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Abstract: This paper presents a multistable discrete memristor that is based on the discretization
of a continuous-time model. It has been observed that the discrete memristor model is capable of
preserving the characteristics of the continuous memristor model. Furthermore, a three-dimensional
memristor discrete-time FitzHugh–Nagumo model is constructed by integrating the discrete mem-
ristor into a two-dimensional FitzHugh–Nagumo (FN) neuron model. Subsequently, the dynamic
behavior of the proposed neuron model is analyzed through Lyapunov exponents, phase portraits,
and bifurcation diagrams. The results show multiple kinds of coexisting hidden attractor behaviors
generated by this neuron model. The proposed approach is expected to have significant implica-
tions for the design of advanced neural networks and other computational systems, with potential
applications in various fields, including robotics, control, and optimization.

Keywords: multistable discrete memristor map; FitzHugh–Nagumo model; Lyapunov exponents;
phase portraits; bifurcation diagrams

1. Introduction

The memristor is a nonlinear resistor with a memory function, initially established by
Leon Chua in 1971 [1]. However, it was only with the recognition of memristor behavior
at the nanoscale by Hewlett–Packard engineer Williams in 2008 that it gained significant
attention for its potential uses [2,3]. The memristor has been recognized as the fourth
fundamental circuit element, alongside resistance, capacitance, and inductance. Due to
its exceptional properties of nonlinearity and its characteristics of memory effect, the
memristor has been broadly used in many areas, such as image or voice encryption, circuits
and nonlinear systems, neural networks, and nonvolatile memory devices, see [4–6], and
for further possible applications, see [7–12].

At present, the discrete memristor model is known as a research hotspot. Numerous
scholars have dedicated themselves to the analysis of chaotic phenomena in discrete mem-
ristors. In [13], Bao et al. introduced into the logistic map a novel discrete memristor map.
In [14], the chaotic behavior of a mathematical model of such a memristor was illustrated
in detail. In addition and with the window function, a fractional discrete memristor model
was explored in [15], while in [16], Khennaoui et al. presented a 2D fractional memris-
tor map with the use of the Grunwald–Letnikov definition. Li et al. [17] applied offset
boosting and amplitude control to a discrete memristive chaotic map. Recently, hidden
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attractors have also been discovered in some discrete memristor-based maps [18]. Based
on the Lozi map, Wang and his co-authors included a discrete-time memristor to create
a memristive Lozi map [19]. Their generated map exhibited hidden dynamics evolutions
with a multistability property as well. While memristors have gained significant traction in
continuous-time-domain chaotic systems, there remains substantial untapped potential for
the exploration and creation of discrete memristive chaotic maps. Moreover, discrete mem-
ristors exhibit enhanced suitability for integration into discrete-time-domain chaotic maps
and digital circuits, thereby paving the way for their broader application. Thus, the future
lies in the development of advanced discrete memristive system models, representing a
pivotal pathway towards unlocking the full capabilities of memristor technology.

There have been various neuron maps developed to study the firing patterns of neurons,
including the Hodgkin–Huxley (HH) model [20], the Morris–Lecar model [21], the Chay
model [22], and the FitzHugh–Nagumo (FHN) model [23], see also [24–26]. The FHN neuron
model was derived as a simplified version of the Hodgkin–Huxley neuron model, known
for its efficacy in theoretical analysis and numerical simulation of neuron electrical activities.
Synapses play a vital role in facilitating functional connections and information transmis-
sion between neurons. Among them, autapses stand out as a unique synaptic structure
formed by the connection between a neuron’s axons and its own dendrites. Memristor
devices offer a promising application as synapses in neuromorphic systems. In [27], the
authors investigated a model of the FitzHugh–Nagumo neuron with memristive autapse.
Their study revealed that the proposed model was able to exhibit extreme multistability.
The multistable dynamics of an autonomous Morris– Lecar neuron have been addressed
in [28]. Furthermore, [29,30] investigated the collective dynamic behaviors of multiple
neurons coupled through memristor-based autapses.

Discretization serves the purpose of simplifying mathematical models, enhancing
computer processing, and promoting stable processing results. However, it remains unclear
whether discrete systems can accurately reproduce the dynamic behavior of neurons.
Currently, there is limited discussion on the application of discrete memristors in the field
of neurons. In reference [31], the authors considered a discretized version of the Izhikevich
neuron model and found that the electromagnetic flux can act as an order parameter in the
sense that it can tune different firing patterns under the variation of the electromagnetic flux.
Hussain et al. [32] investigated the dynamics of a network of multi-weighted FitzHugh–
Nagumo neurons, taking into account the effect of electrical, chemical, and ephaptic
couplings. In [33], the authors investigated a (2D) discrete Hindmarsh–Rose neuron model
based on a novel discrete memristor. They found that the chaotic region became wider
when a discrete memristor was introduced. However, for the discrete memristive neuron
models, there are relatively few studies on mode transitions and coexisting firing patterns.

Considering this, in this paper, based on a multistable discrete memristor, a discrete
generalized FHN neuron model with memristive autapse is presented. The main contribu-
tions of this study are summarized as follows: (1) We construct a novel discrete generic
memristor model with a multistability property based on a continuous memristor model
and analyze its special characteristics. Under various initial states, multiple coexisting
pinched hysteresis loops can be exhibited by way of a multistable memristor. This particular
memristor is considered more appropriate for creating memristive multistable systems
than other discrete memristors because of its initial condition and multistability. The multi-
stability characteristic of the locally active memristor [34] makes it a good way to study the
firing behavior of neurons. (2) A three dimensional discrete-time FHN neuron model with
memristor autapse is presented through interposing the generic discrete memristor into a
2D generalized discrete-time FN neuron model. It is found that more complex dynamical
behavior is generated. Furthermore, the coexisting attractor’s behavior might be also dis-
covered in this memristive FN map, signifying the emergence of the dynamics’ bistability.
This, actually, can be seen in certain neuron maps. Nevertheless, the coexisting asymmetric
attractors’ phenomenon has not been declared for the FHN neuron map previously. This
enables the discrete memristive FHN map to generate further rich dynamics. The phe-
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nomenon of coexisting multiple attractors is explored with the help of a set of mathematical
tools including the Lyapunov spectrum, phase portraits, and bifurcation diagrams.

2. Analysis of a Novel Discrete Memristor Map

This section is split into two subsections, where the first establishes the discrete
memristor map, and the second discusses the pinched hysteresis loops, which are deemed to
be an important feature to recognize memristors, for the proposed discrete memeristor map.

2.1. Discrete Memristor Model

Consider a voltage-controlled generic memristor in the continuous-time domain{
i(t) = G(x)v(t),
dx
dt = g(x, v),

(1)

where i is the current, v is the voltage, G(x) is the memductance, and x is the memristor
state. In [35], Lin et al. established a novel continuous memristor model that can be
described as: {

i(t) = x(t)v(t),
dx
dt = a sin(x(t)) + bv(t),

(2)

where a and b denote the memristive parameters. Then, the memristor model (2) can be
discretized by introducing the difference theory [13], as{

in = G(xn)vn,
∆xn = h[a sin(xn) + bvn],

(3)

where vn, in, and xn are the sampling values of i(t), v(t), and x(t) at the n-th iteration
respectively. From the forward difference operator ∆xn = x(n + 1)− x(n), n = 0,1,. . . , we
can deduce 

x1 − x0 = h[a sin(x0) + bv0],
x2 − x1 = h[a sin(x1) + bv1],
x3 − x2 = h[a sin(x2) + bv2],

...
...

...
...

xn − xn−1 = h[a sin(x1) + bv1].

(4)

Summing both sides, we obtain

xn+1 = x0 + h
n

∑
j=0

[
a sin

(
xj
)
+ bvj

]
, (5)

where q0 is the initial state. Equation (8) shows that the current state is associated with all
the past states. So, the discrete map has a special memory effect. The noteworthy features
of the established memristive mathematical map, comprising amplitude-dependent and
frequency-dependent pinched hysteresis loops, are confirmed by means of several numeri-
cal results in the upcoming subsections, where the normalized parameters of the nonlinear
G(x) are selected as a = 0.005, b = −2, and h = 0.001.

2.2. Pinched Hysteresis Loops

The pinched hysteresis loops are considered as the feature fingerprint to recognize
memristors [36]. For the purpose of verifying this excellent characteristic of the estab-
lished discrete memeristor, we took a discrete sinusoidal voltage v(n) = Asin(2π f tn) with
frequency f and amplitude A. Once A = 2 was held, and f was set to f = 3, 10, 100,
respectively, the v− i curves were graphed as shown in Figure 1. Eight shaped pinched
hysteresis loops at the origin according to various excited frequencies are clearly illustrated
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in Figure 1a. As the input frequencies increased from 3 to 100, the pinched hysteresis
loop decreased step by step and shrank into a single-valued function. When the fre-
quency was kept at f = 2, and A was taken as 1, 1.5, 2, respectively, the v− i curves were
graphed, as shown in Figure 1b, which describes that the pinched hysteresis was obtained
regardless of the stimulus amplitude. The numerical findings given in Figure 1a and
Figure 1b demonstrate perfectly that the discrete memristor can behave like memristors in
the continuous-time domain.
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Figure 1. (a) Frequency-dependent pinched hysteresis loops of the discrete memristor with A = 2.
(b) Amplitude-dependent pinched hysteresis loops of the discrete memristor with f = 2.

Moreover, a memristor that contains n distinct pinched hysteresis loops according
to various initial values is named a multistable memristor [37]. To explore the impact of
the initial condition on the properties of the discrete memristor, we took the parameters
h = 0.001, a = 0.005, and b = −2, with A = 2 and f = 2, according to various initial
conditions x0 = −5π, −3π, 0, 3π, 5π, 7π. Based on Figure 2, it is found that the discrete
memristor exhibited the coexisting pinched hysteresis loops according to the various initial
states. Hence, the discrete generic memristor model is multistable. The variation in the
initial condition causes the variation in the locally active feature, which could yield rich
dynamics when the discrete map is linked with the discrete memristor [38].

In the same regard, a power-off plot (POP) was applied to reveal the nonvolatile
characteristics of the discrete memristor [39]. The POP exhibits the dynamic routes of change
∆xn versus state-variable xn by fixing the input voltage to zero. It must be recognized that
each intersection of POP with the x-axis is an equilibrium point; those with a negative slope
are stable, and the others are unstable. Hence, when v = 0, the discrete memristor state
Equation (3) becomes:

xn+1 − xn = g(x, 0) = sin(x). (6)

Based on Equation (6), we plotted the POP curve displayed in Figure 3. It has be-
come evident that when ∆xn = 0, there exist infinitely many intersections positioned
at x = kπ (k ∈ Z), in which, when k = 2i + 1, where i ∈ Z, the slopes at xe are negative,
and xe are stable equilibrium points, and when k = 2i + 2, xe are unstable equilibrium
points. Hence, the discrete memristor is nonvolatile [40].
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Figure 2. Coexisting pinched hysteresis loops when frequency f = 0.0009 and amplitude A = 1:
with h = 0.002.

Figure 3. POP of the discrete memristor system (2).

To ensure the accuracy of the discrete solution, an error analysis was conducted to
compare the continuous memristor model and the discrete memristor model.

2.3. The Error Analysis

The main difference between the continuous-time memristor model and the dis-
crete memristor model lies in the expression of the charge x(t). The solution of the state
Equation (2) can be calculated by

x(t) =
∫ t

−∞
(a sin(x(s)) + bv(s))ds. (7)

For the discrete memristor model:

xn+1 = x0 + h
n

∑
j=0

[a sin(x1) + bv1]. (8)

Consider the discrete sinusoidal voltage v = A sin(2π f t). Here, we set e(t) = x(t)− x(tn),
A = 2, x0 = 0.1, a = 0.005, b = −2, and h = 0.001. The continuous x(t), discrete x(tn), and
error e(t) were, respectively, compared for two different values of f = 2 and f = 5, and
the images are shown in Figure 4a and Figure 4b, respectively. The results show that x(t)
and x(tn) almost coincided. The error e(t) was almost zero. It can be seen from Figure 4
that although the continuous and discrete x(t) were different in form, when the same
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parameters were taken, the curves of x(t) and x(tn) almost coincided, and the error curve
was almost zero.
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Figure 4. Continuous and discrete x− t and error e(t): (a) for frequency f = 1 and (b) for frequency
f = 5.

3. A Novel Memristive Neuron Model and Its Dynamical Behaviors

In this section, we describe a generalized version of the discrete-time FHN model,
construct a proper memristive discrete FHN neuron model, and then perform the Lyapunov
exponents and bifurcation analysis regarding these models, followed by discussion of the
memristor initial-value-dependent bifurcation plots.

3.1. Description of a Generalized Discrete-Time FN Model

In 1926, Van der Pol [39] introduced a basic model derived from the nonlinear relax-
ation oscillator. Additionally, FitzHugh and Nagumo et al. [23] presented the math-
ematical formulation of excitable neurons, which is expressed through the following
dynamical equations: {

dx
dt = x− x3

3 − y + Iext + Isyn,
dy
dt = ε(x + a− by),

(9)

where x is the neuron membrane potential, y denotes the recovery variable related to the
conductivity of the ion channels, and Iext is the external excitation. The nonlinear therm
Isyn denotes the autapse current.

The discrete map is acquired from the 2D FHN neuron model (9) with the use of the
forward Euler method. In other words, the discrete-time FHN neuron model might be
constructed by the following:x(n + 1) = (1 + T)x(n) + T

(
− x3(n)

3 − y(n) + Iext + Isyn

)
,

y(n + 1) = y(n) + Tε(x(n) + a− by(n)),
(10)

where T is the step size, such that 0 < T ≤ 1. In the following, we consider the generalized
map model, which is obtained from the discrete Equation (10). We analyze the generalized
model in the discrete sense but not a truly discrete map. To generalize the discrete FN
neuron model, we set α = 1 + T, β = T, γ = 1− εTb, θ = Tε, and δ = εTa to obtain:x(n + 1) = αx(n) + β

(
− x3(n)

3 − y(n) + Iext + Isyn

)
,

y(n + 1) = γy(n) + θx(n) + δ.
(11)

The generalized map is not restricted by the determination of the parameters of the initial
discrete map. In other words, the initial map is a particular situation of the generalized
map (11).
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3.2. Constructed Memristive Discrete FHN Neuron Model

A discrete FHN neuron model with memristive autapse is proposed on the basis of
the abovementioned discrete memristor. Its mathematical expression can be written as:

x(n + 1) = x(n)− x3(n)
3 − y(n) + Iext + k1z(n)x(n),

y(n + 1) = γy(n) + θx(n) + δ,
z(n + 1) = z(n) + sin(z(n))− k2x(n),

(12)

where k1 and k2 are positive, and the system parameters α and β are fixed as α = 1 and
β = 1. It is necessary to note that the positive external input current is fixed to I = 2.

The equilibrium points of the discrete FHN neuron model with memristive autapse
(12) can be generated by considering the following states:

x = x− x3

3 − y + Iext + k1zx,
y = γy + θx + δ,
z = z + sin(z)− k2x.

(13)

The fixed point is E =
(

x, 1
1−γ (θx + δ), arcsin(x) + 2kπ

)
, where |x| < 1

k2
can be calculated

by the following formula:{
F1(x) = − x3

3 −
θ

γ−1 x +
(

2− δ
γ−1

)
+ k1x arcsin(k2x),

F2(x) = x.
(14)

Herein, we took the parameters of the system as γ = −0.2, δ = 0.08, θ = 0.108, k1 = −0.06,
and k2 = 0.2. The two functions F1(x) and F2(x) are drawn numerically in Figure 5a by
the blue and red colors, respectively. The solution to x was determined by calculating the
intersection of the two functions F1 and F2. As shown in Figure 5a, there was always one
intersection between the two functions F1 and F2. Therefore, the neuron model addressed in
this work possesses an equilibrium point, infinitely. Figure 5b shows the phase diagram of
the coresponding chaotic attractor in the 3D plan. Furthermore, our analysis incorporated
the Hénon attractor, resulting in the emergence of a Hénon-like map.
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Figure 5. (a) Two function curves and their intersections for k1 = −0.06. (b) The chaotic attractor
emerged from the initial value (x0, y0, z0) = (0.01, 0.02, 0.1) and the system parameters γ = −0.2,
δ = 0.08, θ = 0.108, and k1 = −0.06.

3.3. Lyapunov Exponents and Bifurcation Analysis

With the aim of understanding the dynamics of the discrete FHN neuron model
with memristive autapse (12), the two parameters θ and k1 were deemed as bifurcation
parameters, and the bifurcation diagrams were then generated. Initially, we put forward
θ as the parameter of bifurcation, and the parameters system’s were chosen as γ = −0.2,
θ = 0.08, and k2 = 0.2, with the initial conditions (x0, y0, z0) = (0.01, 0.02, 0.1). Accordingly,
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the Lyapunov exponents and bifurcation diagram versus θ for k1 = −0.06, k1 = −0.14,
and k1 = 0.02 were generated in Figure 6a, Figure 6b, and Figure 6c, respectively. It is
observed that the discrete FHN neuron map with memristive autapse (12) can produce
complex dynamical behavior according to various values of bifurcation parameters, where
the reverse period doubling bifurcation, the period doubling bifurcation, chaos crisis, and
the tangent bifurcation are incorporated. For k1 = −0.06, when the parameter of bifurcation
θ was raised in [−0.1, 0.50], it is noticeable, based on the diagram of bifurcation shown in
Figure 6a, that the discrete FHN neuron model (12) started from chaos and moved into
periodic states via the reverse period doubling route, with some narrow periodic windows
at k1 = 0.081. When the system parameter θ was adjusted in [−0.1, 0.5] and k1 = −0.14,
the diagrams of bifurcation of the state xn and the maximum Lyapunov exponents were
simulated numerically, as shown in Figure 6b. These diagrams revealed that the discrete
FHN neuron model (12) was in a chaotic state at the beginning with a periodic state. When
θ ∈ [−0.026, 0.026] ∪ [0.032, 0.054] the discrete FHN neuron model (12) was in a chaotic
state with one positive Lyapunov exponent and eventually moved into a periodic state via
the reverse period doubling bifurcation.

Different memristor initial conditions z0 can produce different types of attractors.
When the control parameter was set to k1 = 0.02, the coexistence of attractors of the
system was analyzed by the maximum Lyapunov exponents (MLE) and the corresponding
bifurcation diagram. The coexisting bifurcation diagram of the state x(n) under z0 = 0.1
(blue diagram) and z0 = 4 (red diagram) was numerically simulated, as shown in Figure 6c.
Figure 6d displays the MLE corresponding to the initial condition z0 = 4. At this time,
it can be preliminarily judged that the system had coexisting attractors. Under different
initial state values, the 3D fractional discrete memristor neuron model produced complex
dynamical behavior, where chaos, period, and boundary crises were included.
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Figure 6. The bifurcation diagram and Lyapunov exponents versus θ for (a) k1 = −0.06 and
(b) k1 = 0.14. (c) Coexisting bifurcation for k1 = 0.02 and IC (0.01, 0.02, 4) (red diagram) and
(0.01, 0.02, 0.1), k1 = 0.02. (d) Lyapunov exponents corresponding to the bifurcation diagram for the
initial condition (0.01, 0.02, 4).
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Without loss of generality, the phase portraits at several critical values corresponding
to Figure 6 are shown in Figure 7. Thus, the phase diagrams display a type of complex
behavior, which is consistent with the dynamics, as demonstrated in Figure 6.

Figure 7. Different strange attractors of the discrete FHN neuron model with memristive autapse
(12) for γ = −0.2, θ = 0.08, and k2 = 0.2 and different system parameters θ and k1: chaotic attractors:
(a) θ = 0.008, k1 = −0.05. (b) θ = 0.066, k1 = −0.05. (c) θ = 0.117, k1 = −0.05. (d) θ = −0.03,
k1 = 0.14. (e) θ = 0.004, k1 = −0.14. (f) θ = 0.039, k1 = −0.14. (g) Coexisting periodic and chaotic
attractor attractor θ = 0.045, k1 = 0.02. (h) Coexisting chaotic attractor θ = 0.016, k1 = 0.02.
(i) Coexisting periodic and chaotic attractors θ = −0.026, k1 = 0.02.
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3.4. Memristor Initial-Value-Dependent Bifurcation Plots

Multistability behavior is the coexisting phenomenon of many different kinds of
disconnected attractors in a nonlinear dynamical system for a fixed set of system parameters
but different initial values, which is a widespread physical phenomena [41].

In this section, bifurcation diagrams and phase portraits are used to explore the re-
markable phenomenon of the coexistence of three or more dynamical states under different
initial states. Under different initial state values, the discrete memristor FHN neuron model
can show several kinds of coexisting multiple attractor behaviors in some neighborhoods
of parameter k1. System parameter k1 is adjusted in the region [−0.2, 0], the initial values of
the neuron model x0 and y0 are set as x0 = 0.01 and y0 = 0.02, respectively, the memsristor
initial value z0 is selected, respectively, as z0 = 0.1, z0 = 4, z0 = −8, and z0 = −13, and
the discrete memristor neuron parameters are fixed as γ = −0.2, θ = 0.108, δ = 0.081, and
k2 = 0.2. Accordingly, four kinds of bifurcation diagrams in the y− k1 and z− k1 planes are
depicted in Figure 8a and Figure 8b, respectively, with different color regions. Obviously,
we can find that the discrete memristor FHN neuron model can exhibit four states of coex-
isting attractors, including coexisting periodic attractors and coexisting chaotic attractors.
Figure 8 shows that changing the initial state significantly changes the size and state of the
bifurcation diagram under the same parameters. Basically, when the initial condition was
assigned to z0 = 0.1, the discrete FHN neuron model (12) changed from a periodic state
to a chaotic state via the period doubling bifurcation route, Furthermore, it is found that
the bifurcation behaviors were similar to the rest of the initial values z0 = 4, z0 = −8, and
z0 = −13. In addition, it can be observed that the chaotic intervals corresponding to the
initial values were obviously different. For instance, when z0 = 0.1, the chaotic interval
was located in [−0.0968,−0.0275]. However, when the initial state was changed to 4, the
hidden chaotic interval was located at [−0.0332,−0.0098].

Figure 8. The dynamical systems characterization: (a) bifurcation diagrams in the y − k1 plane;
(b) bifurcation diagrams in the z− k1 plane.

More details of the phenomena of multistability are provided in the following bifurca-
tion analysis. For the initial values (x0, y0, z0) of the discrete FHN model, the memristor
initial value z0 is denoted as the bifurcation parameter, adjusted in the region [0, 40]. When
the bifurcation parameters θ = 0.108 and k1 = −0.01, the bifurcation plots in the y− z0
and z− z0, are shown in Figure 9a and Figure 9b, respectively. It further illustrates that the
discrete FHN has initial value sensitivity and produces complex multistability phenomena.
Firstly, Figure 9a shows that the discrete model state changes as z0 increases. Moreover,
Figure 9b shows that with the increase in the memristor initial value z0, the chaotic attractor
preserves a step change in the dynamic amplitude from one level to another level. To show
the remarkable phenomena of the multistability of attractors, the phase plots in the y− z
plane are depicted in Figure 10, where we selected the five initial values z0 = 10, 15, 20, 25.
Thus, the numerical results imply the existence of multistability and demonstrate that the
bifurcation routes are closely associated with the third neuron initial conditions.
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Figure 9. Bifurcation diagrams of the discrete FHN model (12) with initial condition z0: (a) in the 2D
plane ymax − z0 and (b) in the 2D plane zmax − z0.
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Figure 10. Coexisting multiple attractors for different initial values of z0 and for x0 = 0.01 and
y(1) = 0.02.

4. Conclusions

In this work, based on a multistable discrete memristor, the discrete generalized FHN
neuron model with memristive autapse was proposed. The proposed neuron model was
then investigated in view of studying the resultant Lyapunov exponents, phase portraits,
and bifurcation diagrams. This produced, with the help of different initial values, a
remarkable phenomenon of the coexistence of an infinite number of attractors. Although
some memristive neuron models and their chaotic dynamics were investigated, it is still
in the infant stage and many need to be further explored. We believe that investigating
the chaotic dynamics of discrete memristive neuron models will help to elucidate more
detailed functions of the brain as well as engineering applications. Based on these, it is
believed that this study may contribute to the theoretical research of discrete memristor. In
the near future, we will try to apply it to synchronization control, image encryption, and a
random number generator.
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