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Abstract: Predicting stock prices has long been the holy grail for providing guidance to investors.
Extracting effective information from Limit Order Books (LOBs) is a key point in high-frequency
trading based on stock-movement forecasting. LOBs offer many details, but at the same time, they are
very noisy. This paper proposes a differential transformer neural network model, dubbed DTNN, to
predict stock movement according to LOB data. The model utilizes a temporal attention-augmented
bilinear layer (TABL) and a temporal convolutional network (TCN) to denoise the data. In addition, a
prediction transformer module captures the dependency between time series. A differential layer
is proposed and incorporated into the model to extract information from the messy and chaotic
high-frequency LOB time series. This layer can identify the fine distinction between adjacent slices
in the series. We evaluate the proposed model on several datasets. On the open LOB benchmark
FI-2010, our model outperforms other comparative state-of-the-art methods in accuracy and F1 score.
In the experiments using actual stock data, our model also shows great stock-movement forecasting
capability and generalization performance.

Keywords: stock-movement prediction; limit order books; high-frequency trade; deep learning

1. Introduction

Predicting stocks, foreign exchange, and other financial products has always been
a popular topic of study, where stocks, to some extent, reflect a nation’s economic status
and are an essential part of investment portfolios [1]. In addition, with proper stock-
forecasting methods and appropriate trading strategies, investors can improve their returns
on investment [2]. Although it is often believed that stock prediction is impossible, practice
and some theories point out that it is possible to predict future stock prices or trends through
appropriate models and methods. Stock market forecasting has become an interdisciplinary
problem in finance and computer science [3,4]. Forecasting stock prices is, however, a very
challenging task. On one hand, to forecast stock prices, investors must consider the political
environment, the global economy, corporate financial reports, firm performance, and other
factors. On the other hand, financial time series data are difficult to predict owing to their
non-stationarity, nonlinearity, high volatility, solid randomness, and low signal-to-noise
ratio [5].

Numerous approaches have been developed in recent decades to predict financial
time series, and many theories and machine learning methods have been developed. Even
today, many quantitative investors use machine learning methods in practice.

Deep learning has been introduced to predict financial time series. Some studies use
more diverse data types to make predictions, while others turn to high-frequency trading
to reduce the influence of extrinsic factors. Studies have shown that 75% of transactions in
America in 2009 were high-frequency trading [6]. Thanks to the development of computer
technology, high-frequency trading became possible. A Limit Order Book (LOB) is an
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ordinary data form used in high-frequency trading scenarios. More than half of the world’s
exchanges use LOBs, and even cryptocurrency trading uses them nowadays [5,7,8]. An LOB
is a tool that records all outstanding limit orders still on the market at a given time slice
and classifies them into different levels based on the price submitted and transaction types.
The two types of limit orders are bid and ask, which mean sell and buy, respectively. A limit
order is submitted when participants want to buy or sell shares at an upper or a lower
price limit, in which case participants may obtain a better transaction price but have to
wait for the execution of the trade [9]. An LOB is a combination of the states of limit orders.
At each time slice, the LOB displays the available quantity at each price level and the types
of orders. Sometimes, other information, such as the last recorded price, is also included in
the LOB data [10].

There have been some studies on utilizing deep learning for stock prediction. However,
the current approaches completely neglect the data processed by the model, and expect
it to learn patterns from raw (sometimes normalized) data, which is theoretically feasible
in deep learning but often challenging due to the low signal-to-noise ratio and nonlinear
nature of financial data [11].

In order to enhance the accuracy of stock trend prediction, and investigate the applica-
bility of transformer models in stock trend prediction, we develop a novel deep learning
model in this paper, dubbed the differential transformer neural network (DTNN), to predict
the directions of stock movements in high-frequency trading. The model is based on the
transformer model [12], which has achieved remarkable breakthroughs in recent years [13].
The model consists of three modules: first, a feature extractor; then a differential layer to
scale features; and finally, a prediction transformer module. The feature extractor combines
a temporal convolutional network (TCN) and a temporal attention-augmented bilinear
layer (TABL) [14,15] and takes the LOB data as input. Based on the extracted feature vectors,
the differential layer calculates the differential of the vectors and scales the features to
adjust to the prediction transformer module. After the adjusted feature vectors are fed into
the prediction transformer module, the final prediction is calculated.

To improve the performance of the prediction transformer module that deals with
high-frequency data containing similar feature vectors, we develop a differential layer
structure in our model. The primary principle of the differential layer is to actively facil-
itate the model in implementing a statistical data-processing method, namely difference
operation [16], instead of aimlessly learning from noisy data. It transforms the sequence
of feature vectors into a structure consisting of the initial and difference values so that
the prediction transformer module can effectively capture the changes between adjacent
feature vectors in a time series and make a better prediction.

Compared to the previous studies, our model can extract the features from a large
amount of data with high noise, and thus can be used to predict the out-of-sample stocks.
Moreover, our model does not impose any requirements on the specific form and meaning
of the input features. Thus, it can be applied to other kinds of input feature factors.

The main contributions of this paper can be summarized as follows. First, a model for
stock-movement forecasting is proposed, which achieves state-of-the-art accuracy and F1
score. Second, it proves that the transformer model has great potential in stock-movement
forecasting, which can guide investment activities. Third, a differential layer is proposed,
which is proven to be efficient in dealing with high-frequency data. In further research, this
structure may be used in other fields.

The remainder of this paper is organized as follows. Section 2 explains the related
work. Section 3 presents the data from the LOB and the details of the model. In Section 5, we
show the datasets and methods used to conduct the experiments. In Section 6, we provide
the experimental results and compare them with other methods. Section 7 summarizes our
findings and gives the outlook for future work.
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2. Related Work

The reasonability of stock-movement prediction has been studied in [17]. Many pieces
of research show that the stock market can be predicted to some extent [18–21]. Computer
tools have long been used to study financial time series [22–25]. Much has been accom-
plished in recent decades to predict financial time series. A well-known framework is
the autoregressive moving average (ARMA) framework. There is also the generalized
autoregressive integrated moving average (ARIMA) framework, which added a differential
step to eliminate non-stationarity [26]. Later, with the emergence of machine learning tech-
niques, support vector regression, random forest, and other statistical learning technologies
were also used to predict financial time series [15]. Today, many investors continue to use
machine learning models in practice, such as the extreme gradient boosting (XG-Boost)
algorithm and the gradient boosting machine (GBM) algorithm. The use of deep learning is
a new trend in the study of financial time series. The nonlinearity of deep learning models
can describe complex influencing factors, and therefore, deep learning technology is now
widely used in many research fields and practices [27].

Deep learning models commonly used in finance include convolutional neural net-
works (CNN), multilayer perceptron (MLP), recurrent neural networks (RNN), and long
short-term memory (LSTM). Most studies used the LSTM model [1], which is a variant of
the RNN and was first used in the field of natural language processing (NLP) [28]. LSTM
introduces a forgetting mechanism, which ensures that the model does not have the vanish-
ing gradient problem when working with a long sequence. Because it can handle both pure
financial time series and textual information such as news and financial reports, LSTM
has been very popular in recent years [2,29–32]. LSTM has an inherent advantage in han-
dling time series data. Nabipour et al. conducted a study on deep learning-based stock
price prediction, comparing the performance of MLP, RNN, LSTM and six other machine
learning algorithms [33]. The experimental results demonstrate that LSTM outperform all
others. Lu et al. proposed a deep learning model that integrates CNN, Bi-directional LSTM
(BiLSTM), and attention mechanism to predict the closing price of a stock for the next day
based on historical data of the opening price, maximum price, and closing price [34]. An
alternative to trend forecasting, this model directly predicts the actual value of the stock’s
price. This study compared eight other deep learning methods, and the final proposed
model demonstrated superior performance with respect to mean absolute error (MAE) and
root mean square error (RMSE).

However, considering that LSTM still has the problem of long-term dependency and
low utilization efficiency concerning computer hardware, Vaswani et al. proposed the
transformer model [12], which ultimately outperformed the LSTM and was more efficient.
Then, the bidirectional encoder representation from transformers (BERT) framework [35]
gave the transformer model greater representational capacity than the LSTM model in the
NLP. Subsequently, Dosovitskiy et al. developed the vision transformer model (ViT) [36],
which applied the transformer model to computer vision and demonstrated the transformer
model’s potential for cross-domain applications. Studies have shown that transformer
structures have no inductive biases and can handle large amounts of data. This property
makes the transformer model suitable for various deep learning tasks and thus led to
breakthrough results in different domains. However, few people apply the transformer
model to predict financial data, which is one of the main contributions of this paper. For
instance, Yang et al. proposed a Hierarchical Transformer-based Multi-task Learning
model for stock volatility prediction using text or speech as input, which is based on the
transformer architecture but leverages linguistic information instead of trading data [37].

Another problem in the research of financial time series is data selection. Because many
studies use unique data as research samples, it is hard to analyze how much the data or the
models contribute to the final results, and the experiments are difficult to replicate. For a fair
comparison with other models, we select the open dataset FI-2010 to evaluate our model.
FI-2010 is an open dataset with high-frequency LOB data [22], and many studies can be
compared with it. For example, Tran et al. proposed a time-domain bilinear transformation
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model [15], which obtained higher prediction accuracy than the previous model on the
FI-2010 dataset. Moreover, Zihao Zhang et al. proposed a model using the CNN+LSTM
model on FI-2010, which achieved good prediction accuracy [38]. With the same dataset
and metrics, we can compare our model with state-of-the-art methods fairly.

3. Input Data and Label for Prediction

The problem studied in this paper can be formulated as follows: given the LOB data
combination X of the past T slices as input, our proposed model enables us to derive the
average trend of stock prices over different horizons (upward, unchanged, or downward).
Subsequently, we elaborate on some concepts outside the model.

3.1. Limit Order Books

A limit order is a form of order in stock and security trading. It has two types: ask
(sell) and bid (buy). With a limit order, the stock and security will only be traded at a limit
or better price, which means a bid (buy) limit order is only executed at the limit price or a
lower price, and an ask (sell) limit order is executed at the limit price or a higher price. It
differs from a market order because the limit order is usually not executed immediately.
The participant needs to submit the ask or bid order at a specified price and quantity.
The order is not executed immediately until matching orders are achieved. Those orders
remaining on the market (which have not been traded or canceled) form an LOB, which is
an overview of stock trading on the exchange. For each stock, there is an LOB. The LOB
data are often provided by exchanges. In general, the prices suggested by traders are very
similar but often not the same. Therefore, LOBs often take the form of histograms that
divide the buy and sell prices into multiple bins and indicate the number of orders in the
price range represented by each bin.

For example, for a given stock S, seller Ana wants to sell ten shares at a minimum
price of USD 10 per share, and her order is recorded at the LOB as ten ask shares in the
price range of USD 9.5 to USD 10.5 (the scale of the range will change as the case may be).
At this point, if Bob, the second person, wants to buy eight shares at the maximum price of
USD 9 per share, Bob’s and Ana’s orders cannot match, so Bob’s demand is recorded on
the LOB as eight bid shares in the price range of USD 8.5 to USD 9.5. At this point, another
trader, Alice, is willing to buy five shares at USD 10 per share. Alice’s orders match Ana’s
orders, so the trade is executed, and there are five USD 10 ask shares and eight USD 9 bid
shares left in the LOB. In practice, the LOBs change from moment to moment, and the LOBs
can be complex due to many transactions.

Generally, the LOBs are grouped into twenty bins (ten bins at both ends of the bid
and ask, respectively). Often, there is no exact price of an asset, and the median price is
calculated to represent the asset’s current price.

3.2. Input Data

In this paper, historical data on the LOB prices and sizes are used as input data. At a
time t, for a single stock, an LOB contains data

st = [p(1)a , v(1)a , p(1)b , v(1)b , p(2)a , v(2)a , p(2)b , v(2)b , . . . ], (1)

in which p(i)a and p(i)b mean the prices of the ask side and bid side in the i-th bin, and v(i)a

and v(i)b mean the volumes of the shares in the bins, respectively. For each time slice
t, the LOB has the corresponding LOB data st. In stock-movement prediction, T time
slices with N bid/ask levels are used for prediction, so the input data can be defined as
S = [s1, s2, . . . , sT ] ∈ R4N×T , where st = [p(i)a , v(i)a , p(i)b , v(i)b ]n=N

i=1 .
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3.3. Label Definition

It is assumed that the stock-movement direction after k time slices is to be predicted
with the past T time slices as input data. Following the labeling method in [22], the label of
stock-movement direction is

pt =
p(1)a (t) + p(1)b (t)

2
, (2a)

m+(t) =
1
k

k

∑
i=1

pt+i, (2b)

lt =
m+(t)− pt

pt
, (2c)

where pt means the mid-price of the t-th slice, k is the prediction horizon, and lt is the
average return rate. A label is defined as the direction of the average return rate lt with a
threshold α. Given the threshold value α, when lt > α, −α < lt < α, and lt < −α, the data
are labeled as increasing, unchanged, and decreasing, respectively.

4. Proposed Model

As shown in Figure 1, the proposed model consists of three parts: the feature extractor,
the differential layer, and the prediction transformer module. The feature extractor is used
to remove the noise in the input data and extract feature vectors, as financial data are notori-
ously noisy with a low signal-to-noise ratio. The differential layer is developed to scale the
feature. This layer calculates the differential of the adjacent vectors and normalizes them,
which highlights the difference between adjacent vectors and makes the data more evenly
distributed. The prediction transformer module is then used to capture the dependency of
the processed features and predict the movement of the shares.

Input

TABL MLP&Sigmoid

s1

�2 − �1

��− �� − 1

�1 + �1

�2 + �2

�� + ��

ℎ + �0

Differential layer

Transformer Blocks Output

Position embedding

s1

s2

sn

Prediction transformer moduleFeature extractor

TCN

Figure 1. The overall structure of the proposed model, which consists of three modules: the feature
extractor, the differential layer, and the prediction transformer module. We use LOB data as the input
to our model, and the stock price movement is the output. Here, the main function of the differential
layer is obtaining variations of the sequence.

4.1. Feature Extractor

The feature extractor combines the TCN model and the TABL model to extract features
and to denoise the data. The TABL model is proposed in [15], and its structure is shown in
Figure 2. The formulas are

X = W1X, (3a)

E = XW, (3b)

αij =
exp(eij)

∑T
k=1 exp(eik)

, (3c)

X̃ = λ(X� A) + (1− λ)X, (3d)

Y = φ(X̃W2 + B), (3e)
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in which W1, W, W2, B are the learnable parameters; X, E, and X̃ are intermediate variables;
� denotes the Hadamard product; φ(·) denotes a ReLU function [39]; and Y is the final
output. The TABL model is characterized by integrating the bilinear projection and the
global attention in two dimensions, which improves the model’s interpretability and its
capability to capture the global features of the sequence.

𝑊 𝑋

𝑊 𝑋𝑊

Hadamard 
product

1 − 𝜆

𝜆

𝑋 𝑌

Softmax

𝑊 ,𝐵, 𝜙

Figure 2. Structure of the TABL model, which is a part of the feature extractor. X means the input,
and W1 and W are learnable matrices. The figure shows that the input is mapped to the output by a
series of steps such as linear transformations and the softmax function.

In the TABL model, multivariate time series are naturally expressed in terms of two-
point tensors, in which the time information is implicitly encoded. The TABL model first
learns the weights of the data at different positions on a vector in a two-dimensional tensor,
then learns the weights at different times through the attention mechanism. In this way,
the resulting vectors in feature tensors contain the information of all other vectors, i.e., each
vector is a combination of its information and the global information.

The TCN model is proposed in [14], and its structure is shown in Figure 3; the model
combines the idea of dilative convolutions and causal convolutions and uses them to extract
the sequence information.

 ଵ ଶ ଷ ்ିଵ ்

Output

Convolution

Hidden layers

Convolution

Input

Dilation=2

Dilation=2

Figure 3. Structure of the TCN model with kernel size k = 2 and dilations are always 2. The TCN
model is a part of the feature extractor of our model. The figure shows that each vector in the hidden
layer is the convolution of two non-adjacent vectors. Similarly, the vectors in the output layer are the
convolutions of non-adjacent vectors in the hidden layer.

According to [40], the vast majority of orders are canceled. Some of the canceled orders
contain a lot of false information and noise. Therefore, it is necessary to denoise the two-
dimensional tensor of the time series. A component of the TCN model is a one-dimensional
convolution layer with expansion. It can learn the weight of each value in a vector and
finally obtain a new value. Therefore, the TCN model can find the local features of the
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data with the learned weights. As this process continuously flattens the data, the noise is
significantly reduced.

The input data are processed with the TABL model and the TCN model, respectively.
To obtain a feature vector with identical dimensions, they are then integrated via a residual
module. In this way, we obtain the extracted feature vectors with the same dimension.

4.2. Differential Layer

After the feature extractor, each element in the input sequence can be reformulated
as a state vector of the corresponding slice. The input sequence can be denoted as
(s1, s2, . . . , sn). Each state vector can be re-represented as si by the difference between
the two adjacent states si = si−1 + δi. Then, the input sequences are reformulated as
(s1, s1 + δ2, s2 + δ3, . . . , sn−1 + δn).

It is noted that the LOB data series is composed of high-frequency data. Even the
extracted state vectors have small differences between adjacent vectors, i.e., the difference
δi is negligible in comparison with the state vector si. However, the difference is what we
need to emphasize.

To solve this problem, a differential layer is proposed. In the differential layer, each
vector in the input sequence, except the first vector, will be set as a variation of itself and
the prior one. In other words, the input sequence can be denoted as (s1, s1 + δ2, s2 + δ3,
. . . , sn−1 + δN), and after the differential layer, the output sequence is (s1, δ2, δ3, . . . , δn).

In this way, the difference between state vectors is emphasized, which can help the next
module, i.e., the prediction transformer module, in improving the capability of capturing
patterns. The mathematical justification is given in the next subsection.

4.3. Prediction Transformer Module

In this module, the input vector will be preceded by a classification header and
learnable location embedding. Then, the processed input vectors are sent to the multi-
head self-attention block for processing. Each vector keeps the same dimension after the
attention block with other vectors. Finally, only the classification head is extracted, and the
corresponding classification result is outputted through a multi-layer perceptron (MLP)
and an activating layer with a sigmoid function.

In the original transformer model, the output sequence has the same length as the input
sequence, and each vector in the sequence contains information about the other vectors in
the sequence. From a microscopic point of view, each input vector xi in transformer blocks
is first converted into the k, q, and v vectors, i.e.,

k = Wkxi, q = Wqxi, v = Wvxi, (4)

where Wk, Wq, Wv are learnable matrices and are the same for each input vector xi.
Then, its q vector and each k vector are fed into an attention block and a classification

function (softmax) to obtain a set of weights α. The sum of the products of each α and
corresponding v is the output vector to the input vector. The process is

αi,j = attention(qi, k j), (5)

( ˆαi,1, ˆαi,2, . . . , ˆαi,n) = Softmax(αi,1, αi,2, . . . , αi,n), (6)

yi =
n

∑
j=1

ˆαi,jvj, (7)

where yi is the corresponding output of the input xi.
In the ViT [36], however, only the classification header vector is outputted, so the

actual output vector is the result of attention between the header vector and other vectors
in the sequence. Our model refers to the idea of the ViT and only extracts the head vector.
So, the result contains information on all the input vectors and the feature vectors in the
whole sequence.
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In our model, the input vectors are (s1, δ2, δ3, . . . , δn) delivered from the differential
layer. A learnable classification header vector h and the learnable position embeddings
(ph, p1, p2, . . . , pn) will firstly be added to the input series, and the input series becomes
(h + ph, s1 + p1, δ2 + p2, δ3 + p3, . . . , δn + pn). Then, the input series is fed into a multi-head
attention block, and only the output of the header vector will be reserved.

For simplicity, the input series (h + ph, s1 + p1, δ2 + p2, δ3 + p3, . . . , δn + pn) is denoted
as (xh, x1, x2, . . . , xn), and the output is denoted as yh. According to [12], the output after
the transformer blocks with a classification header can be denoted as

yh =
n

∑
i=1

Softmax(attention(qsh , kxi ))vxi , (8)

attention(qsh , kxi ) = qsh kxi /
√

d, (9)

where qsh is the query vector of the classification header sh, and kxi and vxi are the key
vector and value vector of each input vector xi. The attention function can be formulated as
the product of two vectors, and d is the dimension of the two vectors. Finally, the vector yh
will be fed into an MLP and an activating layer with a sigmoid function, and the prediction
of the stock movement is made.

4.4. Analysis of the Differential Layer and Prediction Transformer Module

Now we will show how the differential layer helps in this process. According to
research, stock data is non-stationary [34], meaning that certain statistical indicators of
stock data change over time, rendering them difficult to predict. Typically in research,
stock data are either original or normalized; however, normalization alone cannot eliminate
the non-stationarity of the data. Instead, difference operation can effectively remove this
non-stationarity [16].

The Figure 4 and 5 depict the L2 norm curves of the original input data and that of
the feature-extracted data. It is evident that the former exhibits instability, while the latter,
though improved by multiple feature-extraction modules, still displays a discernible trend.

Figure 4. L2 norm curve of raw input data of FI2010.

Figure 5. L2 norm curve of feature-extracted data of FI2010.
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We performed unit root tests on the data. The unit root test is an objective method to
determine whether a difference operation is needed [16]. This statistical hypothesis test
for stationarity is used to determine whether a difference operation is needed to make the
data more stationary. Finally, it is found that only 6% of the original data can be identified
as stationary, while 82.2% of the data after the feature-extraction module can be identified
as stationary. However, after the differential layer, 98.3% of the data were considered
stationary. This shows that the differential layer indeed makes the overall data more stable
and thus improves the performance of the model.

Now, let us attempt to analyze this problem mathematically. We first focus on
the situation without the differential layer. In this case, the input vectors will become
(h + ph, s1 + p1, s2 + p2, s3 + p3, . . . , sn + pn), and the coefficient after the attention block is

attention(qsh , kxi ) ∝ qsh kxi = qsh Wk(si + pi), (10)

where qsh and Wk are learnable variables; hence, their product qsh Wk can be denoted as one
coefficient vector c instead. According to [36,41], the attention block is the main structure to
capture the patterns of data. So, we focus on the attention block and simplify the attention
function attention(qsh , kxi ) in Equation (10) as Ai, i.e.,

Ai = csi + cpi = c(si + pi). (11)

Note that c is irrelevant to the input sequence and position of si. In addition, the po-
sition embedding pi only depends on the position and adapts its scale to si. Define the
difference between Ai and Ai−1 as ∆i:

∆i = Ai − Ai−1 = c(δi + pi − pi−1) ≈ c(pi − pi−1). (12)

It is noted that the input LOB data are high-frequency data, and the difference between
two adjacent state vectors δi is negligible. Hence, the difference ∆i defined in Equation (12)
is mainly correlated with the position embeddings pi and pi−1, which results in the attention
block mainly observing the patterns of the position embeddings but not the patterns of the
state vectors. However, the latter is what we need to emphasize.

Then, we analyze the situation with the differential layer. The differential layer
differentiates the extracted features and reformulates the input vectors as (h + ph, s1 + p1,
δ2 + p2, δ3 + p3, . . . , δn + pn). According to Equations (11) and (12), Ai and ∆i can be
reformulated as A′i and ∆′i:

A′i = hδi + hpi = h(δi + pi), ∆′i = h(δi − δi−1 + pi − pi−1). (13)

Since the position embedding pi will adapt to δi, δi cannot be neglected in Equation (13).
The new difference ∆′i depends not only on the position embeddings pi and pi−1 but also
on the changes of states δi and δi−1. Such a block highlights the variance in feature series
and facilitates the resolution of the network.

5. Experimental Design
5.1. Experiment on Benchmark Dataset

FI-2010 is a public benchmark dataset that collects normalized time series data of
five stocks on the Nasdaq Nordic Stock Market for ten consecutive days [22]. It is a
normalized dataset including about 4 million time series collected with 10 events in a
slice. The provided data are z-score normalized and labeled directly to keep the original
data confidential. The original dataset contains 144 features, where we only adopt the
40 features that the ordinary LOB data contain, namely, numbers of orders and prices of
ask orders and bid orders. Several baseline methods are provided in the dataset. In most
work that considered these data, the model uses information from the past 100 slices
to forecast the future movement direction. The prediction horizons are 10, 20, 50, and
100 events, i.e., 1, 2, 5, and 10 slices, as 1 slice contains the data of 10 events. Thus, in our
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experiments, the input data are X ∈ R40×100, the number of slices used in the prediction is
T = 100, and the horizons are k = 10, 20, 50, 100.

In the experiment with FI-2010, the data from the first seven days are selected as
the training and verification sets, and the data from the last three days as the chosen test
set. We reproduced these models based on the paper and ensured that all experiments
were conducted under identical conditions, so we can make a fair comparison in this way.
These models are support vector machine (SVM) [25], MLP [25], CNN [42], LSTM [3],
CNN-LSTM [43], TABL [15], DeepLOB [5,38], and DeepLOB-Attention [5]. Among them,
the TABL model is a two-layer stack of TABL modules with the module structure described
above. The DeepLOB model consists of a CNN and LSTM structure, with a unique Inception
Module added between the CNN and LSTM layers. The Deeplob-attention model builds
upon the DeepLOB model by incorporating Seq2Seq and Attention models into its output.

First, we test our complete model with different horizons with the experimental set-
ups used in the DeepLOB [38]. Then, the prediction accuracy, precision, recovery rate,
and F1 score are compared with the same evaluation indices of other models. To show that
the proposed differential layer is adequate, we conducted an ablation study. We compare
the results and evaluate the contribution of the differential layer by removing it without
changing other settings. Furthermore we conducted a comprehensive ablation study by
separately removing the feature extractor and the prediction transformer module from
the model.

To conduct a comprehensive evaluation of our model, we present a new dataset called
the dataset from Huang [44], and perform a series of experiments. It is worth noting that,
due to the distinct data processing from the evaluation index from FI2010, we solely utilize
the original data provided by it while maintaining consistency in terms of data processing,
labeling method, and evaluation index with FI2010 for DTNN and DeepLOB testing.

5.2. Experiment on Real Stock Data

To demonstrate the practicality and universality of our model, we select actual Chinese
stock data to assess its performance.

Two groups are used in the experiment: The first group uses a similar configuration as
the FI-2010 experiment, i.e., ten stocks are selected, and the data of 7 days (from 1 November
2021 to 9 November 2021) are used for training and verification (80% of data are used
for training, and 20% of the data are used for verification), and the data of the next three
days (from 10 November 2021 to 12 November 2021) are used for testing. The second
group takes a more general approach by training data for ten days (from 1 November
2021 to 12 November 2021) from 100 stocks and testing data for the next five days (from
15 November 2021 to 19 November 2021) from another five stocks.

We merge all the data used for training and normalize them via z-score during prepro-
cessing. The scale from the training data is then used to normalize the test data.

6. Results

Tables 1–4 show the results of the experiments on the dataset FI-2010, where the
horizons are 10, 20, 50, and 100, correspondingly. The metrics used for evaluating the
results include accuracy, precision, recall, and F1 score. Following the suggestion in [22],
we focus more on the F1 score performance since the data distribution of the FI-2010 dataset
is not balanced enough. For comparison, we also present the results from other existing
methods, including support vector machine (SVM) [25], MLP [25], CNN [42], LSTM [3],
CNN-LSTM [43], TABL [15], DeepLOB [5,38], and DeepLOB-Attention [5]. The data differ
from those presented in the original paper due to the replication experiment. The highest
scores have been labeled in bold.

It can be seen from the tables that our model leads to a significant improvement
on all horizons. When the horizons are 10, 20, and 50, the F1 scores are 86.92%, 77.14%,
and 87.94%, respectively, which is 3.52%, 4.32%, and 7.59% higher than the F1 scores of
DeepLOB and 4.55%, 3.41%, and 8.56% higher than DeepLOB-Attention. When the horizon
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is 100, there are few works to compare with since only [5,42] reported experimental results
under this horizon, and we achieve an F1 score of 92.53%, which is 11.04% higher than the
DeepLOB-Attention. In short, our model outperforms other comparative state-of-the-art
methods in terms of F1 score.

Table 5 presents the results of DTNN and DeepLOB on the dataset from Huang.
Despite the suboptimal quality of this dataset, which is primarily labeled as “unchanged”,
causing significant challenges for model performance, DeepLOB still outperforms DTNN
by a small margin in terms of F1 score due to its ability to recognize low-frequency labels.

As for the ablation study, it can be found from Table 6 that the model with the
differential layer performs much better than the model without the differential layer.
For comparison, the F1 scores of the models without the differential layer under each
horizon are only 78.88%, 67.00%, 71.05%, and 70.39%, which are decreases of 8.04%, 10.41%,
16.89%, and 22.14%. So, we conclude that the differential layer can significantly improve
the model’s effectiveness. In addition, after the exclusion of the feature extractor and the
prediction transformer module, a significant reduction in F1 score is also observed.

Table 1. Experimental results for the FI-2010 Dataset (k = 10).

Model Accuracy % Precision % Recall % F1 %

SVM [25] 70.83 69.22 70.83 59.07
MLP [25] 72.63 70.54 72.63 66.26
CNN [42] 76.79 74.69 76.79 73.84
LSTM [25] 74.07 72.40 74.07 67.90
CNN-LSTM [43] 76.52 74.30 76.52 74.50
TABL [15] 84.70 76.95 78.44 77.63
DeepLOB [38] 84.74 84.00 84.74 83.40
DeepLOB-Attention [5] 83.28 82.50 83.28 82.37
DTNN 87.69 87.92 87.69 86.92

Table 2. Experimental results for the FI-2010 Dataset (k = 20).

Model Accuracy % Precision % Recall % F1 %

SVM [25] 62.25 57.15 62.25 49.57
MLP [25] 62.58 57.69 62.58 57.23
CNN [42] 67.93 65.21 67.93 64.97
LSTM [25] 63.46 58.81 63.46 57.68
CNN-LSTM [43] 66.93 64.33 66.93 64.78
TABL [15] 73.74 67.18 66.94 66.93
DeepLOB [38] 74.85 74.06 74.85 72.82
DeepLOB-Attention [5] 75.25 74.31 75.25 73.73
DTNN 78.66 78.44 78.66 77.14

Table 3. Experimental results for the FI-2010 Dataset (k = 50).

Model Accuracy % Precision % Recall % F1 %

SVM [25] 47.54 48.21 47.54 47.79
MLP [25] 53.24 52.36 53.24 51.74
CNN [42] 66.76 66.62 66.76 66.65
LSTM [25] 58.12 57.32 58.12 57.25
CNN-LSTM [43] 66.50 66.42 66.50 66.45
TABL [15] 79.87 79.05 77.04 78.44
DeepLOB [38] 80.51 80.38 80.51 80.35
DeepLOB-Attention [5] 79.49 79.51 79.49 79.38
DTNN 88.00 88.19 88.00 87.94
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Table 4. Experimental results for the FI-2010 Dataset (k = 100).

Model Accuracy % Precision % Recall % F1 %

SVM [25] 43.60 48.96 43.60 38.05
MLP [25] 49.81 52.04 49.81 47.03
CNN [42] 65.22 66.03 65.22 65.22
LSTM [25] 55.94 57.37 55.94 55.64
CNN-LSTM [43] 66.30 67.18 66.30 66.41
DeepLOB [5] 76.72 76.85 76.72 76.76
DeepLOB-Attention [5] 81.45 81.62 81.45 81.49
DTNN 92.53 92.56 92.53 92.53

Table 5. Experimental results for the dataset from Huang.

Model Horizon Accuracy % Precision % Recall % F1 %

DeepLOB

20 99.05 98.11 99.05 98.58
50 97.93 95.91 97.93 96.91
100 96.44 93.02 96.44 94.70

DTNN

20 99.05 98.11 99.05 98.58
50 97.93 95.91 97.93 96.91
100 96.44 93.68 96.44 94.78

Table 6. Experimental results of the ablation study.

DTNN Horizon Accuracy % Precision % Recall % F1 %

Without
Differential
layer

10 80.44 79.13 80.44 78.88
20 68.19 66.52 68.19 67.00
50 70.80 71.70 70.80 71.05
100 70.38 71.12 70.38 70.39

Without
Feature Extractor

10 80.79 79.67 80.79 79.04
20 70.25 68.29 70.25 68.19
50 55.94 56.82 55.94 56.33
100 67.77 68.78 67.77 67.84

Without
Transformer Module

10 70.69 49.97 70.69 58.55
20 77.62 78.65 77.62 75.57
50 78.80 79.17 78.80 78.67
100 61.23 61.59 61.23 58.12

Complete DTNN

10 87.69 87.92 87.69 86.92
20 78.66 78.44 78.66 77.14
50 88.00 88.19 88.00 87.94
100 92.53 92.56 92.53 92.53

The results of the experiments with real data are shown in Tables 7 and 8. In the first
group of experimental configurations, we obtained F1 scores of 85.79%, 77.62%, 66.09%,
and 62.08% under each prediction horizon. In the second group, we obtained F1 scores
of 82.53%, 73.98%, 66.60%, and 59.10%. The experimental results of the second group are
lower than those of the first group because the training patterns of the second group cover
a longer period, and the stocks used for training differ from those used for testing. Hence,
the accuracy and F1 score seem lower than the first group’s. However, even for the largest
time horizon in the second group, the F1 score can still be about 60%, which is enough to
show that our model has practical significance.
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Table 7. Experimental results with real data (Group 1).

Horizon Accuracy % Precision % Recall % F1 %

10 90.37 81.66 90.37 85.79
20 84.65 71.66 84.65 77.62
50 74.33 67.79 74.33 66.09
100 65.56 61.81 65.56 62.08

Table 8. Experimental results with real data (Group 2).

Horizon Accuracy % Precision % Recall % F1 %

10 88.10 77.61 88.10 82.53
20 82.07 67.35 82.07 73.98
50 70.31 65.89 70.31 66.60
100 61.49 58.26 61.49 59.10

7. Conclusions

This paper proposes a transformer-based model, dubbed DTNN, to predict stock price
movement with LOB data. A differential layer is developed to improve the prediction
capability of the model. The experimental results show that our model outperforms other
comparative state-of-the-art methods in accuracy, precision, recall, and F1 scores. The ex-
perimental results also validate the potential and feasibility of utilizing the transformer
model for stock prediction. Furthermore, ablation study confirmed the effectiveness of our
proposed differential layer.

In future work, we hope our model can serve as a crucial tool for guiding business
strategies in the realm of high-frequency trading. Firstly, we plan to conduct further
research to enhance the model’s predictive accuracy beyond mere trends and towards
stock change magnitude, thereby accommodating more intricate investment strategies.
Additionally, we will explore the application of this model in other sequences with similar
characteristics—specifically those similar to high-frequency trading and low signal-to-
noise ratios.

During the experiment, we also identified some limitations of our model. Firstly,
the model is a trend predictor and can only forecast direction rather than specific propor-
tions. However, businesses require models that are precise enough to predict changes in
magnitude, so that they can navigate complex asset allocation and risk hedging. If only
the direction can be predicted, the investment strategy will be severely limited. More-
over, the model itself is designed for high-frequency stock-trading scenarios. If the input
sequence lacks non-stationarity and low signal-to-noise ratio characteristics, DTNN’s ad-
vantage over other models is not obvious obvious.
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