
Citation: Geng, G.; Cai, T.; Yang, Z.

Better Safe than Sorry: Constructing

Byzantine-Robust Federated

Learning with Synthesized Trust.

Electronics 2023, 12, 2926.

https://doi.org/10.3390/

electronics12132926

Academic Editors: Charalabos

Skianis, Philippe Krief, Enric Pages

Montanera and John Soldatos

Received: 6 June 2023

Revised: 29 June 2023

Accepted: 30 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Better Safe than Sorry: Constructing Byzantine-Robust
Federated Learning with Synthesized Trust
Gangchao Geng, Tianyang Cai and Zheng Yang *

College of Computer and Information Science College of Software, Southwest University,
Chongqing 400010, China; ggczmd@email.swu.edu.cn (G.G.); cai12345678@email.swu.edu.cn (T.C.)
* Correspondence: youngzheng@swu.edu.cn

Abstract: Byzantine-robust federated learning empowers the central server to acquire high-end global
models amidst a restrictive set of malicious clients. The general idea of existing learning methods
requires the central server to statistically analyze all local parameter (gradient or weight) updates,
and to delete suspicious ones. The drawback of these approaches is that they lack a root of trust that
would allow us to identify which local parameter updates are suspicious, which means that malicious
clients can still disrupt the global model. The machine learning community has recently proposed
a new method, FLTrust (NDSS’2021), where the server achieves robust aggregation by using a tiny,
uncontaminated dataset (denoted as the root dataset) to generate the root of trust; however, the global
model’s accuracy will significantly decline if the root dataset greatly deviates from the client’s dataset.
To address the above problems, we propose FLEST: a Federated LEarning with Synthesized Trust
method. Our method considers that trust and anomaly detection methods can complementarily solve
their respective problems; therefore, we designed a new robust aggregation rule with synthesized
trust scores (STS). Specifically, we propose the trust synthesizing mechanism, which can aggregate trust
scores (TS) and confidence scores (CS) into STS through a dynamic trust ratio γ, and we use STS as
the weight for aggregating the local parameter updates. Our experimental results demonstrated that
FLEST is capable of resisting existing attacks, even when the root dataset distribution significantly
differs from the total dataset distribution: for example, the global model trained by FLEST is 41%
more accurate than FLTrust for adaptive attacks using the mnist-0.5 dataset with the bias probability
set to 0.8.

Keywords: federated learning; Byzantine robust; synthesized trust

1. Introduction

Federated learning (FL) [1–6] is a cooperative machine learning technique that makes
use of several clients (users) and a centralized server. Each client keeps track of its own
private dataset, and only transfers its local parameter updates (gradient or weight) during
iterative processes. The central server gathers the client-provided local parameter updates,
to produce the global parameter update. FL frequently repeats the following actions. Firstly,
the central server transmits the global model and global parameter to a subset of clients.
Secondly, the clients that receive the global model use local datasets to train the model, and
transmit local parameter updates to the central server. Finally, the central server aggregates
the local parameter updates according to aggregation rules, which are used to derive the
new global parameter: for instance, the traditional FL method FedAvg [2] aggregates
clients’ local parameter updates by weighted averaging based on the size of the clients’
local dataset as the weight.

As FL is distributed, it is impossible to totally rule out the prospect of malicious clients
that not only disrespect the training requirements but also desire to alter the global model:
for example, malicious clients can use data poisoning attacks [7–11] to corrupt the local
dataset, or parameter poisoning attacks [12–16] to directly corrupt local parameters, and

Electronics 2023, 12, 2926. https://doi.org/10.3390/electronics12132926 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12132926
https://doi.org/10.3390/electronics12132926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12132926
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12132926?type=check_update&version=1

Electronics 2023, 12, 2926 2 of 20

both types of attacks can lead to impaired performance of the global model. If the FL
aggregation rule cannot fight against these poisoning attacks, then the attackers will control
the global model’s performance: for example, FedAvg’s global model is easily vulnerable
to tampering by a small number of malicious clients.

The primary objective of Byzantine-robust FL [17–21] is to facilitate the central server’s
acquisition of a superior global model, despite the onslaught of vicious attacks perpetrated
by malevolent clients. In essence, "Byzantine-robust" connotes the unyielding fortitude and
resistance exhibited in the face of Byzantine attackers that seek to undermine the integrity of
the learning process. The general idea of existing state-of-the-art defense methods is that the
central server removes suspicious local parameter updates before aggregation by mathemat-
ical statistics among the clients’ local parameter updates: for example, Krum [21] exploited
L2-Norm to filter out malicious parameter updates. Unfortunately, recent studies [12] have
demonstrated that these robust FL defense mechanisms can be destroyed by poisoning
attacks, especially in the dishonest majority setting, due to the lack of a root of trust in the
currently prevalent Byzantine-robust learning methodologies. In particular, the central
server is unable to identify which local parameter updates are corrupted.

The machine learning community has recently proposed a new federated learning
method named FLTrust [22]. According to this method, the central server needs to collect a
root dataset, and the model parameter update trained from this dataset is regarded as the
root of trust; however, because the central server cannot access the client’s datasets, it is
unaware of their dispersion. In addition, in practical learning activities, client datasets are
typically not independent and identically distributed (non-IID); therefore, it is likely that
the root dataset varies from the client datasets, resulting in the severe accuracy reduction of
the global model.

Our work. To address the above problems, we propose a Byzantine-robust FL method
called FLEST. In FLEST, the server itself bootstraps both trust and anomaly detection. From
the above description, it is apparent that introducing anomaly detection methods, or only
relying on the trust bootstraps of the server itself, will create its own challenges: we believe
that these two methods can solve their problems in a complementary way; therefore, we
devised a complementary process named the trust synthesizing mechanism. The purpose
of this mechanism is to integrate the trust score (TS) and the confidence score (CS) of local
parameter updating in various proportions. The central server assigns a TS and a CS to
each local parameter update, based on the root of trust and anomaly detection, respectively.
In order to realize this mechanism, we designed a synthesized trust score (STS), which
is composed of a TS, a CS, and γ. The parameter γ controls the influence of bias in the
root of trust, which is called the dynamic trust ratio. Our proposed dynamic trust ratio
γ can be computed adaptively, based on the results of each round of TSs and CSs, thus
aggregating them into the STS according to the appropriate ratio. Therefore, during the
federation learning training process, the central server, after receiving the local parameter
updates from clients, first obtains the TS for each local parameter update based on the
root of trust, and then, using the anomaly detection method, obtains their CS. Next, the
central server uses the TS and the CS to dynamically compute the STS, by synthesizing
the trust mechanism. Finally, the server aggregates each local parameter update, using the
STS as the weight. In our experiments, we used four datasets and three different attacks to
verify the effectiveness of FLEST. And we compared FLEST to the current state-of-the-art
methods. Moreover, we analyzed the effectiveness of the dynamic trust ratio γ. Our main
contributions can be summarized as follows:

• New federated learning method FLEST. The proposed FLEST bootstraps both trust and
anomaly detection, in order to be resilient against Byzantine attackers;

• Initial method to tolerate biases at the root of trust. Experiments show that FLEST works
well, even when the root dataset acquired by the central server is distributed differently
from the distribution of clients’ local datasets: for example, when the bias probability
of mnist-0.5 was 0.8, the testing accuracy of FLEST under Trim attacks was 0.94, which
was only 0.01 lower than that when the bias probability was 0.1;

Electronics 2023, 12, 2926 3 of 20

• FLEST can effectively defend against existing attacks. We evaluated FLEST using existing
attacks. Our experimental results showed that FLEST can effectively defend against
existing attacks while training a high-performance global model: for example, the
testing accuracy of FLEST under LF attack was the same as that of FedAvg under no
attacks on mnist-0.1, both of which were 0.97; on fashion-mnist, the testing accuracy
of FLEST under Trim attack was best; on cifar-10, the testing accuracy of FLEST under
adaptive attack was best.

2. Background and Related Work

The FL system is highly vulnerable to poisoning attacks from malicious clients, which
can take various forms, including Label Flipping attack and Trim attack [12,23]. In order
to address this critical issue, numerous studies [24–27] have proposed diverse FL defense
methods that aim to prevent these types of attacks. It is worth noting that different FL
methods essentially utilize different aggregation rules; therefore, we explored the popular
aggregation rules and the poisoning attacks in detail, with the aim of developing more
efficient and effective defense mechanisms to bolster the security of the FL system.

2.1. Aggregation Rules

In the following, we present and discuss some of the currently popular aggregation rules.

FedAvg. FedAvg [2] adopts FedAverage as an aggregation rule. FedAverage is a weighted
average of local parameter (gradient or weight) updates, based on the size of the clients’ lo-
cal datasets. Suppose an FL has n clients with local datasets {dk}k∈[n], where [n] = {1, . . . , n}.
We use d to denote the overall local dataset. Formally, the global parameter update
∆θ = ∑n

k=1
|dk |

∑n
j=1|dj|∆θk, where |dk| is the size of the k-th client’s local dataset. FedAv-

erage is normally used as the state-of-the-art baseline solution, due to its high performance
without attackers; however, FedAverage is vulnerable to poisoning attacks: specifically, it
is not Byzantine-robust.
Byzantine-robust aggregation rules. Distance statistical aggregation (DSA) [18,21,24,25,28]
and contribution statistical aggregation (CSA) [26,27] are used in the majority of Byzantine-
robust aggregation methods. DSA-based schemes discard statistical outliers, by analyzing
the distribution of poisoning and benign local parameter updates, before aggregating them
into a global parameter update. In CSA-enabled schemes, local parameter updates of
clients are labeled with priorities, in terms of their contributions to the performance of
the global model. Essentially, these schemes evaluate local parameter updates and delete
statistical outliers before aggregating a global parameter update: for example, the Krum
method proposed by Blanchard et al. [21] can resist up to 33% of attackers’ poisoning
attacks, utilizing Euclidean distance to decide which local parameter updates should be
dropped. As Krum removes outliers by analyzing the Euclidean distance, it does not
remove the parameter updates of the coordinate direction anomaly. To improve Krum,
Yin et al. [18] proposed two new FL schemes called Trim-Mean and Median, which are based
on the trimmed mean of coordinate directions and the median of coordinate directions,
respectively. Each of the techniques mentioned above suffers a common drawback: the
absence of a trusted root for the central server to authenticate which local parameter
updates from clients are potentially dubious.

Recent studies [12,22] have demonstrated that the above robust FL defense rules can
be subverted by poisoning attacks. Cao et al. [22] improved previous FL approaches, by
proposing FLTrust, which mainly bootstraps a root of trust at the central server, so that the
server can compare the local parameter updates to the root of trust, to filter abnormal local
parameter updates; however, the performance of the global model will decline dramatically
if the root of trust deviates. The major difference between FLTrust and FLEST is that
FLEST does not rely only on the trust mechanism, but dynamically combines the anomaly
detection and trust mechanisms through the proposed trust synthesizing mechanism. By

Electronics 2023, 12, 2926 4 of 20

this approach, FLEST avoids the impact on the global model due to the deviation of the
root of trust. We have summarized the existing work in Table 1 below.

Table 1. Summary of previous work on federated learning.

Approach Robustness Root of Trust

FedAvg no no
Krum yes no

Trim-Mean yes no
Median yes no
FLTrust yes yes

2.2. Poisoning Attacks

Attackers can perform targeted and untargeted poisoning attacks in the process
of training the model. In targeted poisoning attacks [29], attackers want the trained
global model to output their specified target classification. In untargeted poisoning at-
tacks [12,30,31], attackers want to disrupt the global model, so as to make it indiscriminately
produce incorrect predictions. Furthermore, poisoning attacks can be classified into local
data poisoning attacks [29,32–40] (e.g., the Label Flipping attack [23]) and local parameter
poisoning attacks [12–16]. If an FL system has tens of thousands of users, the attackers
will not be present in the training iterations very often, so that the effectiveness of data
poisoning attacks will be weakened [24]. Local data poisoning attacks are equivalent to
indirectly manipulating local parameters to corrupt the global parameter; therefore, FL is
more vulnerable to local parameter poisoning attacks compared to local data poisoning
attacks. Bhagoji et al. [14] demonstrated that a single attacker [18,21] in FL can take control
of the global model by directly transmitting carefully designed local parameters. Essentially,
both kinds of poisoning attacks corrupt the local parameters, resulting in the impaired
performance of the global model.

Recent works (e.g., [12,14,22]) have shown that Byzantine-robust federated learning
schemes can also suffer poisoning attacks. Bhagoji et al. [14] showed that the Krum and
Median schemes cannot defend against local parameter poisoning attacks. Fang et al. [12]
proposed untargeted local parameter poisoning attacks—the Krum attack and the Trim
attack. Before sending the local parameter updates to the server, the attackers can modify
the local parameter updates in the opposite direction, along the global parameter update
∆θ, thereby reducing the performance of the global model. Most recently, Cao et al. [22]
proposed an adaptive attack that can adaptively adjust the attack process, in terms of
FLTrust aggregation rules.

3. Threat Model and Security Goals

In this section, we present a thorough and detailed overview of the threat model we
employed, as well as the security goals that we strove to realize.

3.1. Threat Model

Attack model. We considered the following threats and assumptions, as in many existing
works (e.g., [12,15,22]):

• The attackers can create and control many clients in the FL system: such clients
are therefore malicious, and can train local models using poisoned local datasets, or
directly upload poisoned local parameter (gradient or weight) updates. The proportion
of malicious clients, however, is less than half of the total;

• The attackers can collude with each other (e.g., by exchanging poisoned local datasets
or local parameter updates);

• The attackers have full knowledge of the target FL system, including the aggregation
rule of the FL system, the learning rates, and all clients’ local datasets and local
parameter updates during the whole learning process;

Electronics 2023, 12, 2926 5 of 20

• The attackers can launch various FL attacks (such as the Label Flipping attack [23] and
the Krum attack [12]).

Server’s knowledge and capability. As in [22], we assumed that the central server had no
access to the local datasets of the clients, and did not know the exact number of malicious
clients; however, it was fully aware of the global parameters and local parameter updates
for each iteration for all clients. Additionally, a trustworthy, small, and clean dataset for the
root of trust had to be acquired and tagged by the central server. Due to the small number
of data samples in the root dataset, its construction process would not bring too much time
overhead to the server; however, without any prior knowledge of the local datasets of the
clients, the distribution of the root dataset might deviate from that of clients’ datasets with
a non-small bias.

3.2. Security Goals

Our goal was to develop a federated learning approach that satisfied the three security
goals listed below, while being Byzantine-robust:
• Fidelity. The target method ought not to lose the testing accuracy of the global

model in a benign setting without attackers: that is, fidelity required that the target
FL method would have no accuracy loss compared to the baseline method FedAvg
without attacks;

• Robustness. The FL method could generate a global model providing classification
accuracy (in comparison with FedAvg in the no-attack scenario) in the Byzantine client
setting, as mentioned in the attack model (i.e., <50% malicious clients). To achieve
robustness, we did not assume that the central server could establish, in advance, a
training dataset that was unbiased towards all classes of clients’ local data;

• Efficiency. Compared to the FedAvg without attacks, the designed method should not
introduce many additional computation and communication overheads, especially for
clients who might be resource constrained.

4. FLEST: A Federated Learning with Synthesized Trust Method

In this section, we provide a comprehensive overview of FLEST, followed by a detailed
presentation of its design and algorithm. Our FLEST considers not only the direction
between local parameter updates but also the direction between the root of trust and each
local parameter update. The workflow of FLEST is shown in Figure 1 below:

Central server

ClientTraining
Data

Model

Download global parameter

Aggregation and generate

new global parameter

Synthesized-trust score

Assign trust score

Assign confidence score

Scaling the magnitudes

of parameter updates

Upload parameter updates

Root of trust

Root data

Training

Figure 1. The overall process of FLEST.

4.1. Overview of FLEST

The key idea of FLEST is to combine the trust mechanism with the anomaly detection
mechanism, to achieve robust aggregation rules. Regarding the trust mechanism, the central
server uses a root of trust trained on an uncontaminated root dataset, to assign a trust score
(TS) to each client’s local parameter updates. As for the anomaly detection mechanism,
the server uses a clustering-based anomaly detection method, to assign a confidence score
(CS) to each local parameter update. Combining these two mechanisms in an effective and

Electronics 2023, 12, 2926 6 of 20

adaptive way is important but challenging because, in practice, the server cannot know
whether the root dataset is biased or not, due to the lack of access to the client datasets, and
the weights of the TS and the CS should also be changed dynamically, according to each
round of local parameter updates. If the TS and the CS are combined in an inappropriate
way, it is difficult to avoid the global model accuracy degradation caused by the root dataset
bias. To address this problem, we propose a trust synthesizing mechanism with dynamic
trust ratio γ, to aggregate the TS and the CS into a synthesized trust score (STS) for each
local parameter update: in this way, FLEST reduces the performance degradation of the
global model due to the bias of the root dataset.

4.2. Detailed Design of FLEST

In this section, we provide the detailed constructions of each part of FLEST, including
TS, CS, and the trust synthesizing mechanism.

Cosine. Cosine similarity is very useful in the Byzantine-robust rule. Given two vectors,

∆θa and ∆θb, their cosine similarity is Cos(∆θa, ∆θb) =
〈∆θa ,∆θb〉
‖∆θa‖·‖∆θb‖

.

Trust score. In FLEST, the central server uses the model parameter update, trained from an
uncontaminated root dataset, as the root of trust: we considered it to be more trustworthy
if the local parameter update had a similar direction to the root of trust, and we computed
the directional similarity between them, using the cosine function.

If the local parameter updates deviate too far from the direction of the root of trust, they
have a negative cosine similarity, which can lead to a decrease in global model performance:
to avoid this effect, we set the negative cosine similarity to zero. Formally, we defined the
trust score TSk of the kth local parameter update ∆θk as

TSk = ReLU(Cos(∆θk, ∆θ0)), (1)

where ∆θ0 was the root of trust. We utilized the ReLU function, to set the negative
directional similarity score to zero.

Confidence score. As the central server does not have access to clients’ local datasets, there
will be a deviation in the distribution between the root dataset and local datasets, and such
a deviation can degrade the accuracy of the final global model. To reduce the side effect
of a biased root dataset, we introduced anomaly detection techniques. Specifically, the
central server used the K-means clustering algorithm to cluster the local parameter updates
into several clusters. We could also have used other clustering algorithms to aggregate
the local parameter updates, and we will consider more advanced clustering algorithms
in future work. We considered the largest cluster as the cluster of benign local parameter
updates. The central server measured the similarity between each local parameter update
and the mean of the benign cluster, and assigned a CS to each local parameter update. A
local parameter update would receive a higher CS if it was closer to the mean of the benign
cluster. Specifically, we computed the directional similarity between each local parameter
update and the mean of the benign local parameter updates, using the cosine function.

For the TS, we needed to set the negative directional similarity to zero. Formally, the
confidence score of the kth local parameter update ∆θk was defined as follows:

CSk = ReLU(Cos(∆θk, ∆θL)), (2)

where ∆θL was the mean of the benign local parameter updates.

Trust synthesizing mechanism. Although using either the TS or the CS has deficiencies in
FL, we noted that these two kinds of scores could be complementary to each other in the
training procedure; therefore, we designed a complementary mechanism called the trust
synthesizing mechanism. The idea of this mechanism was to proportionally combine the TS
and the CS of each local parameter update, without completely relying on either of them:
when there was a large bias in the root of trust, the trust synthesizing mechanism would

Electronics 2023, 12, 2926 7 of 20

automatically reduce the weight of the TS, thus reducing its negative impact. In order to
realize this mechanism, we designed a synthesized trust score (STS), which was composed
of the TS and the CS, using a dynamic trust ratio γ ∈ (0, 1). Formally, we defined the
synthesized trust score STSk of the kth local parameter update ∆θk:

STSk = γ · TSk + (1− γ) · CSk, (3)

where γ was used to determine the proportion of the TS and the CS in the STS.

This led to the question: what is the appropriate value of γ? Consequently, we now
discuss the strategy of taking γ in different cases, and we illustrate the adaptive calculation
method of γ.

After a round of training, each client’s local parameter update was assigned a TS and
a CS. Taking the TS as an example, the trust scores of these clients could be sorted, to form
a sequence [TS1, TS2, . . . , TSn]. Assuming that less than 50% of the clients were malicious,
we considered the following four cases of the distribution of this sequence:

• Case 1: All TSs were high;
• Case 2: Most of the TSs were high, and the rest were low;
• Case 3: Most of the TSs were low, and the rest were high;
• Case 4: All the TSs were low.

For ease of understanding, Figure 2 illustrates these four cases. We divided the four
cases into two groups, for analysis, according to their characteristics.

• Analysis of Case 1 and Case 2: As the more trusted local parameter updates were
assigned higher TS according to the rules of the TS calculation, we deduced that Case 1
occurred when there was no bias in the root of trust, and when there were no malicious
clients. By analogy, Case 2 occurred when the trust root bias was small, or when there
was a small number of malicious clients. These two cases indicate that the TS is not
invalid, and thus, should account for a larger proportion of the STS, which means that
γ should be higher.

• Analysis of Case 3 and Case 4: As it was assumed that there were fewer than 50% of
malicious clients, Case 3 occurred when there was a large deviation in the root of trust,
in which case the TS was close to failure. Case 4, on the other hand, showed that the
TS had failed completely. Therefore, in these two cases, the TS should have accounted
for a smaller proportion of the STS, and γ should have been lower.

We first considered using the average of all the TSs, to determine their proportion in
the STS; however, it can be seen from Figure 2 that although the TS did not fail in Case 2, it
reduced the average value, because of the small number of low TSs. Similarly, in Case 3,
the TS failed, but a small number of local parameters updated by a high TS increased the
average TS. This led to similar average TSs for Case 2 and Case 3 in some scenarios, which
were difficult to distinguish.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 2. Various distributions of the TS.

To avoid these cases, we used a lightweight calculation method inspired by box
plots [41]. Specifically, we used the average of the interquartile range of the TS (the middle
50% of the sorted TS), noted as the TS, to determine the proportion of the TS in the STS.

Electronics 2023, 12, 2926 8 of 20

As shown in Figure 2, the TS of Case 2 was close to Case 1, and the TS of Case 3 was close
to Case 4. In order to consider both the TS and the CS in the calculation of γ, we performed
the same calculation for the CS, to obtain the CS, after which, the dynamic trust ratio γ was
defined as

γ = TS/(TS + CS). (4)

From Equation (4), we can see that during each training round, γ could be dynamically
adjusted to a proper value, according to the results of the TS and the CS, thus adaptively
adjusting the STS. We also verified the effectiveness of the dynamic γ by experiment.

Scaling the magnitudes of local parameter updates. The attackers can modify the magni-
tudes of local parameter updates, and transmit them to the central server, so that they can
manipulate the global parameter update. To weaken the contribution of poisoned local
parameter updates, we needed to uniformly scale the magnitudes of the local parameter
updates. Without a root of trust, it was difficult to determine how much we should scale,
and the mean of the benign local parameter updates was not trusted for the server. As the
central server had introduced a root of trust through the root dataset, we used the root
of trust to determine how much scaling was needed. As a result, each local parameter
update was normalized, so that it had the same magnitude as the root of trust. Formally,
the scaling of the magnitudes of the local parameter updates ∆θ̇k of the kth client was
defined as follows:

∆θ̇k =
‖∆θ0‖
‖∆θk‖

· ∆θk, (5)

where ‖ ∗ ‖ denoted the modulo operation of the vector.
Aggregation of local parameter updates. We then calculated global parameter update ∆θ
as the mean of the scaled local parameter updates with their weight STSs as follows:

∆θ =
n

∑
k=1

STSk

∑n
z=1 STSz

∆θ̇k (6)

=
n

∑
k=1

(γ · TSk + (1− γ) · CSk)

∑n
z=1(γ · TSz + (1− γ) · CSz)

‖∆θ0‖
‖∆θk‖

· ∆θk.

Finally, we changed the global parameter θ with the rate of global learning β as:

θ← θ− β · ∆θ. (7)

4.3. Algorithm of FLEST

The detailed implementation of FLEST is shown in Algorithm 1. This implementation
can be divided into three steps, which, during the training process of the global model,
assuming Ig iterations, will be performed in each iteration. The three steps are described
as follows:

• In Step I, the central server transmits the current parameter θ to selected partial clients;
• In Step II, based on the global parameter and their local datasets, the clients compute

local parameter updates, which are subsequently transmitted to the central server.
Using the root dataset and the global parameter, the central server determines the
root of trust. After receiving the local parameter updates, the server uses K-means
clustering to cluster them, in order to obtain the largest cluster (the benign local
parameter updates cluster). The server computes this benign cluster’s average value.
The function ParameterUpdate in Algorithm 2 uses gradient descent via Il iterations
to determine the local parameter updates and the root of trust;

• In Step III, in order to obtain the global parameter update, and to use it to change the
global parameter θ with β, the central server of FLEST does a weighted mean of the
received parameter updates of clients with STSs.

Electronics 2023, 12, 2926 9 of 20

Algorithm 1 FLEST

Input: n training datasets of clients {dk}1≤k≤n; dataset of server d0; learning rate of global
β; iterations of global Ig; amount of clients σ chosen in a single cycle; learning rate of
clients ρ; iterations clients Il ; batch size x; proportion of trust score γ; all local parameter
updates of the clients ω.

Output: Global parameter θ.
1: θ← random initialization.
2: for i = 1, 2, . . . Ig do
3: // Step I: Client selection.
4: The central server randomly selects σ clients, and sends θ to them.
5: // Step II: Training at the central server and clients.
6: // Client.
7: for k = c1, c2, . . . , cσ do
8: ∆θk = ParameterUpdate(θ, dk, x, ρ, Il).
9: Transmit ∆θk to the central server.

10: end for
11: // Central server.
12: ∆θ0 = ParameterUpdate(θ, d0, x, ρ, Il).

13: ∆θL
average←−−−−K-means(ω). // Average of benign local parameter updates computation.

14: // Step III: Robust aggregation and update global parameter.
15: for k = c1, c2, . . . , cσ do
16: TSk = ReLU(Cos(∆θk, ∆θ0)).
17: CSk = ReLU(Cos(∆θk, ∆θL)).
18: γ = TS/(TS + CS).
19: STSk = γ · TSk + (1− γ) · CSk.
20: ∆θ̇k = (‖∆θ0‖/‖∆θk‖) · ∆θk.
21: end for
22: ∆θ = 1

∑σ
z=1 STScz

∑σ
k=1STSck · ∆θ̇ck .

23: θ← θ− β · ∆θ.
24: end for
25: return θ.

Algorithm 2 ParameterUpdate(θ, d, x, ρ, I)

Output: Parameter update.
1: θ0 ← θ.
2: for i = 1, 2, . . . , I do
3: Select a batch of dx at random from d.
4: θi ← θi−1 − ρ∇Loss(θ; dx).
5: end for
6: return θI − θ.

5. Security Analysis

In this section, we formally present our security analysis of FLEST. Our goal was to
prove that the global model of FL can still converge with the introduction of FLEST.

Assume that samples from distributionD are used to create training datasets. The goal
of FLEST is to learn an optimal global model θ∗, which can be regarded as an optimization
problem: θ∗ = arg minθ∈Θ F(θ), where Θ is the parameter space, d =

⋃n
k=1 dk is the overall

local dataset, f (θ; d) is the loss function of a parameter vector θ ∈ Θ associated with the
training data d, and F(θ) , Ed∼D [f (θ; d)] is the population loss function. We followed the
three assumptions of [22] for analysis. Our assumptions and analysis results are as follows:

Assumption 1. F(θ) are µF-strongly convex and L-Lipschitz if F(θ′) ≥ F(θ) + (θ′− θ)T∇F(θ)
+ µF

2 ‖θ′ − θ‖2 and ‖∇F(θ)−∇F(θ′)‖ ≤ L‖θ− θ′‖, ∀θ, θ′. Moreover, f (θ; d) is L1-Lipschitz
with a probability of at least 1− δ

3 for any δ ∈ (0, 1). The symbol ∇ represents gradient.

Electronics 2023, 12, 2926 10 of 20

Assumption 2. The gradient of f (θ∗; d) at θ∗ is constrained. The h(θ; d) = ∇ f (θ; d) −
∇ f (θ∗; d) is also bounded. In detail, 〈∇ f (θ∗; d), v〉 is sub-exponential, with positive constants λ1
and λ2 for any unit vector, and 〈h(θ; d)−E[h(θ; d)], v〉/‖θ− θ∗‖ is also sub-exponential, with
positive constants $1 and $2 for any θ ∈ Θ with θ 6= θ∗. The symbol 〈·, ·〉 represents inner product
between vectors.

Assumption 3. Let local data dk and root data d0 be IID.

Theorem 1. Suppose the three Assumptions are true, and FLEST uses Il = 1 and ρ = 1. For the
percentage of clients who are malicious, less than half of the total clients,

∥∥θt − θ∗
∥∥, is bounded.

Formally, for any δ ∈ (0, 1) with a probability of at least 1− δ, after t parallel iterations, we obtain∥∥θt − θ∗
∥∥ ≤ v + ςt

(∥∥∥θ0 − θ∗
∥∥∥−v

)
,

where v = 12β∆1/(1− ς), β is the learning rate, ς =

(
24β∆2 +

√
1− µ2

F/(2L)2 + 2βL
)

,

∆1 = λ1

√
2
|d0|
√

log(3/δ) + D log 6, and ∆2 =

√
D
(

1
2 log |d0|

D + log 18L2
$1

)
+ log

(
6o$2

1

√
|d0|

λ1δ$2

)
·

Furthermore, $1

√
2
|d0|

, L2 = max{L, L1}, |d0| is the number of the root data, D is the dimension

of θ, and ‖θ− θ∗‖ ≤ o
√

D with positive constants o.

Proof. We mainly prove Theorem 1 by following the proof framework of [22]: that is, we
show that the difference between θt learned by FLEST under attacks and θ∗ is bounded; in
the sequel, we only present the key idea of our proof, to avoid repetition.

Firstly, we first prove that the distance between the global parameter update ∆θ and the
gradient of population loss ∇F(θ) is bounded. As our ∑k∈n ϕk = 1 and

∥∥∆θ̇k
∥∥ = ‖∆θ0‖,

and because these conditions are consistent with the counterparts in [22] [Lemma 1],
we can apply reduction steps similar to those of [22] [Lemma 1] to obtain the bound
‖∆θ−∇F(θ)‖ ≤ 3‖∆θ0 −∇F(θ)‖+ 2‖∇F(θ)‖.

Secondly, as we have θt = θt−1 − β∆θt−1 in any global iteration t ≥ 1, the meaning of
this formula is that the server uses the global parameter update of round t− 1 to update
the global parameter of round t− 1 with learning rate β, thereby generating the global
parameter of round t. We add and subtract β∇F

(
θt−1) in

∥∥θt − θ∗
∥∥ at the same time;

therefore, we can write
∥∥θt − θ∗

∥∥ as

‖θt−1 − β∇F
(

θt−1
)
− θ∗ + β∇F(θt−1)− β∆θt−1‖. (8)

Thirdly, as ∇F(θ∗) = 0, Equation (8) is bounded by∥∥∥θt−1 − β∇F
(

θt−1
)
− θ∗

∥∥∥+ 3β
∥∥∥∆θt−1

0 −∇F
(

θt−1
)∥∥∥

+ 2β
∥∥∥∇F

(
θt−1

)
−∇F(θ∗)

∥∥∥, (9)

Equation (9) is a simple split of Equation (8), based on ∇F(θ∗) = 0 for further proof.
Then, by applying [22, Lemma 2, Lemma 4], we can prove that the distance be-

tween θt−1 − β∇F
(
θt−1) and θ∗ and the distance between ∆θ0 and ∇F(θ) are bounded,

so that we obtain
∥∥θt−1 − θ∗ − β∇F

(
θt−1)∥∥ ≤ √

1− µ2
F/(4L2)

∥∥θt−1 − θ∗
∥∥ and 1− δ ≤

Pr{‖∆θ0 −∇F(θ)‖ ≤ 8∆2‖θ− θ∗‖+ 4∆1} for the learning rate β = µF/
(
2L2); therefore,

Equation (9) has the following upper bound
(√

1− µ2
F/(4L2) + 24β∆2 + 2βL

) ∥∥θt−1 − θ∗
∥∥

+12β∆1, which replaces the three sub formulas of Equation (9) based on the results of two
lemmas [22][Lemma 2, Lemma 4] and the first Assumption.

Electronics 2023, 12, 2926 11 of 20

By combining Equation (8), Equation (9), and the upper bound of Equation (9), we
obtain Equation (10):

∥∥θt − θ∗
∥∥ ≤ (√1− µ2

F/(4L2) + 24β∆2+

2βL
)∥∥∥θt−1 − θ∗

∥∥∥+ 12β∆1. (10)

Finally, by recursively applying Equation (10) to all global iterations (i.e., with concrete
iteration index t′ from t′ = 0 to t′ = t− 1), we can obtain all such bounds for those iterations.
We conclude that ∥∥θt − θ∗

∥∥ ≤ 12β∆1/(1− ς) + ςt
(∥∥∥θ0 − θ∗

∥∥∥ (11)

−12β∆1/(1− ς)),

where ς =
(√

1− µ2
F/(4L2) + 24β∆2 + 2βL

)
. Thus, we conclude the proof.

6. Performance Evaluation

We utilized the MXNet platform to implement FLEST. We conducted all the trials
on a server with an Intel Core i7-8700K CPU running at 3.70 GHz × 12, a GeForce GTX
1080 Ti GPU, and Ubuntu 18.04 LTS. The three assaults that we used were as follows:
the LF attack [12,22]; the Trim attack [12]; and the Adaptive attack [22]. We also imple-
mented aggregation rules, including FedAvg [1,2], Trim-Mean [18], and FLTrust [22], as the
comparison points’ baselines.

6.1. Experimental Setting

This section details the experimentation performed to validate our proposed FLEST
method. To verify the fidelity, robustness, and efficiency of FLEST, we executed experiments
using the Label Flipping attack, the Trim attack, and the Adaptive attack on FLEST and on
the current top three FL algorithms (FedAvg [1,2], Trim-Mean [18], and FLTrust [22]), to
evaluate their defense effectiveness, by comparing the global model prediction accuracies:
this section will showcase the experimental environments, settings, and results of all
these experiments.

6.1.1. Datasets

We evaluated FLEST on the mnist-0.1 [42], mnist-0.5, cifar-10 [43], and fashion-
mnist [44] datasets, mnist being 10-class handwritten digits image datasets, cifar-10 being
a 10-class color image classification dataset, and fashion-mnist being a 10-class collection
of images of clothing. We generated the clients’ local training dataset, following previous
work [22]: specifically, we divided the clients randomly into 10 groups, as there were
10 classes in the above datasets. With probability m and with probability 1−m

9 , we allocated
training data with data label l to the lth group, and to any other group, respectively. Data
from different clients enrolled in the same group were distributed evenly. The parameter m
determined the variation in the clients’ local datasets distribution. When m = 0.1, it meant
that the local datasets were independent and identically distributed (IID). When m > 0.1,
it meant that the local datasets were non-IID [12,22], and a larger m indicated a greater
level of non-IID. In the real-world learning tasks of FL, the client’s local datasets are usually
non-IID; therefore, we set m > 0.1 by default.

Dataset mnist. There are 10,000 testing data and 60,000 training data in the mnist [42]. We
set m = 0.1 in the mnist-0.1 dataset, and set m = 0.5 in the mnist-0.5 dataset.
Dataset fashion-mnist. There are 10,000 testing data and 60,000 training data in the
10-class fashion picture dataset known as fashion-mnist [44]. We set m = 0.5 in the
fashion-mnist dataset.

Electronics 2023, 12, 2926 12 of 20

Dataset cifar-10. 10,000 testing data and 50,000 training data make up the 10-class color
image classification dataset known as cifar-10 [43]. We set m = 0.5 in the cifar-10 dataset.

6.1.2. Evaluated Attacks

Our attacks included local parameter poisoning and data poisoning, to evaluate FLEST.
We employed a representative label flipping attack (LF) in the data poisoning attacks. As in
the prior studies [12,22], we employed the identical LF attack configuration. Specifically,
we flipped label l of the malicious clients’ training data to 9− l, where l ∈ {0, 1, · · · , 9}.
For the parameter poisoning attacks, we considered the Trim attack [12] and the Adaptive
attack [22], for which we used the parameter values from [22].

6.1.3. FL System Settings

The number of clients was set at n = 100 by default, and we turned 20% of the clients
into malicious clients by default. The number of K-means clusters was fixed at 10, and the
number of iterations to 300.

Selection of global model. For the selection of the global model, we employed a convo-
lutional neural network (CNN) for mnist and fashion-mnist. For the CNN, we used a
convolutional layer with 3× 3× 30, a convolutional layer with 3× 3× 50, a fully connected
layer with 100, two max-pooling layers with 2× 2, and an output layer with a softmax func-
tion. The widely utilized ResNet20 [45] architecture was taken into account as the global
model for cifar-10. Our experiments focused on the performance of other aggregation rules
and the FLEST in the face of attacks, rather than on the best global model; therefore, we did
not need to use an overly complex neural network model.
Parameter settings. We compared FLEST to the works FedAvg [1,2], Trim-Mean [18],
and FLTrust [22]. As they obeyed a workflow similar to Algorithm 1, they also used the
parameters σ, Ig, Il , β, ρ, and x. For comparison, we made use of the similar FL settings
in [22]. Specifically, we set all clients to be selected in each iteration, i.e., σ = n, and we set
Il = 1. We considered the product β · ρ of the local learning rate ρ and the global learning
rate β as a combined learning rate. Specifically, β · ρ = 0.0003 for mnist-0.1 and mnist-0.5,
β · ρ = 0.004 for fashion-mnist, and β · ρ = 0.0005 for cifar-10. With the exception of
cifar-10, we set the batch size to x = 128 instead of x = 64 for the other three datasets. We
determined the total iterations Ig = 1200 for mnist-0.1, Ig = 2000 for mnist-0.5, Ig = 2500
for fashion-mnist, and Ig = 1600 for cifar-10.
Generation of root dataset. We built a root dataset with only 100 data, following [22]; how-
ever, the root dataset in our experiments was biased towards one class of data. Specifically,
we drew a portion of data in the root dataset from a specific kind of local dataset, and
sampled the remaining portion evenly and randomly from the other classes: this is known
as the bias probability (BP). When each class of the root dataset had the same number of
samples, the BP was 0.1, which meant that the distribution of the root dataset was identical
to the distribution of the local datasets. Whenever the amount of data in the root dataset
that was extracted from one class of local datasets was more than that of other classes, the
BP would be larger. Unless otherwise mentioned, we set the BP to 0.1 by default.

6.2. Experimental Results

Evaluation Metric. As this work focused on defending against untargeted attacks, which
were designed to reduce the global classification accuracy of the model, we used the
accuracy of the model as an evaluation metric: the higher the accuracy of the global model,
the more effective the corresponding defense method.

Table 2 displays the testing accuracy of every FL technique when subjected to current
assaults, while Table 3 displays the performance of FLTrust and FLEST when subjected to
various attacks and various BPs. Figure 3a shows the number of global iterations versus
testing accuracies for FedAvg under no attack, and for FLEST under attacks on mnist-
0.5. The outcomes demonstrate that FLEST succeeded in terms of the three objectives
listed below.

Electronics 2023, 12, 2926 13 of 20

(a) mnist-0.5: Iteration (b) mnist-0.5: root dataset

Figure 3. The testing accuracy during FLEST’s training process under attacks and FedAvg with no
attack (a) and the impact of the root dataset (b).

Goal 1: Fidelity. As shown in Table 2, when there was no attack, the testing accuracies of
FLEST were similar to that of FedAvg, which is the baseline FL method. Unfortunately,
the testing accuracies of current FL approaches can be lower, because, while aggregating
local parameter updates, the current FL approach discards part of them, whereas FLEST
considers all local parameter updates: for example, in Table 2, under the fashion-mnist,
the testing accuracies of FedAvg, FLTrust, and FLEST are 0.90, 0.89, and 0.90, respectively,
while the testing accuracy of Trim-mean is 0.86.
Goal 2: Robustness. The testing accuracies of FLEST under three different attacks were,
at most, 0.04 lower than those of FedAvg under no attacks on the mnist and fashion-mnist
datasets. In particular, as shown in Table 2, the testing accuracy of FLEST under LF attack
was the same as that of FedAvg under no attacks on mnist-0.1, both of which were 0.97.
The testing accuracies of the presently used FL techniques under three different attacks
on the four datasets were much lower: for example, the Trim attack reduced the testing
accuracy of Trim-mean by 0.11 on mnist-0.5, and the Adaptive attack reduced the testing
accuracy of Trim-mean by 0.35 on fashion-mnist.

Moreover, Table 3 shows that FLEST and FLTrust were both robust and accurate
when the BP was small; however, when the BP was large, FLEST maintained high testing
accuracies, while the testing accuracies of FLTrust decreased substantially. In particular,
under no attacks, regardless of the BP, the testing accuracies of FLEST were similar to
those of FedAvg on the four datasets, which means that, compared to FLTrust, FLEST
could still protect the global model effectively when the BP was large: for example, when
the BP of mnist-0.1 exceeded 0.4, the testing accuracies of FLTrust under different attacks
started to decrease significantly, while FLEST was not significantly lower until the BP
was greater than 0.6; when the BP of fashion-mnist was 0.8, the FLTrust method basically
failed, but the testing accuracies of FLEST under different attacks were still much higher.
Significantly, even when the BP was 1 on all four datasets, FLEST still achieved the same
testing accuracies as FedAvg under no attacks, while FLTrust not only could not defend
against attacks but also affected the global model without attacks: this was because when
the BP was large, the TS of each local parameter was almost zero, but the CS of each local
parameter was not affected. According to the experimental findings, FLEST continues to
function well even when the root dataset differs significantly from the local datasets.

Goal 3: Efficiency. Like FedAvg, FLEST does not cause additional computation to the
clients in each iteration. In addition, Figure 3a shows the testing accuracy of FLEST, during
the training process, under different attacks, and of the baseline (the testing accuracy of
FedAvg under no attack). The experimental results show that FLEST converges at a similar
rate as FedAvg, which indicates that FLEST does not introduce much communication
overhead between the central server and the clients. Compared to FedAvg, FLEST intro-

Electronics 2023, 12, 2926 14 of 20

duces some computation overhead to the central server, including computing the root of
trust, computing STS, and scaling all local parameter updates; however, a powerful server
requires only a negligible time overhead.
Evaluation of dynamic trust ratio γ. To verify the validity of the dynamic trust ratio γ, we
evaluated the performance of the global model, using different fixed gamma, thus verifying
whether the dynamic γ adaptively adjusted to the appropriate range. Table 4 records the
accuracy of the model after fixing different values of γ for different deviation probabilities
and different attacks, as well as the average value of the dynamic γ. As shown in Table 4a,
when the deviation probability was small, the average value of gamma was around 60–80%;
however, when the deviation probability was very high, as shown in Table 4c, the average
value of γ dropped to about 20–50%, and the accuracy of FLEST, by applying the dynamic
γ, was also at a high level. Thus, these results demonstrate that the trust synthesizing
mechanism can mitigate the degradation of model accuracy due to root dataset bias.
Impact of the root dataset. The effect of the root dataset sizes on FLEST, under various
assaults, is depicted in Figure 3b. We note that FLEST could fight against various assaults
with a root dataset of only 100 training data. In particular, the testing accuracy of FLEST
under assaults was comparable to that of FedAvg under no attacks when the root dataset
contained 100 training data. When the number of training data in the root dataset exceeded
100, FLEST’s testing accuracy increased slightly.
Impact of the number of clients. The effect of the total clients on each FL method under
attacks is shown in Figure 4a–c. The findings of the trial indicate that the impact of the total
clients on FLTrust and FLEST was small, while Trim-mean was greatly affected: for example,
when there were 300 clients, the global model taught by Trim had a testing accuracy of
0.46 under the Trim attack, whereas FLTrust and FLEST trained global models to have a
testing accuracy of 0.95.
Impact of the percentage of malicious clients. Figure 4d–f show the effect of the percent-
age of malicious clients on each FL method under attacks. We observed that the effect of
the percentage of malicious clients on FLTrust and FLEST was small, while Trim-mean
was greatly affected: for example, when there was 20% malicious clients, the global model
learned by Trim had a testing accuracy of 0.89 under the Trim attack, whereas the test-
ing accuracies of the global model learned by both FLTrust and FLEST were 0.95 and
0.94, respectively.

Electronics 2023, 12, 2926 15 of 20

Table 2. Accuracy comparison of FL methods under different attacks.

Mnist-0.1 Mnist-0.5 Fashion-Mnist Cifar-10
Attack FedAvg Trim-Mean FLTrust FLEST FedAvg Trim-Mean FLTrust FLEST FedAvg Trim-Mean FLTrust FLEST FedAvg Trim-Mean FLTrust FLEST

No 0.97 0.98 0.97 0.98 0.98 0.98 0.96 0.97 0.89 0.86 0.89 0.90 0.64 0.54 0.62 0.63
LF 0.96 0.97 0.97 0.97 0.97 0.97 0.95 0.96 0.84 0.80 0.89 0.90 0.54 0.46 0.57 0.57

Trim 0.91 0.93 0.95 0.95 0.91 0.89 0.95 0.94 0.66 0.44 0.88 0.88 0.19 0.28 0.48 0.48
Adaptive 0.94 0.95 0.95 0.95 0.94 0.92 0.93 0.94 0.78 0.65 0.88 0.88 0.10 0.31 0.49 0.49

Table 3. Accuracy Comparison between FLTrust and FLEST under different attacks, and given root dataset with various bias probabilities.

(a) Mnist-0.1 and Mnist-0.5

Dataset Mnist-0.1 Mnist-0.5

BP 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1
Method FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours

No 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96 0.97 0.66 0.98 0.96 0.97 0.96 0.97 0.95 0.96 0.93 0.97 0.93 0.97 0.20 0.97
LF 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.96 0.22 0.71 0.16 0.64 0.95 0.96 0.95 0.95 0.92 0.93 0.90 0.92 0.78 0.72 0.11 0.56

Trim 0.95 0.95 0.95 0.95 0.92 0.94 0.90 0.93 0.54 0.93 0.11 0.93 0.95 0.94 0.94 0.94 0.92 0.93 0.91 0.93 0.86 0.94 0.11 0.94
Adaptive 0.95 0.95 0.94 0.95 0.93 0.93 0.87 0.93 0.10 0.93 0.10 0.92 0.93 0.94 0.93 0.94 0.92 0.92 0.87 0.92 0.50 0.91 0.10 0.86

(b) Fashion-Mnist and Cifar-10

Dataset Fashion-Mnist Cifar-10

BP 0.1 0.2 0.4 0.6 0.8 1 0.1 0.2 0.4 0.6 0.8 1
Method FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours FLTrust Ours

No 0.89 0.90 0.89 0.89 0.88 0.89 0.86 0.88 0.85 0.89 0.10 0.89 0.62 0.62 0.62 0.63 0.61 0.61 0.59 0.62 0.10 0.62 0.10 0.62
LF 0.89 0.90 0.89 0.89 0.88 0.89 0.85 0.88 0.86 0.87 0.10 0.69 0.57 0.57 0.56 0.56 0.45 0.47 0.41 0.47 0.10 0.44 0.10 0.40

Trim 0.88 0.88 0.87 0.87 0.87 0.87 0.84 0.84 0.10 0.79 0.10 0.78 0.48 0.48 0.47 0.48 0.40 0.43 0.33 0.35 0.10 0.32 0.10 0.30
Adaptive 0.88 0.88 0.86 0.86 0.84 0.86 0.82 0.81 0.10 0.79 0.10 0.69 0.49 0.49 0.45 0.46 0.42 0.44 0.32 0.34 0.10 0.33 0.10 0.29

Table 4. Impact of the trust ratio γ on mnist-0.5.

(a) BP = 0.1 and 0.2

BP = 0.1 BP = 0.2
Fixed γ 0 10% 20% 40% 60% 80% 100% γ 0 10% 20% 40% 60% 80% 100% γ

No 0.97 0.97 0.97 0.97 0.97 0.97 0.96 85.4% 0.97 0.97 0.97 0.97 0.97 0.97 0.96 83.7%
LF 0.30 0.70 0.94 0.95 0.95 0.95 0.95 78.6% 0.30 0.70 0.94 0.95 0.95 0.95 0.95 73.2%

Trim 0.94 0.94 0.95 0.94 0.94 0.95 0.95 76.3% 0.95 0.94 0.95 0.94 0.94 0.94 0.94 64.9%
Adaptive 0.93 0.94 0.94 0.94 0.94 0.94 0.93 66.8% 0.94 0.94 0.94 0.94 0.94 0.93 0.93 63.4%

Electronics 2023, 12, 2926 16 of 20

Table 4. Cont.

(b) BP = 0.4 and 0.6

BP = 0.4 BP = 0.6
Fixed γ 0 10% 20% 40% 60% 80% 100% γ 0 10% 20% 40% 60% 80% 100% γ

No 0.97 0.97 0.97 0.96 0.96 0.97 0.95 71.6% 0.97 0.97 0.97 0.97 0.96 0.96 0.93 43.3%
LF 0.30 0.58 0.84 0.92 0.92 0.92 0.92 65.6% 0.20 0.36 0.75 0.85 0.91 0.91 0.90 74.7%

Trim 0.94 0.95 0.94 0.94 0.93 0.92 0.92 66.2% 0.94 0.94 0.94 0.94 0.93 0.91 0.91 61.8%
Adaptive 0.93 0.94 0.94 0.93 0.93 0.92 0.92 72.5% 0.94 0.94 0.93 0.93 0.92 0.89 0.87 65.4%

(c) BP = 0.8 and 1

BP = 0.8 BP = 1
Fixed γ 0 10% 20% 40% 60% 80% 100% γ 0 10% 20% 40% 60% 80% 100% γ

No 0.98 0.97 0.97 0.97 0.97 0.96 0.93 34.9% 0.98 0.98 0.97 0.97 0.97 0.97 0.20 26.3%
LF 0.16 0.37 0.48 0.53 0.68 0.80 0.78 74.6% 0.26 0.31 0.38 0.39 0.39 0.40 0.11 53.8%

Trim 0.95 0.95 0.94 0.94 0.93 0.92 0.86 42.8% 0.94 0.94 0.94 0.94 0.91 0.40 0.11 47.1%
Adaptive 0.94 0.94 0.93 0.90 0.83 0.87 0.50 31.3% 0.95 0.92 0.89 0.56 0.23 0.11 0.10 32.4%

Electronics 2023, 12, 2926 17 of 20

(a) LF attack (b) Trim attack (c) Adaptive attack

(d) LF attack (e) Trim attack (f) Adaptive attack

Figure 4. On mnist-0.5, impact of the number of clients (a–c), and fraction of malicious clients (d–f).

7. Discussion and Limitations

FLEST vs. existing works. Prior research has exclusively focused on examining the direc-
tion between either local parameter updates or the root of trust and each local parameter
update. By contrast, our novel FLEST extends this approach, by taking into account not
just the direction between the local parameter updates and the root of trust, but also the
direction between each individual local parameter update.
Poisoned root dataset. Our FLEST does not require a root dataset with all data samples
pollution-free, as FLTrust does; however, we acknowledge that if FLEST uses a poisoned
root dataset, it may not be able to defend against existing attacks. In order to avoid the
possibility of root dataset pollution, service providers may opt to have their personnel
manually curate the root dataset.
Targeted poisoning attacks and root dataset with low BP. We acknowledge that the vari-
ous poisoning attacks used in the experimental evaluation did not specifically target our
FLEST approach. We recognize that stronger poisoning attacks may exist against FLEST,
which would be an interesting avenue for future exploration. Additionally, considering the
collection of root dataset with low BP is a promising direction for future work: for instance,
if the dynamic trust ratio γ of an FL system using FLEST falls below a certain threshold
(e.g., γ < 0.4) during an iteration, it indicates a significant distributional bias between the
root dataset collected by the server and the overall local training data distribution on the
clients; in such cases, the server can re-collect the root dataset before the next iteration, thus
avoiding the use of a biased root dataset from the initial iteration onward.

8. Conclusions and Future Work

We have shown a new robust FL approach, FLEST, which can achieve Byzantine ro-
bustness with a biased root dataset. In FLEST, we introduce a trust synthesizing mechanism
that can yield synthesized trust scores for weighting the local parameter updates of clients.
Meanwhile, the synthesizing procedure combines the trust score and the confidence score
(calculated based on an anomaly detection scheme) of each local parameter update with a
trust ratio (for scaling both kinds of scores). Consequently, FLEST, with our trust synthesiz-

Electronics 2023, 12, 2926 18 of 20

ing mechanism, can reduce the negative impact of the biased root dataset compared to the
previous scheme, FLTrust, using the root dataset only. We have shown the effectiveness of
FLEST via both theoretical and experimental analysis: that is, FLEST can provide much
better testing accuracy compared to FLTrust with a highly biased root dataset. In this work,
we have mainly shown that our new trust synthesizing mechanism is able to improve the
robustness of FL significantly; there may be many feasible ways to improve it in future
work. We will consider developing an optimal approach (possibly with other anomaly
detection methods) to generating more accurate confidence scores. We will also consider
designing a local parameter poisoning attack against FLEST, and optimizing FLEST, based
on it. Furthermore, we will consider re-collecting low-biased root datasets based on the
dynamic trust ratio γ. Specifically, if the dynamic trust ratio of an FL system using FLEST
falls below a certain threshold (e.g., γ < 0.4) during a single iteration, this indicates a
significant distributional bias between the root dataset collected by the server and the
overall local training data distribution on the clients: in such cases, the server can choose to
re-collect the root dataset before the next iteration, thereby avoiding the continuous use of
biased root datasets from the initial iteration throughout the training process.

Author Contributions: Conceptualization, G.G. and T.C.; methodology, G.G.; software, G.G.; in-
vestigation, G.G.; writing—original draft preparation, G.G. and T.C.; writing—review and editing,
G.G., T.C. and Z.Y.; supervision, Z.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the Natural Science Foundation of Chongqing under Grant No.
CSTB2022NSCQ-MSX0437, and the Fundamental Research Funds for the Central Universities under
Grant No. SWU-KR22003.

Data Availability Statement: The mnist dataset can be downloaded at “http://yann.lecun.com/
exdb/mnist/” (accessed on 2 June 2023), the fashion-mnist dataset can be downloaded at “https:
//github.com/zalandoresearch/fashion-mnist” (accessed on 2 June 2023), and the cifar-10 dataset
can be downloaded at “http://www.cs.toronto.edu/~kriz/cifar.html” (accessed on 2 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtarik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving

Communication Efficiency. In Proceedings of the NIPS Workshop on Private Multi-Party Machine Learning, Barcelona, Spain,
5–10 December 2016.

2. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. Proc. Artif. Intell. Stat. PMLR 2017, 54, 1273–1282.

3. Zhang, Y.; Bai, G.; Li, X.; Nepal, S.; Grobler, M.; Chen, C.; Ko, R.K. Preserving Privacy for Distributed Genome-Wide Analysis
Against Identity Tracing Attacks. IEEE Trans. Dependable Secur. Comput. 2022, 1–17. [CrossRef]

4. Fang, M.; Liu, J.; Gong, N.Z.; Bentley, E.S. AFLGuard: Byzantine-robust Asynchronous Federated Learning. In Proceedings of the
38th Annual Computer Security Applications Conference, Austin, TX, USA, 5–9 December 2022; pp. 632–646.

5. Nguyen, J.; Malik, K.; Zhan, H.; Yousefpour, A.; Rabbat, M.; Malek, M.; Huba, D. Federated learning with buffered asyn-
chronous aggregation. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Valencia, Spain,
28–30 March 2016; pp. 3581–3607.

6. Huba, D.; Nguyen, J.; Malik, K.; Zhu, R.; Rabbat, M.; Yousefpour, A.; Wu, C.J.; Zhan, H.; Ustinov, P.; Srinivas, H.; et al. Papaya:
Practical, private, and scalable federated learning. Proc. Mach. Learn. Syst. 2022, 4, 814–832.

7. Biggio, B.; Nelson, B.; Laskov, P. Poisoning Attacks against Support Vector Machines. In Proceedings of the 29th International
Coference on International Conference on Machine Learning, Edinburgh, Scotland, 26 June–1 July 2012.

8. Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C.; Li, B. Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 20–24 May 2018; pp. 19–35.

9. Li, B.; Wang, Y.; Singh, A.; Vorobeychik, Y. Data poisoning attacks on factorization-based collaborative filtering. In Proceedings of
the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.

10. Xiao, H.; Biggio, B.; Brown, G.; Fumera, G.; Eckert, C.; Roli, F. Is feature selection secure against training data poisoning? In
Proceedings of the International Conference on Machine Learning. PMLR, Lille, France, 7–9 July 2015; pp. 1689–1698.

11. Mei, S.; Zhu, X. Using machine teaching to identify optimal training-set attacks on machine learners. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://www.cs.toronto.edu/~kriz/cifar.html
http://doi.org/10.1109/TDSC.2022.3186672

Electronics 2023, 12, 2926 19 of 20

12. Fang, M.; Cao, X.; Jia, J.; Gong, N. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. In Proceedings of the
29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020; pp. 1605–1622.

13. Xie, C.; Huang, K.; Chen, P.Y.; Li, B. Dba: Distributed backdoor attacks against federated learning. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

14. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Analyzing federated learning through an adversarial lens. In Proceedings of the
International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 634–643.

15. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of the
International Conference on Artificial Intelligence and Statistics. PMLR, Online, 26–28 August 2020; pp. 2938–2948.

16. Lyu, L.; Yu, H.; Ma, X.; Sun, L.; Zhao, J.; Yang, Q.; Yu, P.S. Privacy and robustness in federated learning: Attacks and defenses.
arXiv 2020, arXiv:2012.06337.

17. Chen, Y.; Su, L.; Xu, J. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proc. ACM
Meas. Anal. Comput. Syst. 2017, 1, 1–25. [CrossRef]

18. Yin, D.; Chen, Y.; Kannan, R.; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings
of the International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 5650–5659.

19. Sohn, J.y.; Han, D.J.; Choi, B.; Moon, J. Election coding for distributed learning: Protecting signsgd against byzantine attacks. Adv.
Neural Inf. Process. Syst. 2020, 33, 14615–14625.

20. Yu, L.; Wu, L. Towards byzantine-resilient federated learning via group-wise robust aggregation. In Federated Learning; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 81–92.

21. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent.
In Proceedings of the Advances in Neural Information Processing Systems , Long Beach, CA, USA, 4–9 December 2017.

22. Cao, X.; Fang, M.; Liu, J.; Gong, N.Z. FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping. In Proceedings of
the ISOC Network and Distributed System Security Symposium (NDSS), Virtually, 21–25 February 2021.

23. Tolpegin, V.; Truex, S.; Gursoy, M.E.; Liu, L. Data poisoning attacks against federated learning systems. In European Symposium on
Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 480–501.

24. Li, L.; Xu, W.; Chen, T.; Giannakis, G.B.; Ling, Q. RSA: Byzantine-robust stochastic aggregation methods for distributed learning
from heterogeneous datasets. Proc. AAAI Conf. Artif. Intell. 2019, 33, 1544–1551. [CrossRef]

25. Zhao, B.; Sun, P.; Wang, T.; Jiang, K. FedInv: Byzantine-robust Federated Learning by Inversing Local Model Updates. Proc. Aaai
Conf. Artif. Intell. 2022, 36, 9171–9179. [CrossRef]

26. Xie, C.; Koyejo, S.; Gupta, I. Zeno: Distributed stochastic gradient descent with suspicion-based fault-tolerance. In Proceedings
of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6893–6901.

27. Xie, C.; Koyejo, S.; Gupta, I. Zeno++: Robust fully asynchronous sgd. In Proceedings of the International Conference on Machine
Learning, PMLR, Virtual, 13–18 July 2020; pp. 10495–10503.

28. Guerraoui, R.; Rouault, S. The hidden vulnerability of distributed learning in byzantium. In Proceedings of the International
Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 3521–3530.

29. Chen, X.; Liu, C.; Li, B.; Lu, K.; Song, D. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv 2017,
arXiv:1712.05526.

30. Wang, N.; Xiao, Y.; Chen, Y.; Hu, Y.; Lou, W.; Hou, Y.T. FLARE: Defending Federated Learning against Model Poisoning Attacks
via Latent Space Representations. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security, Nagasaki, Japan, 30 May–3 June 2022; pp. 946–958.

31. Shen, L.; Zhang, Y.; Wang, J.; Bai, G. Better Together: Attaining the Triad of Byzantine-robust Federated Learning via Local
Update Amplification. In Proceedings of the 38th Annual Computer Security Applications Conference, Austin, TX, USA, 5–9
December 2022; pp. 201–213.

32. Fang, M.; Yang, G.; Gong, N.Z.; Liu, J. Poisoning attacks to graph-based recommender systems. In Proceedings of the 34th
Annual Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018; pp. 381–392.

33. Gu, T.; Dolan-Gavitt, B.; Garg, S. Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv 2017,
arXiv:1708.06733.

34. Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.; Wongrassamee, V.; Lupu, E.C.; Roli, F. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, Dallas, TX, USA, 3 November 2017; pp. 27–38.

35. Nelson, B.; Barreno, M.; Chi, F.J.; Joseph, A.D.; Rubinstein, B.I.; Saini, U.; Sutton, C.; Tygar, J.D.; Xia, K. Exploiting machine
learning to subvert your spam filter. LEET 2008, 8, 16–17.

36. Rubinstein, B.I.; Nelson, B.; Huang, L.; Joseph, A.D.; Lau, S.H.; Rao, S.; Taft, N.; Tygar, J.D. Antidote: Understanding and defending
against poisoning of anomaly detectors. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement,
Chicago, IL, USA, 4–6 November 2009; pp. 1–14.

37. Shafahi, A.; Huang, W.R.; Najibi, M.; Suciu, O.; Studer, C.; Dumitras, T.; Goldstein, T. Poison frogs! targeted clean-label poisoning
attacks on neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada,
3–8 December 2018; Volume 31.

http://dx.doi.org/10.1145/3154503
http://dx.doi.org/10.1609/aaai.v33i01.33011544
http://dx.doi.org/10.1609/aaai.v36i8.20903

Electronics 2023, 12, 2926 20 of 20

38. Suciu, O.; Marginean, R.; Kaya, Y.; Daume III, H.; Dumitras, T. When does machine learning fail? generalized transferability for
evasion and poisoning attacks. In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD,
USA, 15–17 August 2018; pp. 1299–1316.

39. Wang, B.; Gong, N.Z. Attacking graph-based classification via manipulating the graph structure. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, Baltimore, MD, USA, 15–17 August 2018; pp. 2023–2040.

40. Yang, G.; Gong, N.Z.; Cai, Y. Fake Co-visitation Injection Attacks to Recommender Systems. In Proceedings of the NDSS, San
Diego, CA, USA, 26 February–1 March 2017.

41. Box Plot—Wikipedia. Available online: https://en.wikipedia.org/wiki/Box_plot (accessed on 4 October 2022).
42. Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process.

Mag. 2012, 29, 141–142. [CrossRef]
43. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https:

//www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced624
13346235c02b1aa086 (accessed on 2 July 2023).

44. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

45. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://en.wikipedia.org/wiki/Box_plot
http://dx.doi.org/10.1109/MSP.2012.2211477
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086
https://www.semanticscholar.org/paper/Learning-Multiple-Layers-of-Features-from-Tiny-Krizhevsky/5d90f06bb70a0a3dced62413346235c02b1aa086

	Introduction
	Background and Related Work
	Aggregation Rules
	Poisoning Attacks

	Threat Model and Security Goals
	Threat Model
	Security Goals

	FLEST: A Federated Learning with Synthesized Trust Method
	Overview of FLEST
	Detailed Design of FLEST
	Algorithm of FLEST

	Security Analysis
	Performance Evaluation
	Experimental Setting
	Datasets
	Evaluated Attacks
	FL System Settings

	Experimental Results

	Discussion and Limitations
	Conclusions and Future Work
	References

