simulations.

Table 1. Experimental results for environments (a), (b), and (c).

A*-DARP + STC [25] [17] AP + Kruskal
+ Optimization

Env. UGVs Total
Turns

Total
Turns

Total
Turns

Reallocated Cells
+ NE

a 3 522 545 485 12
4 510 532 476 8
5 469 459 430 7

b 3 564 543 492 13
4 530 489 470 14
5 523 435 493 8

c 3 456 498 401 7
4 440 464 405 8
5 442 540 424 5

As shown in Table 1, the experimental results confirm that our proposed methodology
consistently surpasses the performance of the comparison methods in terms of reducing
the total number of turns. For instance, in environment “a” with three UGVs, which had
an obstacle ratio of 10.1%, our methodology achieved a total of 485 turns, outperforming
A*-DARP + STC and methods developed in [25], which resulted in 522 and 545 turns,
respectively. Furthermore, it is noteworthy that these improvements in turn reduction were
accomplished with only a modest number of cell reallocations, underscoring the efficiency
of our fine-tuning process. Similar patterns of superior performance of our algorithm were
observed across the different environments.
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The spatial distribution of obstacles and the initial placement of UGVs, particularly in
algorithms that support initial positioning, can considerably influence the effectiveness of
the area division and ST generation. These variables hold significant sway over the current
algorithms’ capacity to reduce the number of turns of trajectories. There are instances
in which, due to the intricate interplay between the layout of obstacles and the initial
positioning of UGVs, no further reduction in turns is achievable. Even though this is
difficult to prove, an example of such a case can be visualized (Figure 1). This realization
underscores the crucial role these factors play in the planning process and the need for
algorithms to be adept at handling a wide variety of terrain configurations and initial
conditions. Such intricacies in the optimization landscape only add to the richness of the
problem at hand and reinforce the need for robust, adaptive, and intelligent multi-UGV
CPP methodologies, such as the one proposed in this study.

6. Discussion on Energy Efficiency

In the context of UGV CPP, energy efficiency stands as a complex and multifaceted
challenge. Unlike traditional modes of vehicular motion where energy expenditure pre-
dominantly depends on distance or speed, UGVs, particularly in CPP applications, present
a unique energy consumption profile. The overall energy consumption is influenced by
various intricate factors, such as the nature of the movement (straight or turning), terrain
characteristics, and sudden changes in the operational landscape, among others.

Optimizing energy utilization in this context requires an understanding of the interplay
of these factors and designing a solution that effectively accounts for them. In our proposed
approach, we sought to tackle this complexity by aiming to reduce the number of turns in
the final coverage paths of the UGVs. This strategy is based on a key insight: most UGVs,
in general, consume more energy when performing a turn than when moving in a straight
line. The increased energy consumption during turns is primarily because these maneuvers
typically require the UGVs to decelerate, stop, and then accelerate again.

To illustrate, let us consider two coverage paths of equal distance D. One path contains
X turns, and the other contains Y turns, where X×Y. Often, the energy consumption of
the path with X turns would be higher due to the additional energy expenditure during
turning. The exact amount of energy saved by reducing the number of turns can vary
widely depending on specific UGV specifications. UGVs with larger turning-to-straight
movement energy ratios will typically benefit more from the minimization of turns, while
other UGVs with smaller ratios will benefit less. One example of UGVs with larger benefits
is the UGVs that are commonly used in agricultural applications. Due to the nature of the
terrain, these UGVs have higher energy requirements when turning than when moving in
straight lines.

A potential formula that can be used to quantify the total energy consumption per
UGV path is as follows:

E = Ecs × Dcs + ET × DT (17)

where Ecs is the energy consumption of the UGV during cruising speed, Dcs is the distance
(cells) traversed using cruising speed, ET is the energy consumption of the UGV when
turning, and DT is the number of turns of the UGV.

A more sophisticated formula that would yield more precise energy calculations
would consider the acceleration and deceleration of the UGV and its energy consumption
in the following states:

E = Ecs × Dcs + EDS × DDS + EAS × DAS + ET × DT (18)

where EDS is the energy consumption of the UGV during deceleration (when preparing to
take a turn), DDS is the distance (cells) traversed during deceleration, EAS is the energy
consumption of the UGV when accelerating (after a turn), and DAS is the distance covered
(cells) while accelerating.
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The distinctiveness of our methodology resides in the integration of a terrain-aware
cost function coupled with an adaptive path replanning module. These components
cohesively assimilate the energy-influencing parameters to engineer paths that potentially
consume less energy. It is important to note that the proposed paradigm predominantly
diminishes the energy expenditure of a UGV path, contingent upon the assumption that
the UGV incurs significant energy costs during turning maneuvers. Although the current
study does not offer explicit quantitative measures of energy efficiency, it delineates a
fundamental foundation for future empirical investigations. Thus, our research marks
a critical milestone toward the conceptualization and execution of energy-centric CPP
strategies in multi-UGV contexts.

7. Conclusions

In this study, we presented an innovative approach to address the challenge of the
multi-UGV CPP problem with a particular emphasis on optimizing UGV energy utilization
through effective area fine-tuning. Our methodology, which hinges upon the optimization
of assigned areas and the generated STs, revealed its potential to significantly enhance the
energy efficiency of CPP for multi-UGV scenarios.

The resultant algorithm outperformed the existing methodologies in terms of area
division optimization and turn reduction, demonstrating its robustness through a series
of comprehensive simulations. Notably, our adaptive path replanning module ensured a
higher degree of flexibility and effectiveness, particularly in challenging terrain conditions.
The work delineated here presents substantial contributions to the field of CPP and pro-
vides a promising foundation for future research efforts aimed at further augmenting the
efficiency and endurance of multi-UGV operations.

As we contemplate future enhancements to our methodology, one aspect of paramount
interest is the extension of the algorithm to accommodate environments with predictable
moving obstacles. Such a modification would necessitate the introduction of the time
variable into the planning algorithm. By assessing the capabilities of UGVs, particularly
their moving and turning speeds, the algorithm could be designed to anticipate the location
of a given obstacle at a particular time, thus ensuring that the generated path is consistently
clear of obstacles. This adaptation would likely entail substantial modifications to our cur-
rent approach, especially concerning the spanning tree generation algorithm and the node
exchange procedure. By incorporating the time dimension into our planning algorithm, we
can unlock new realms of versatility for multi-UGV CPP, opening doors for even greater
efficiency and adaptability in complex and dynamic operational scenarios.
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