
Citation: Racinskis, P.; Arents, J.;

Greitans, M. Constructing Maps for

Autonomous Robotics: An

Introductory Conceptual Overview.

Electronics 2023, 12, 2925.

https://doi.org/10.3390/

electronics12132925

Academic Editor: Mahmut

Reyhanoglu

Received: 14 June 2023

Revised: 26 June 2023

Accepted: 29 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

Constructing Maps for Autonomous Robotics: An Introductory
Conceptual Overview
Peteris Racinskis , Janis Arents * and Modris Greitans *

Institute of Electronics and Computer Science, LV-1006 Riga, Latvia; peteris.racinskis@edi.lv
* Correspondence: janis.arents@edi.lv (J.A.); modris_greitans@edi.lv (M.G.)

Abstract: Mapping the environment is a powerful technique for enabling autonomy through local-
ization and planning in robotics. This article seeks to provide a global overview of actionable map
construction in robotics, outlining the basic problems, introducing techniques for overcoming them,
and directing the reader toward established research covering these problem and solution domains
in more detail. Multiple levels of abstraction are covered in a non-exhaustive vertical slice, starting
with the fundamental problem of constructing metric occupancy grids with Simultaneous Mapping
and Localization techniques. On top of these, topological meshes and semantic maps are reviewed,
and a comparison is drawn between multiple representation formats. Furthermore, the datasets and
metrics used in performance benchmarks are discussed, as are the challenges faced in some domains
that deviate from typical laboratory conditions. Finally, recent advances in robot control without
explicit map construction are touched upon.

Keywords: SLAM; robot perception; semantic mapping; topological mapping; autonomous robotics

1. Introduction

While stationary industrial robot manipulators can be programmed to execute a
specific task without reference to their external environment, perception is critical for
interacting with dynamic environments [1]. In the context of mobile robotics, this often
(though not always [2]) requires the construction of a map, which is readily apparent in
the interfaces for widely-used navigation and planning packages [3]. For solving more
complex tasks, the extension of basic spatial obstacle maps with topological structure [4]
and semantic information [5] has been an active area of research for multiple decades now.

Constructing a high-level map, such as in [6] or [7], involves multiple steps, each of
which traditionally constitutes a distinct research niche on its own. At the lower level of
many systems, one can find a Simultaneous Localization and Mapping (SLAM) solver, con-
cerned with the problem of estimating the robot state with a map, while also constructing
the very same map with respect to these state estimates. This in itself is a large and active
area of research, with detailed expositions [8,9] and surveys [10,11] available. However,
these typically make no mention of the higher-level aspects of mapping. Meanwhile, while
some exhaustive surveys concerned with these more abstract levels exist [12], these tend to
assume that the reader is already familiar with SLAM or mention it only in passing—even
though these high- and low-level concepts are not always neatly separable [13]. In this
article, we seek to bridge the gap by describing the entire mapping stack, avoiding off-hand
references to concepts new researchers entering the field may be unfamiliar with, as a
starting point for more detailed reading. Thus, with this overview, we do not seek to
exhaustively review any of the research areas discussed but rather introduce key concepts,
terminology, and seminal works which would lead one to more quickly uncover the state
of the art in their particular question of interest.

The structure of this article is primarily motivated by the gulf in the literature between
covering the low-level implementation of SLAM and the ways in which higher-level map

Electronics 2023, 12, 2925. https://doi.org/10.3390/electronics12132925 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12132925
https://doi.org/10.3390/electronics12132925
https://doi.org/10.3390/electronics12132925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8956-179X
https://orcid.org/0000-0001-5203-3347
https://orcid.org/0000-0002-5405-0738
https://doi.org/10.3390/electronics12132925
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12132925?type=check_update&version=1

Electronics 2023, 12, 2925 2 of 22

construction capabilities may be grafted onto a SLAM system. Examples abound of a
SLAM system [14] serving as the basis for multiple, potentially very different high-level
mapping systems [7,15]. Therefore, we choose to make the first distinction at this divide—
with Section 2 covering the lower-level problem of SLAM. We further break down the
SLAM problem according to the two ways of posing it, as local filtering or tracking, only
considering the last state, and global smoothing, optimizing over the entire past history
of states. In part to show how these may be tied together, we then include examples of
real systems, some of which utilize the two-stage tracking-mapping approach which has
become commonplace.

Section 3 addresses the questions of map representations, ways to convert between
them, and how additional information—not part of the SLAM process—may be integrated.
Specifically, the subsections of Section 3 loosely follow the metric–topological–semantic
hierarchy of environment mapping that has been pervasive in the field of autonomous
robotics for many decades before practicable SLAM systems became available [4,5]. Taken
as a whole, these two sections should give the reader a grasp on the terminology and
concepts required to make sense of articles covering proposed SLAM and multi-level
mapping approaches for robotics.

While the first two sections are concerned with actually solving the various problems
described, Section 4 discusses the perhaps equally important question of how one can
go about evaluating solutions, briefly covering the data and metrics used in various
benchmarks. Finally, some adjacent questions which do not neatly fit under the main
contents of this overview—domain-specific challenges that require deviations from more
typical approaches, and the prospect of autonomous robotics without explicit, human-
readable maps—are covered in Section 5.

2. Building Maps—Core Concepts in SLAM

Before discussing higher-level map construction, it is necessary to have a thorough
grasp of the Simultaneous Localization and Mapping (SLAM) problem, which is what
enables a robot to have a consistent picture of its surroundings in the absence of external
ground truth positioning data in the first place. This is a broad and deep topic, a de-
tailed, first principles exposition of which can be found in Probabilistic Robotics by Thrun
et. al. [8]. This book, in addition to covering the mathematical foundations of probabilistic
motion and observation models, introduces both of the commonly found approaches to
solving the SLAM problem, filtering, notably by means of an Extended Kalman Filter (EKF),
and smoothing, which is described in terms of the Extended Information Filter (EIF), in
the book.

The latter approach has grown much more popular in the following decades, becom-
ing strongly associated with the factor graph formalism in the process, so readers primarily
interested in smoothing-based methods may find Factor Graphs for Robot Perception by
Dellaert and Kaess [9] to be more helpful. This extended article describes and motivates
factor graphs as a tool for posing and solving a variety of non-linear optimization problems,
placing an emphasis on SLAM in particular. Specifically, after explaining how to solve the
problem in steps, the ways one can exploit sparsity in the problem structure to reduce com-
putational complexity are covered. Additionally, useful information on the mathematical
tools employed is provided, for example, the employment of Lie Algebras in optimization
over manifolds, which arises when optimizing over rotations in SO(2) or SO(3).

Bearing in mind the existence of detailed resources, such as the ones described above,
this section consists of a brief description of the core concepts in SLAM, followed by a short
list of implementation examples.

Electronics 2023, 12, 2925 3 of 22

2.1. Problem Formulation, Concepts
2.1.1. Full SLAM

When formally posed in the broadest possible sense [8], the full SLAM problem can
be stated as maximizing the joint posterior

p(x1:t, m|z1:t, u1:t) (1)

over a sequence x1:t of robot states xt, a map representation of the environment m, with se-
quences of sensor observation constraints zt and odometry constraints ut (also known
as controls, assuming these are known inputs to the robot control system). The map
is frequently given by a list of landmarks li, though the representations of these may
vary widely based upon the sensor modality and algorithm employed. Particularly, in a
smoothing context [9], the robot state history xk:t and environment map m may also be
considered a single state vector X which concatenates the minimum degree of freedom
descriptions of each. Generally, one also needs a state propagation function (movement
model) p(xt|xt−1, ut) = g(x, u) and observation model p(zt|xt, li) = h(x, l). Note that the
latter depends on making correct associations between landmarks and observations, which
is known as the correspondence problem in SLAM, and is typically implicit in the notation
used to describe algorithms.

A single robot state xt is generally a pose—a concatenation of position (translation)
t and orientation (rotation) R. t may belong to R2 or R3 for position in 2D or 3D space,
respectively, while the corresponding R is typically a matrix in SO(2) or SO(3)—the special
orthogonal groups consisting of orthogonal 2 × 2 and 3 × 3 matrices with determinant 1.
The Cartesian product Rn × SO(n) then constitutes the n-dimensional special Euclidean
group SE(n), with composition:

(R1, t1) ◦ (R2, t2) = (R1R2, R1t2 + t1) (2)

Often, SE(n) is expressed in terms of an n + 1× n + 1 projective transform matrix

T = (R, t) =
[

R t
0 1

]
, (3)

with inversion and composition defined as

T−1 =

[
RT −RTt
0 1

]
(4)

T1 ◦ T2 = T1T2 =

[
R1R2 R1t1 + t1

0 1

]
(5)

also giving rise to the relative pose

T j
i = T−1

j Ti → Ti = Tj(T−1
j Ti) = TjT

j
i (6)

which, when obtained as a constraint between two subsequent poses in a trajectory, is
generally known as the odometry, but a loop closure when introduced by some other data
association method.

The states of landmark features l making up the map m have much more varied
representations, such as the positions of geometric features extracted from LiDAR point
clouds in a global coordinate system [16] to range and bearing estimates for photometric
features in the latest robot coordinate frame [17], making any kind of general treatment
impracticable. If the system is only concerned with estimating the current pose of the robot,
it may discard landmarks after they pass out of bounds in the current local reference frame,
resulting in an odometry or tracking algorithm, rather than a full SLAM system [17–19]. It
is, however, not uncommon for such a tracking algorithm to form part of a full SLAM

Electronics 2023, 12, 2925 4 of 22

system by producing initial estimates for map features and robot state histories, which can
subsequently be refined in a global mapper [20–23].

It is important to note that the set of landmarks in the map need not constitute the
sum total of sensor measurements, only those utilized in localizing the robot. Assuming
an accurate robot trajectory is available—regardless of whether it was produced by a
local tracking or full SLAM algorithm—a map can be obtained by means like integrating
back-projected ranging sensor measurements, as discussed in chapter 9 of [8], or using the
photogrammetric reconstruction techniques extensively described in [24]. The outputs of
this process are discussed in more detail in Section 3.1.

2.1.2. Filter SLAM

The filter SLAM differs formally in that only the most recent state of the robot is
estimated [8]

p(xt, m|z1:t, u1:t), (7)

which has several important implications:

• This makes the problem more tractable for algorithms in the form of a Bayes filter,
which operate by iterated repetition of a state transition function followed by a mea-
surement update. Note that probability distributions over hidden states x are referred
to as belief bel(x) in [8] and works derived thereof.

• Prior state estimates are marginalized out, with information about them being con-
tained in the beliefs over landmarks and current state. When dealing with non-linear
state propagation and observation functions, this means that re-linearization of these
functions cannot be performed, contributing to drift.

• There is a strong distinction between odometry and measurement constraints, in that
the former is used in the state propagation step and the latter in measurement updates.

The second point, in particular, contributes to this formulation being more suited for
tracking or odometry applications than extensive map construction [17,19,25]. Though a
variety of parametric and non-parametric distributions may be used in a Bayes filter, when
one assumes the combined state vector X is normally distributed with mean xt, covariance
Σt, state transition g(x, u), and observation g(x), it is an instance of the Extended Kalman
Filter (EKF), an explanation and derivation of which can be found in [8]. While practical
implementations may differ in using an iterated [19] or multi-state [25] formulation of the
filter, or process incoming Inertial Measurement Unit (IMU) odometry data at a separate rate
from the measurement updates conducted by external sensors (namely, camera images) [17],
the incremental linearization of g(x, u) and h(x) is apparent in all cases.

Particularly when tackled in the context of a tracking front-end for a global mapping
back-end, as in [20–23], the filter SLAM problem may also be formulated as a smoothing
problem over a history of recent poses and landmark observations. Since non-local infor-
mation is marginalized out, a smoothing tracker suffers from the same linearization drift as
an explicit Bayes filter.

2.1.3. Smoothing SLAM and Factor Graphs

Factor graphs offer perhaps the most concise and straightforward way to reason
about the smoothing approach to SLAM [9,26]. Given a posterior distribution which is
proportional to a product of factors

p(X) ∝ φ(X) = ∏
i

φi(Xi), (8)

the factor graph F is an undirected bipartite graph with variable vertices xi ∈ X, factor ver-
tices φi ∈ Φ and edges {e} =

{
{xj, φi}|xj ∈ Xi

}
. Maximizing the posterior—smoothing—is

then equivalent to maximizing the product of the factors:

XMAP = arg max
X

∏
i

φi(Xi) (9)

Electronics 2023, 12, 2925 5 of 22

The factors can take on arbitrary form, for example, non-parametric kernel density
estimators [27]. However, it is very common to assume Gaussian factors, as evidenced by
the default choices made in popular factor graph optimization software [28]. These consist
of an observation constraint N (zi, Σi) and a (generally non-linear) function h(xi) relating
this to some subset of state variables [9], giving the form

φ(X) = ∏
i

ηi exp
{
−1

2
‖h(xi)− zi‖2

Σi

}
(10)

which results in the following sparse non-linear least squares problem

arg max
X

∏
i

φi(Xi) = arg min
X

∑
i
‖h(xi)− zi‖2

Σi
≈

≈ arg min
∆X

∑
i
‖h(x0) + Hi∆xi − zi‖2

Σi
=

= arg min
∆X

∑
i
‖Σ−1/2

i Hi︸ ︷︷ ︸
Ai

∆xi − Σ−1/2
i [zi − h(x0)]︸ ︷︷ ︸

bi

)‖2 =

= arg min
∆X

‖A∆X− b‖2 (11)

where the combined Jacobian-square root information matrix A has a sparse block structure
corresponding to the individual factor Jacobians Hi. In the general case, this can be solved
by methods such as the iterative Gauss–Newton algorithm

AT
i Ai∆Xi+1 = AT

i bi (12)

Given that the matrix AT A is positive-definite, the above can then be solved using,
e.g., Cholesky decomposition into upper-lower triangular matrices R, RT

AT A = RT R→ RTy = b→ R∆X = y (13)

While exploring the computational complexity of matrix algebra is beyond the scope
of this work, given the inherent sparsity of A, solutions can be found much faster than the
theoretical O(n3) complexity of matrix inversion suggests, using the elimination algorithm
for decomposition. Further speed-ups can be attained by manipulating the order of vari-
ables to minimize fill-in (the fraction of non-zero off-diagonal elements). Ref. [9] explores
these considerations in detail and shows examples of using information about problem
structure contained in factor graphs to achieve linear speed-ups over domain-agnostic
sparse linear algebra solvers.

An important thing to note here is that h(x) can take on different forms to suit a
variety of observation modalities. If only relative pose constraints (odometries and loop
closures) between robot poses are available, this is known as a pose graph optimization
(PGO) problem. This can quite frequently be seen in global mapping back-ends, which
receive pose constraints and initial estimates from a tracking front-end [16,23,29]. In such
systems, a local mapping/tracking thread periodically produces a keyframe and inserts it
into the global pose graph. Typically, a descriptor of each keyframe (e.g., [30]) will also be
computed, against which new keyframes are compared to find potential loop closures.

However, factors relating robot poses to landmark features are also widely used,
especially when performing tracking over a limited history of poses [23]. For example,
in purely visual SLAM, such as [21], landmarks may take the form of image feature
descriptors (used for data association frame-to-frame), a spatial position, and constraints

Electronics 2023, 12, 2925 6 of 22

for viewing angle and distance. The cost function to minimize may then take on the form
of a reprojection error

∑
xi

∑
lj :∃zij

‖π(lj, xi)− zij‖2
Σij

(14)

where xi are robot (camera) poses, (zij, Σij) are observation factors (distributions over 2D
pixel coordinates), π is some function projecting landmarks into the image coordinate
system, and lj are the landmarks associated with zij by a data association algorithm, such as
feature descriptor matching or optical flow tracking. In isolation this is then known as bundle
adjustment (BA), and, provided no additional factor types are included in the graph, makes
this equivalent to the Structure from Motion (SfM) problem from photogrammetry [31].

The utility of using the factor graph formalism for describing optimization problems
becomes apparent when multiple types of factors are considered at once. A typical case is
the combination of feature observation factors with odometry constraints obtained from
an IMU [20,22,23]. Figure 1 illustrates how the different types of constraints can be readily
combined into a single structure. As IMU data rates are generally much greater than
camera framerates, IMU constraints are typically given as pre-integrated odometry factors
between robot poses taken at the camera framerate, combining dozens or hundreds of
individual measurements using the method formalized in [32]. This gives rise to the
structure illustrated in the bottom factor graph of Figure 1.

Figure 1. Example factor graph configurations for a pose graph optimization (top) and landmark
SLAM (bottom) problem, respectively.

2.2. Representative Examples

With blurry distinctions between tracking/odometry and full SLAM, filtering and
smoothing, sensor modalities, and combinations thereof, literature on SLAM defies at-
tempts at drafting trivial taxonomies. An exhaustive description of the state of the art in
SLAM is also not the primary focus of this article. For more detailed surveys about visual
SLAM in particular and SLAM in general we direct the reader to [10] and [11], respectively.
What follows is a short list of representative examples, which illustrate how the concepts
discussed in the previous subsection may be applied in practice. Table 1 collates the key
distinctions between these systems in a concise format.

Electronics 2023, 12, 2925 7 of 22

Table 1. Comparison of selected mapping systems by SLAM implementation.

System Sensors 1 Tracking 2 Smoothing 3 Note

ORB-SLAM (2017) [21] V Two-stage local BA Frame descriptors for
loop detection, PGO

ORB-SLAM3
(2020) [22] V, VI, S, SI

Two-stage local BA
with optional IMU,

stereo factors

Frame descriptors for
loop detection,

multiple maps, PGO
Extension of [21]

Google Cartographer
(2016) [33] 2L, 3L

Scan pose optimization
with regard to local

OGM

Geometric
feature-based loop

detection between local
OGMs, PGO

Maplab (2017) [34] VI ROVIO [17] EKF —
Optimization

performed offline
through external tools

Keller et al. (2013) [35] D ICP with regard to a
fixed surfel model

None for camera poses;
Depth point averaging

Basis for many other
systems, e.g., [7,15,36]

iMap (2021) [37] D

Camera pose
optimization with

regard to NRF with
frozen weights

Joint camera pose and
NRF optimization

1 V—monocular visual; VI—visual-inertial; S(SI)—stereo(-inertial); D(DI)–RGB-D(-inertial); 2L–2D (1-line) LiDAR;
3L–3D (multi-line) LiDAR; 2 BA—bundle adjustment; EKF—extended Kalman filter; OGM—occupancy grid map;
3 PGO—pose graph optimization.

ORB-SLAM (2015) by Mur-Artal et. al. [21] is not the first to employ the two-stage
tracking–mapping architecture so common in modern SLAM systems, with much earlier
implementations, such as PTAM [38]; however, it serves as a good example of a practically
useful smoothing-based monocular SLAM system. Fundamentally, the entire approach
is based on three threads executing in parallel—tracking, local mapping, and global opti-
mization. On all levels, ORB descriptors [39] are used to identify image features, and each
feature is associated with a map point. The bag-of-words descriptors of keyframes [30] are
computed and stored in a database for rapid similarity-based look-up.

Tracking is performed in two steps. The first searches for correspondences with
the previous frame and uses those to optimize an initial estimate based on extrapolated
velocity. Should tracking fail, relocalization is performed by bag-of-words look-up and
corresponding optimization. The second step expands the number of map features used
by including all points in the local map, defined by a two-degree covisibility graph over
keyframes (neighbor-of-neighbor by shared features), and optimizes the current pose again.
The decision to insert a new keyframe is based on a heuristic.

Mapping is handled in two threads. Local mapping is performed whenever a new
keyframe is inserted. Using the same covisibility graph, a subset of keyframes and map
features are selected for optimization. The new frame is inserted into the map along
with a reduced set of novel map points, and bundle adjustment is performed, this time
optimizing all the parameters in the local map. Finally, a loop closing thread runs in
the background, searching for correspondences using bag-of-words and introducing loop
closures. A spanning tree of the covisibility graph is maintained for inter-frame relative
pose constraints, and this is used for pose graph optimization when adding loop closures.

An inherent drawback of monocular SLAM is the scale ambiguity. Without additional
constraints, such as known spatial distances between points in an image, projective ge-
ometry can only recover similarity transforms between camera poses, with an additional
degree of freedom [24]. Furthermore, this greatly complicates the bootstrapping of the
mapping process with initial estimates, and a considerable amount of attention in [21]
is given to robust initialization of the map. While there have been attempts to alleviate

Electronics 2023, 12, 2925 8 of 22

these problems by directly inferring spatial information from the monocular image data
using machine learning [18], many elect, instead, to overcome this issue by introducing an
additional—inertial—source of measurement constraints to the localization estimates.

ORB-SLAM3 (2020) by Campos and Elvira et al. [22] is a continuation of the above.
A number of evolutionary improvements notwithstanding, the most salient differences are
using pre-integrated IMU constraints, stereo capability, and an atlas of multiple inactive
maps that can be dynamically linked to the current one. As before, a three-thread structure
is employed with tracking, local mapping, and loop closures. The IMU data enable the
recovery of scale information, provide for better initial pose estimates, and enable much
more rapid initialization of the map. Maintaining a database of offline maps makes the
system inherently robust against complete tracking loss—should the robot fail to relocal-
ize, it simply starts a new map. When correspondences between the current map and
offline maps are discovered, they can be combined. While this is the system we chose
to compare and contrast with the purely monocular approach above, given their great
degree of similarity, one must also note that numerous fundamentally similar approaches
exist, e.g., VINS-Mono [23], which has a comparable multi-threaded local-global mapping
architecture, though only performing PGO in 4 degrees of freedom (courtesy of a consistent
gravity direction).

Google Cartographer (2016) by Hess et. al. [33] offers a view into what the application
of many of the same design principles leads to when used with a vastly different sensor
data modality—LiDAR scans. Again, a tracking–mapping approach is used. However,
the local maps—called submaps—are explicitly constructed from a number of subsequent
LiDAR scans in the form of an occupancy grid map (OGM), detailed in Section 3.1.1. Each
new scan first has its pose optimized with respect to the local submap, then is used to
update the submap. The submaps, along with their scans, are periodically added to a
global pose graph. Loop closures are found by looking for matches between scans and
other submaps using a branch-and-bound algorithm, which is perhaps the main innovation
of this system. These are then integrated into the state estimate by periodic pose graph
optimization. Others have instead used frame descriptor-based place matching for this
purpose [16] as in the visual examples discussed above.

iSAM2 (2012) by Kaess et. al. [40] explicitly seeks to address the issue largely skirted
by previously mentioned smoothing approaches—the unbounded growth in problem size
as more data are accumulated in the map. To address this, they introduce the Bayes tree,
a data structure produced by applying the elimination algorithm to a factor graph [9],
and refactoring the resulting chordal Bayes net, which is also equivalent to the Cholesky
decomposition R discussed in Section 2.1. The tree structure exposes precisely the subset of
variables that need to be relinearized and optimized whenever a new factor is introduced,
and these contribute to generally greatly reduced problem sizes for any given modification
to the global state estimate.

Maplab (2017) by Schneider et. al. [34] is an example backing the bold statement
made in Section 2.1 that, in principle, a tracking algorithm is sufficient to produce maps.
Specifically, they present a software package that uses the EKF-based ROVIO visual-inertial
odometry system [17] to produce trajectories, from which maps can be constructed. These
can then be optimized and fused with other maps using offline implementations of data
association and smoothing algorithms.

Point-based Fusion (2013) by Keller et al. [35] is an RGB-D (depth image) SLAM
system that serves as the basic mapping component in numerous other, wildly divergent
approaches, e.g., [7,15,36], and, therefore, deserves a mention in our short list of examples.
This system maintains a map in the form of an unordered list of surface features (surfels),
discussed in Section 3.1.2. New camera poses are estimated by projecting the model points
from the previous camera pose and performing iterative closest point (ICP) alignment
with the current depth map. The points obtained from the current depth map are then
back-projected and merged with the model using distance and confidence-based heuristics.

Electronics 2023, 12, 2925 9 of 22

iMap (2021) by Sucar et al. [37] bridges the gap between classic non-linear least squares
optimization and modern deep learning in SLAM. At the core of their approach is the
neural radiance field (NRF) [41]—an implicit scene representation discussed in more detail
in Section 3.1.3. The key difference from traditional methods is the replacement of “mean-
ingful” parameters in the map model—such as a cloud of image features associated with
spatial coordinates and viewing angles—with completely generic neural network weights
and biases, of which there is a constant number. The neural network is parametrized by
spatial coordinates and pixel value estimates can be recovered by the integration along
projection rays described in [41]. This system and its derivatives [42] use RGB-D inputs in
tracking and mapping. Model architecture aside, this approach is otherwise analogous to
more traditional ones like [21–23,35]. Tracking is performed by optimizing the pose of the
latest frame with regard to a frozen model. Smoothing is performed by jointly optimizing
the pose graph and scene model over a set of keyframes using gradient descent.

2.3. Summary

Simultaneous Localization and Mapping (SLAM) is the problem of constructing a
consistent map of the environment which can be used to localize the robot, while relying
purely on sensor observations, without a reliable source of positioning information. Tra-
ditionally, it has been formulated in terms of a global optimization problem (smoothing),
which takes into account the entire past trajectory of the robot, and local filtering (tracking),
which only deals with a fixed-length window of robot poses. Factor graphs are a mathe-
matical formalism widely used to describe both of these sub-problems and understanding
them is essential when reading the scientific literature in this field. Many modern SLAM
systems consist of a tracking front-end and a smoothing back-end, with the latter correcting
long-term drift accumulated in the former through finding and integrating loop closures
into the robot trajectory estimate. Most SLAM systems use monocular, stereo, or depth
video feeds, or LiDAR to observe the environment, and some augment this primary input
with relative pose estimates from an inertial measurement unit.

3. Types of Maps—Metric, Topological, Semantic

The outputs of the SLAM process described in the previous section generally consist
of a robot trajectory alongside a map of the environment which is created to help localize the
robot. This is an important qualification to make because one might wish to do more with a
map than merely localize the robot that created it. The landmarks in a visual–inertial SLAM
system [22,23], for example, may take on a form that is difficult to reason about due to its
primary use as a grounding for reprojective loss functions in pose optimization. In LiDAR-
based systems [16,19,33], the scans and occupancy maps produced inherently represent
information about obstacles in the environment and are perhaps more human-readable.

Either way, aside from features used in data association, these maps are primarily
metric—they embed information in a metric space. However, when considered in an
autonomous robotics context, this has long been considered insufficient, with the addition
of topological [4] and semantic [5,43] layers to the map having been proposed decades ago.
At the core of many planning algorithms lies a graph search problem [44], and representing
space in terms of graphs of interconnected places lies at the core of the topological mapping
problem. Furthermore, while merely telling free space apart from obstacles can prove
enough for solving navigation problems, as soon as the robot is required to locate other
objects in the environment and interact with them, a source of semantic information is
needed, which may run the gamut from discrete classification [6] to continuous latent
space descriptors corresponding to concepts in natural language and image spaces [15],
to object-relation graph models encoding information between multiple objects [7]. It is also
possible to feed this additional insight back into the lower levels of the mapping system for
improved SLAM performance [13,45].

This section lays out the concepts required to understand the structure and operation
of higher-level mapping systems for robotics. Section 3.1 describes some of the different

Electronics 2023, 12, 2925 10 of 22

ways a spatial map may be structured and the trade-offs between them. Section 3.2 deals
with transforming spatial maps into traversable graph structures. Section 3.3 describes
how semantic information may be obtained and integrated into the map. As before, our
goal is to give an introductory overview of the entire conceptual stack involved in creating
and using a map, rather than a detailed systematic review of any particular aspect therein.
When it concerns map representations, and especially the use of semantics, we refer the
reader to surveys such as [46,47], and particularly the extensive work by Garg et. al. [12],
which is both broad and deep, touching on all of the topics covered here.

3.1. Spatial Map Representations

A variety of ways to represent physical space in computer memory exists, and no
universal best option has been settled upon in the field. Perhaps the most straightfor-
ward would be the direct use of point clouds as produced by LiDAR or a depth image
source. However, these lack structure and are not conducive for use in, e.g., path planning.
Furthermore, points are essentially never coincidental even in the absence of observation
noise, meaning that for more efficient memory usage one might wish to integrate point
observations over spatial intervals.

3.1.1. Occupancy Grid Maps

Occupancy grid maps (OGMs), therefore, present a popular solution, detailed in [8].
These divide Euclidean space into a discrete grid of evenly spaced cells, each associated
with an occupancy score or probability, which could be stated as

m(i) = P(mi|z1:t, x1:t) (15)

in the general case, with mi being the binary occupancy value associated with a grid cell
and z1:t, x1:t being the sensor measurement and robot pose estimate sequences, respec-
tively. As discussed in [8], an inverse sensor model is required to produce such a map,
and this would theoretically require computing an integral over the entire space of possible
occupancy maps.

However, as exemplified by the hits-and-misses heuristic in Google Cartographer [33]
(already discussed in Section 2.2), very simple approximations can suffice in practice.
Specifically, after an initial alignment of each scan with the map being created, the closest
grid cell (pixel, in their terminology) of each scan point is found, which is marked as a
hit with some phit. Every pixel on the line connecting the hit pixels with the origin is
marked as a miss with some pmiss. Then a log-odds probability update step is performed,
incrementing or decrementing the hit and miss probabilities of all pixels in the marked
sets, leaving unobserved pixels untouched. An illustration of this process can be seen in
Figure 2.

Figure 2. An occupancy grid map with a realistic update heuristic, as described in [33]. Green
indicates a high occupancy score, white — the obverse. Grey cells are uninitialized. A log-odds
update increases or decreases the estimated probabilities of a grid square being occupied when a scan
point (black dot) is located within it or beyond it (dashed line) respectively. Untouched squares are
not affected, and uninitialized values are unknown.

Electronics 2023, 12, 2925 11 of 22

3.1.2. Surface Representations

Surface representations aim to also preserve a detailed surface contour, which may be
of interest for visual reconstruction or for more accurate online tracking [48]. One way to
store a surface in 3D space is the Euclidean signed distance field (ESDF), an implicit model
which assigns each point in space a scalar value based on the shortest distance between it
and the surface. This is straightforward to use with a discrete spatial grid, be it pixel (2D) or
voxel (3D). In range scan-based map construction, a truncated version of this is often used,
known as the truncated signed distance function (TSDF) [49], where voxels outside a narrow
distance range from the surface have their values clamped to extrema. This enables useful
reconstruction from only partial observations of the scene, as many estimates of distance
along projective rays (as produced by range scans) can be readily integrated this way.

The complexity of both occupancy grid maps and voxel grid representations with
respect to scale and resolution is quadratic in 2D and cubic in 3D. This has motivated the
adoption of recursive quadtree (2D) and octree (3D) [50] data structures to minimize the
memory footprint of such maps. Another way to tackle this is to use sparse surface element—
surfel—models as in [15,35,36]. In these, the map consists of an unordered list of surface
points with spatial coordinates, a normal vector, and a radius. The surface can then be
rendered as a simple matter of projecting the disks defined by each surfel. However, the lack
of any spatial structure necessitates that the entire surfel cloud be projected whenever a
surface has to be recovered, be it for visualization or some other purpose.

Structure can be imposed onto spatial point clouds by meshes, graphs where these
points are vertices, inducing polygonal surfaces. The Kimera semantic-topological mapping
library [6,29] uses point cloud triangulation to recover local meshes which are used in fast
reconstruction, and the marching cubes algorithm to create a higher accuracy global mesh
from a TSDF. This very same TSDF is also used to create a place graph over free space, a form
of topological mapping, discussed in more detail in Section 3.2.

3.1.3. Implicit Scene Models

Implicit representations of scenes do not explicitly associate spatial coordinates with
values of interest—be they in the form of grid occupancy values or the locations of surface
vertices. Instead, they recover information by querying a continuous function parametrized
by spatial coordinates. The aforementioned TSDF is considered by many to be an example
of this. However, advances in machine learning have enabled the recent explosion in
neural radiance fields (NRFs) as a means of encoding arbitrary information about scenes.
The original paper [41] is only concerned with the visual reconstruction of a scene, with a
model that is generally defined as

Fθ(g(x), d) = (c, σ) (16)

where F is the neural network parametrized by θ, g(x) is a positional encoding of spatial
coordinates x and d is the viewing direction vector. In the model outputs, c is the observed
color, and σ is an opacity value. Model outputs are sampled along rays corresponding
to pixels in a virtual camera frame, and the outputs are integrated using the σ values to
produce images. Model training is completed by minimizing the pixel-wise error between
real images taken at known camera poses and model outputs. The end result of this process
is that a representation of the scene is contained entirely within the weights θ of the neural
network F.

More recent work has focused on extending this concept in many directions, and two,
in particular, stand out in a robotics context. First, given semantic image segmentations
(refer to Section 3.3 for more detail), the model can also be trained to output discrete [51]
or open-set [52] semantic labels for each point in space. Second, taking advantage of the
inherently projective nature of NRFs making recovery of depth information trivial, and the
differentiable nature of neural networks, an NRF can be optimized along with the pose
estimates and, thus, replace a traditional map in a real-time RGB-D SLAM system [37,42].

Electronics 2023, 12, 2925 12 of 22

3.2. Scene Graphs and Topologies

When seeking to abductively reduce a dense, spatial map of a scene into a searchable
graph, various fundamentally different definitions of vertices and edges are possible—as
exemplified by the control system state and view graphs discussed in [43]—though recently
the scene graph [6,7,29], illustrated in Figure 3, has gained considerable notoriety in the
space of mapping for robotics, a layered structure with classes of vertices corresponding
to entitites, such as spatial points, places in free space, objects, or partitions of space,
such as rooms. This builds upon earlier work, such as [53], in implementing the metric–
topological–semantic hierarchy of maps, which, in turn, was defined by early research
in autonomous robotics [5]. The seamless blending of metric, topological, and semantic
information into one map may be compared with attempts to build separate ontology
structures, which can perhaps be considered something of a holdover from the knowledge
base approach to artificial intelligence which predates the current emphasis on end-to-end
machine learning [54,55]. The construction of complex scene graphs from single images is
a related problem, which has been studied by the computer vision community—for a more
detailed survey of mainly two-dimensional scene graph construction, we direct the reader
to [56]. It must be noted, however, that scene graphs are not the only way in which graph
structures are used to sparsify spatial maps, a distinctive, domain-specific example being
the construction of tree trunk atlases for navigation in a forest environment in lieu of an
occupancy map [57,58].

Figure 3. Example of a scene graph structure like the one described in [6].

Unlike most of the previously defined concepts, which have a clear mathematical
formulation shared by many works, it is difficult to divorce the graph formulations from
the construction methods used in each system. Therefore, probably the most concise
way to describe them is by giving examples. Specifically, we choose to detail SPIN and
SceneGraphFusion.

SPIN (2020) by Rosinol et. al. [6] is a multi-layer mapping framework using Kimera [6]
as a base and extended in Hydra [59]. It is capable of placing semantically classified objects
in scenes and building place-, structure-, and room-level topological maps.

The Kimera mapping system relies on stereo image and IMU inputs to implement
two-stage tracking-mapping keyframe SLAM as discussed in Section 2. Multiple mesh
models are constructed at different rates—per-frame and multi-frame local meshes, and a
global one which is used in the topology estimation stages. The former two are built by
applying a Delaunay triangulation to the image features used in the tracker. The latter,

Electronics 2023, 12, 2925 13 of 22

however, is constructed from keyframe stereo range data by first converting this into a
TSDF, then applying the marching cubes algorithm. Semantic segmentations of keyframes
are back-projected to annotate the mesh.

SPIN then uses this semantically annotated metric map and constructs multiple topo-
logical layers on top of it. To be precise, a “layer” in this graph is merely a subset of vertices
treated in a specific manner. The lowest layer of this graph is the mesh itself, which is
already a graph. The next is that of objects, obtained by either spatially clustering points
with a given label, or fitting a 3D model of a known shape when one is available. Each
object vertex is then linked with its corresponding vertices in the global mesh and stores
attributes, such as a pose and a bounding box. It is also linked to its nearest place vertex.
A special case is that of structural members, which are similar to objects but belong to
specially designated semantic classes (e.g., ceiling or wall), and are linked to room rather
than place vertices. An object may be linked to a structural vertex by a semantically mean-
ingful relation edge (e.g., that of being attached). Agents are much like objects but possess
a sequence of poses over time, and observations made of them are masked from the map.

Place vertices, by contrast, are created in regions of free space and linked according to
mutual traversability using the ESDF, which was also used to construct the global mesh.
Room detection is accomplished by applying a heuristic to horizontal sections of the ESDF,
which are assumed to follow the floor plan of a building at a certain height. Room vertices
are linked to the place nodes they contain. Among the most salient improvements made
by the subsequent Hydra system was doing away with this highly engineered heuristic,
and applying morphological operations to the place graph instead. Another major change
is the online construction of the global mesh, enabled by a deformation method that enables
loop closures to be incorporated after construction.

SceneGraphFusion (2022) by Wu et. al. [7] is notable for the use of GNNs for direct
inference on point clouds, enabling the joining of clusters into object instances and adding
relations between objects.

A metric surface map is produced from RGB-D data with the method outlined in [35].
However, as each depth image arrives, this is segmented into discrete objects through
edge detection-based heuristics and these are then merged into a globally consistent object-
level map according to [60]. The output of this process is a set of segments, sets of points
associated with discrete objects, from which geometrical properties like centroids and
bounding boxes may be estimated.

The scene graph construction method takes this metric map as an input. A pairwise
distance heuristic between the segments is used to build a neighbor graph. Uniform vector
representations of each segment are produced through the application of a neural net-
work [61] to create latent space embeddings, concatenated with geometric object properties
to produce node features. This is reminiscent of the image and text embedding methods
discussed in Section 3.3. Each edge in the neighbor graph is associated with an edge fea-
ture vector, computed by a multi-layer perceptron (MLP) over the adjacent node features.
A GNN is then applied—blending information about each node and its neighbors—for
two iterations, in a process known as message passing. Finally, MLPs use this blended
information to classify nodes and the semantic relationships between them.

An interesting property of this approach is the fact that semantic information is
extracted from the structure of the scene directly, without reliance on image semantic
segmentation methods discussed in more detail below. However, it is not hard to see
how this message-passing approach could generalize to feature vectors also including,
for example, open set labels. Utilizing machine learning to classify edge features in the
scene also enables the extraction of more complex inter-object relations than reliance purely
on segmented input images.

3.3. Semantics

The term semantic map has had various definitions proposed over the decades. Ear-
lier works, in particular, tend to envision a knowledge base-like structure [53,62] where

Electronics 2023, 12, 2925 14 of 22

arbitrarily complex, explicit relations between objects and categories of such are possible,
and this is still occasionally explored to this day [54,55]. However, realizations of such
are hard to come by and systems constrained by real-world implementation concerns
tend to limit their object relationships to ones grounded in the spatial configuration of the
environment, be they from the dawn of robotic mapping [5] or approaching the current
state of the art [7,59]. Indeed, many mapping approaches limit themselves to the discrete
object level [45,63,64], while others forgo even that to merely metric map features such as
surfels [15,65]. Therefore, in this subsection we give an extremely brief overview of the
ways semantics can be inferred from image data, two of which are illustrated in Figure 4,
followed by a short exploration of how semantics can be integrated into a map [64].

Figure 4. Ground truth data used to train a joint object detection and instance segmentation model.
Each bottle and can in the image is assigned an instance mask—shown in different colors—and the
bottles also have bounding boxes.

3.3.1. Object Detection

Object detection involves predicting a semantic class (generally, vector of probabilities),
and some type of localization—typically for the pure computer vision task, a rectangular
bounding box—for multiple objects in the input data. Some earlier approaches used
model-based, hand-engineered heuristic methods to perform 6DoF detection of objects
with a known shape in depth image data [63]. However, by the mid-2010s, highly capable
neural network-based general-purpose models for object detection in images had become
available [66]. While pure object detectors have indeed found use in mapping applications—
such as the integration of an object detector to weigh the contributions of multiple EKFs in
a filter SLAM system, and produce an object level map [64]—the general trend appears to
be that the more fine-grained segmentation methods are preferred.

3.3.2. Image Segmentation—Semantic, Instance, Panoptic

Segmentation is a class of computer vision tasks perhaps best summarized in [67].
Semantic segmentation assigns each pixel in an image one of a set of discrete semantic class
labels. Instance segmentation requires that a mask be produced for each object instance in an

Electronics 2023, 12, 2925 15 of 22

image, the crucial differences being that one, not the entire image need be covered, and two,
the masks corresponding to each instance may overlap. Panoptic segmentation is defined
as a middle ground between these two, with pixel-wise class and instance assignments,
i.e., covering the entire image with non-overlapping instance segmentation. The background
is collated into a “stuff” class as opposed to “things”, objects assigned to one of the
distinct semantic classes. The same advances in machine learning that enabled practical
object detection models have also produced ones capable of successfully performing these
segmentation tasks—indeed, in many cases, these are created by simply augmenting an
object detection model with a mask prediction head [68,69], though some were designed
with the capability in mind from the ground-up [70]. The various types of segmentation
data have been used in various semantic mapping systems, discussed in more detail under
map integration.

3.3.3. Open-Set Semantics

To address the inherently limited nature of a finite set of semantic object classes, open-
set semantics allow each label to encode arbitrary information about the object. Underlying
this direction of research was the invention of text-to-image embeddings, learned in a self-
supervised manner by neural network models trained to map images and their captions to
similar vectors in a latent space [71]. Turning this image-wide mapping into a pixel-wise
segmentation that can be back-projected onto specific points in space has proven quite
challenging, but has been successfully accomplished in [15]. Work has also been performed
on integrating open-set semantics with implicit scene models [42].

3.3.4. Map Integration

In the case of semantic data inferred from images, some form of back-projection is
typically required to turn this into 3D information. For this, the dense pixel-wise seg-
mentation masks are generally more amenable than objects with bounding boxes. Several
approaches [15,65] take the dense surfel representation introduced in [14] as a founda-
tion, and blend back-projected annotations into a consistent, semantically annotated map.
The previously detailed Kimera also provides a similar capability but projects segmentation
data into a TSDF, which is later converted into a mesh. A major additional capability
afforded by the provision of semantic information is dynamic masking—enabling moving
agents such as humans to be identified and sensory observations related to them to be
ignored in map construction. Furthermore, notably with [15], the open-set embeddings
that serve as class annotations are vectors, so searches can be performed by producing
a text or image embedding and filtering the unstructured point cloud by a metric such
as cosine similarity. A different approach is taken in object-level SLAM systems, such
as [45,63], which estimate poses at the level of individual objects and integrate them into a
PGO problem for improved localization. The main difference is that [63] uses a database of
object models as structural priors, whereas [45] uses instance segmentations produced by a
neural network model to create a TSDF for each object, associated with a semantic class.

When it comes to higher-order (object relational) semantics, it is clear that pure back-
projection of discrete semantic labels is insufficient. The open set annotations introduced
by [15] appear to address this somewhat, as they demonstrate ways various queries can
be constructed over unordered, vector-annotated point clouds, e.g., finding the distance
between objects by specifying object instances through text, finding centroids of the cor-
responding point clouds, and computing the vector difference. Yet this is far from the
knowledge base-like structures envisioned by some earlier works [53,62]. SPIN [6] admits
the possibility of inferring such structure in principle, but does not provide an imple-
mentation. This leaves GNN-based inference as in [7] as perhaps the most promising in
terms of being able to reconstruct complex, arbitrary conceptual maps, yet it does not take
advantage of image segmentation.

Electronics 2023, 12, 2925 16 of 22

3.4. Summary

There exist a variety of ways to represent the environment that has been mapped
by a robot performing SLAM. At the lowest level, there are metric maps, which conserve
the spatial structure of the environment—distances and directions to obstacles—without
necessarily providing any other kind of information. Occupancy grid maps (OGMs) are a
common type of metric map. Surfel clouds or meshes are more useful when it comes to
fine-grained reconstruction of surfaces. Implicit maps, which represent the environment as
a continuous function of spatial coordinates, have become a viable alternative to the above
with advances in deep learning and neural radiance fields (NRFs).

For path planning and other problems fundamentally based on search algorithms,
it is desirable to obtain a graph representation of the environment. This need has been
recognized for decades and is typically known as topological mapping. Surface meshes
and place graphs are examples of topological map structures. Scene graphs are maps
that integrate metric information with multiple layers of topological and semantic graph
relationships between points and objects.

Points and graph nodes in a map can be annotated with semantic information, such as
object instance and class identifiers. Most commonly, these are obtained through computer
vision methods, though directly inferring semantic information from point clouds is also
possible. An active area of research is the use of open-set semantic information, where
continuous latent space embeddings obtained through neural network encoders replace
discrete class labels.

4. Performance Evaluation

As can be seen in the previous sections, a variety of ways exist to tackle every aspect
of the map construction problem, and thus consistent benchmarks and evaluation metrics
are crucial when trying to assess the viability of different approaches in any given context.
The availability of common evaluation data sets is critical, as it is rarely possible for
teams working in different locations to test their implementations under the same physical
conditions. Some well-known benchmarks include, among others:

• KITTI [72]—stereo imagery, multi-line LiDAR, IMU tracks, collected over multi-
kilometer outdoor tracks in a self-driving vehicle testbed; ground truth poses es-
tablished with aid of GPS; also includes 3D object instance annotations.

• RGB-D SLAM benchmark from TUM [73]—RGB-D data of indoor observation se-
quences collected by custom rig; ground truth data from motion capture equipment;
notable for establishing the Absolute Trajectory Error (ATE) metric.

• EuRoC [74]—a micro aerial vehicle (MAV) stereo, IMU dataset collected indoors;
ground truth data established through laser tracking; provides a reference point cloud
in some locations.

• TUM-VI [75]—another stereo-inertial dataset, featuring outdoor sequences, collected
with a hand-held rig; ground truth data provided by motion capture equipment, mean-
ing that for longer sequences this is only available at the start and end of the trajectory.

Using these benchmarks, many authors evaluate their systems using the absolute
trajectory error (ATE) and relative pose error (RPE) metrics, formalized in [73]. RPE
averages the error in relative poses over the entire trajectory—comparing the difference
between two subsequent ground truth poses to that between two estimated poses. ATE is
an absolute measure, taken by finding a rigid transform to align the ground truth trajectory
to the estimate, then averaging the translation between poses at corresponding time steps.
While ATE does not directly take orientation into account, [73] notes that due to the effect
of rotation estimates on subsequent translations, ATE and RPE values tend to be strongly
correlated, but ATE is much more human-readable.

While a systematic comparison of the results attained by various SLAM systems
on these benchmarks is outside the scope of this overview, it is informative to note the
approximate values one might expect from a modern SLAM system. Table 2 attempts

Electronics 2023, 12, 2925 17 of 22

to summarize the extensive comparisons performed in [22] to give the reader a rough,
order-of-magnitude estimate of SLAM system accuracy at the time of writing this overview.
For this reason, we have only selected systems that have already been discussed above.
The variance in results across different trajectories in TUM-VI is too great for meaningful
averaging, therefore we have selected long outdoor trajectories for which loop closures
are available, in order to demonstrate the drawbacks inherent to tracking-only systems.
As can be seen, for short, indoor trajectories, ATE figures on the order of centimeters can be
expected. However, drift greatly increases once traversing longer distances outdoors, even
when the potential for loop closing exists.

Table 2. Illustrative performance baselines by benchmark, per [22].

System Benchmark Score

ORB-SLAM (2017) [21]
EuRoC V 3, ATE 0.047 1

ORB-SLAM3 (2020) [22] 0.041 1

ORB-SLAM3 (2020) [22]
EuRoC VI 3, ATE

0.043
ROVIO (2015) 2 [17] 0.224

ORB-SLAM3 (2020) [22]
EuRoC SI 3, ATE

0.035
Kimera (2020) [29] 0.119

ORB-SLAM3 (2020) [22]
TUM-VI outdoors5 4,5, ATE

8.95
ROVIO (2015) 2 [17] 54.32

ORB-SLAM3 (2020) [22]
TUM-VI outdoors7 4,6, ATE

4.58
ROVIO (2015) 2 [17] 49.01

1 Did not complete all trajectories; 2 EKF approach used in Maplab [34], for tracking-only comparison; 3 V—visual;
VI—visual-inertial; SI—stereo-inertial; 4 outdoors5, outdoors7 selected due to availability of loop-closure constraints;
5 path length 1168 m; 6 path length 1748 m.

Aside from localization performance, it is also necessary to have ways in which other
aspects of a mapping system can be evaluated. At the lowest level, assuming the system
outputs a metric map of the environment as a byproduct, and something similar is provided
by the evaluation data set, one may simply compute a distance metric between these, as
performed, for example, in [29], where the distance between mesh points and the ground
truth point cloud provided by [74] is computed after alignment using the iterative closest
point algorithm. When working with a more specific problem, such as in [76], where the
computer vision aspect of segmenting terrain according to traversability is covered, access
to domain-specific datasets becomes very important—in this case with both image-only [77]
and 3D point cloud [78] data being available.

Benchmarks in point- and voxel-wise classification, as well as the spatial accuracy of
object detection, are provided by datasets such as ScanNet [79]. Higher-order semantics
may also be evaluated. For example, [7] evaluate their method against the [80] scene graph
dataset, using more involved metrics specifically defined for this purpose such as Recall@K,
generalized in [80] from the original 2D image case, which is detailed in [56].

5. Discussion

While by no means exhaustive, the previous sections should give the reader interested
in any aspect of the mapping stack a sufficient understanding of the terminology used,
as well as an initial set of references, to serve as a starting point for further research.
However, we would still like to address some questions that do not necessarily fit into the
conceptual explanation.

5.1. Domain-Specific Challenges

In situations that do not approximate typical laboratory conditions very well, one
encounters a variety of domain-specific challenges. For example, the aforementioned
indoor–outdoor dichotomy in performance is borne out further in studies comparing

Electronics 2023, 12, 2925 18 of 22

the performance of different SLAM systems for specific applications, such as agricul-
ture [81]. The authors evaluate a variety of recent SLAM and VIO implementations, among
them [17,22,23,25,29], on their ability to provide localization for a weed-removal robot
operating in a soybean field. The findings are quite disappointing, as none of the systems
attained performance deemed acceptable for the task by the authors, due to issues, such as
repetitive appearance, inconsistent scene illumination, and acceleration values that saturate
the IMU.

Some ways to overcome the limitations of more traditional mapping approaches have
involved looking beyond the typical assortment of sensors available. In [82], a multi-line
LiDAR scanner is aligned with a thermal camera, which can often produce much clearer
outlines of distinct objects outdoors than a traditional RGB camera, irrespective of external
lighting. To this end, they introduce an atypical tracking algorithm that associates spatial
points with their projections in adjacent frames by temperature estimates. The use of
thermal data complicates loop closure detection, however, as the ambient temperature can
vary a great deal over time—something the authors claim to overcome by utilizing an affine
illumination model to compensate for these shifts.

Others choose to focus on otherwise constrained problem domains. Several systems
designed for use in forestry [57,58] elect to take advantage of what structure they can
find—namely, tree trunks. Each uses a different heuristic for tree trunk detection and map
representation, but, in both cases, the mapping problem can be significantly simplified
by relying on these conveniently naturally occurring landmarks. Furthermore, indeed,
the entire field of autonomous driving relies on specialized SLAM systems, often very
narrowly fine-tuned for the road environment, to compensate for the imperfect coverage
and insufficient precision of extrinsic localization sources, such as satellite-based navigation.
This constitutes an extensive field of research in itself, the specifics of which are covered in
much more detail than possible here by [83].

It is not just the metric map construction step that is challenging in less structured
environments. An obvious application for the integration of semantics into maps could be
terrain segmentation according to reversibility, significant for autonomous ground vehicles
(AGVs) operating off-road. However, image segmentation by using off-the-shelf models
as discussed in Section 3.3 has proven insufficient according to [76], prompting them to
introduce their own computer vision model architecture specifically tuned for this part of
the mapping stack.

5.2. Robot Navigation without the Construction of Maps

Navigating the environment without deliberately constructing a map is a possibility
that arises quite naturally when one ponders how humans accomplish day-to-day tasks
without needing detailed occupancy grid maps of their surroundings. Indeed, when look-
ing at recent work using large language models (LLM) to produce complex, high-level plans
for mobile manipulators [84], only the most rudimentary map is provided—a set of discrete
places the robot can go to. The localization of objects in the robot’s immediate surroundings
once there is performed by learned policies conditioned on sensory observations.

It is not hard to imagine that this kind of system could be combined with something
like the approaches demonstrated in [2,85]. Given a sequence of navigation instructions in
natural language, the former has an LLM to parse out the landmark descriptors, which are
compared against sensory observations by a vision-language model (VLM), to produce a
topological path through a visual-navigation model (VNM). The latter does away with a
map entirely—instead, the robot is controlled directly by a trained policy, which accepts a
VLM embedding of the target and a vision model embedding of the current view, along
with past actions, as input. However, these kinds of systems are still in their infancy, and do
nothing for cases when producing a map of the surroundings might be useful for purposes
other than controlling the robot at any given instant.

Electronics 2023, 12, 2925 19 of 22

6. Conclusions

The amount of research performed on map construction clearly indicates that this is
deemed a highly important part of the autonomous robot perception, decision-making,
and control systems by researchers in the field. The SLAM problem, introduced in Section 2,
has reached a considerable degree of maturity with the emergence of a somewhat domi-
nant approach—two-stage tracking-smoothing—over the 2010s indicating that it might be
converging towards a well-understood, general-purpose solution, even though a great deal
of work remains to be performed, especially as it pertains to maintaining accuracy under
challenging outdoor conditions.

By contrast, using the accurate localization data from a SLAM system in conjunction
with additional sensor measurements to build higher-level maps, useful beyond merely
localizing the robot, appears to be much more of an open problem. With regards to
converting points in space into a searchable topology of places, at least, the scene graph may
well prove the way forward. However, the knowledge-base style abstract semantic layers
as envisioned by early proponents of multi-level mapping do not yet show much evidence
of practical use. While off-the-shelf solutions for obtaining semantic information—such
as image segmentation models—have been widely used to annotate spatial locations with
discrete or continuous labels, these do not necessarily generalize well to some problems
that may be of great interest to robotics researchers—such as segmenting terrain according
to traversability—leaving room for domain-specific finetuning.

Author Contributions: Conceptualization, P.R. and J.A.; investigation, P.R.; writing—original draft
preparation, P.R.; writing—review and editing, P.R., J.A. and M.G.; visualization, P.R.; supervision,
J.A.; project administration, M.G.; funding acquisition, J.A. and M.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by the Latvian Council of Science, project “Smart Materials,
Photonics, Technologies and Engineering Ecosystem” No. VPP-EM-FOTONIKA-2022/1-0001.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arents, J.; Greitans, M. Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing. Appl. Sci.

2022, 12, 937. [CrossRef]
2. Majumdar, A.; Aggarwal, G.; Devnani, B.; Hoffman, J.; Batra, D. ZSON: Zero-Shot Object-Goal Navigation using Multimodal

Goal Embeddings. arXiv 2022, arXiv:2206.12403.
3. ROS Wiki: Movebase Global Planner. Available online: https://wiki.ros.org/global_planner (accessed on 29 June 2023).
4. Kuipers, B. Modeling Spatial Knowledge. Cogn. Sci. 1978, 2, 129–153. [CrossRef]
5. Chatila, R.; Laumond, J.P. Position referencing and consistent world modeling for mobile robots. In Proceedings 1985 IEEE

International Conference on Robotics and Automation; IEEE: Piscataway, NJ, USA, 1985; Volume 2, pp. 138–145.
6. Rosinol, A.; Gupta, A.; Abate, M.; Shi, J.; Carlone, L. 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places,

Objects, and Humans. arXiv 2020, arXiv:2002.06289.
7. Cheng, W.S.; Wald, J.; Tateno, K.; Navab, N.; Tombari, F. SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D

Sequences. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville,
TN, USA, 20–25 June 2021; pp. 7511–7521.

8. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
9. Dellaert, F.; Kaess, M. Factor Graphs for Robot Perception. Found. Trends Robot. 2017, 6, 1–139. [CrossRef]
10. Alkendi, Y.; Seneviratne, L.; Zweiri, Y. State of the Art in Vision-Based Localization Techniques for Autonomous Navigation

Systems. IEEE Access 2021, 9, 76847–76874. [CrossRef]
11. Huang, B.; Zhao, J.; Liu, J. A Survey of Simultaneous Localization and Mapping. arXiv 2019, arXiv:1909.05214.
12. Garg, S.; Sunderhauf, N.; Dayoub, F.; Morrison, D.; Cosgun, A.; Carneiro, G.; Wu, Q.; Chin, T.J.; Reid, I.D.; Gould, S.; et al.

Semantics for Robotic Mapping, Perception and Interaction: A Survey. arXiv 2021, arXiv:2101.00443.
13. Osman, H.; Darwish, N.; Bayoumi, A. PlaceNet: A multi-scale semantic-aware model for visual loop closure detection. Eng. Appl.

Artif. Intell. 2023, 119, 105797. [CrossRef]
14. Newcombe, R.A.; Davison, A.J. Live dense reconstruction with a single moving camera. In Proceedings of the 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1498–1505.

http://doi.org/10.3390/app12020937
https://wiki.ros.org/global_planner
http://dx.doi.org/10.1207/s15516709cog0202_3
http://dx.doi.org/10.1561/2300000043
http://dx.doi.org/10.1109/ACCESS.2021.3082778
http://dx.doi.org/10.1016/j.engappai.2022.105797

Electronics 2023, 12, 2925 20 of 22

15. Jatavallabhula, K.M.; Kuwajerwala, A.; Gu, Q.; Omama, M.; Chen, T.; Li, S.; Iyer, G.; Saryazdi, S.; Keetha, N.V.; Tewari, A.K.; et al.
ConceptFusion: Open-set Multimodal 3D Mapping. arXiv 2023, arXiv:2302.07241.

16. Lu, G.; Yang, H.; Li, J.; Kuang, Z.; Yang, R. A Lightweight Real-Time 3D LiDAR SLAM for Autonomous Vehicles in Large-Scale
Urban Environment. IEEE Access 2023, 11, 12594–12606. [CrossRef]

17. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015; pp. 298–304. [CrossRef]

18. Yang, N.; Stumberg, L.v.; Wang, R.; Cremers, D. D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020.

19. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073.
[CrossRef]

20. Leutenegger, S.; Furgale, P.T.; Rabaud, V.; Chli, M.; Konolige, K.; Siegwart, R.Y. Keyframe-Based Visual-Inertial SLAM using
Nonlinear Optimization. In Proceedings of the Robotics: Science and Systems, Berlin, Germany, 24–28 June 2013.

21. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

22. Campos, C.; Elvira, R.; Rodr’iguez, J.J.G.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for
Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2020, 37, 1874–1890. [CrossRef]

23. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

24. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, MA, USA,
2004. [CrossRef]

25. Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust Stereo Visual Inertial
Odometry for Fast Autonomous Flight. IEEE Robot. Autom. Lett. 2018, 3, 965–972. [CrossRef]

26. Frey, B.J.; Kschischang, F.R.; Loeliger, H.A.; Wiberg, N. Factor graphs and algorithms. In Proceedings of the Annual Allerton
Conference on Communication Control and Computing, Citeseer, Cambridge, UK, 29 September–1 October 1997; Volume 35,
pp. 666–680.

27. Fourie, D.; Leonard, J.; Kaess, M. A nonparametric belief solution to the Bayes tree. In Proceedings of the 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 2189–2196.
[CrossRef]

28. Dellaert, F.; Contributors. Borglab/Gtsam. Available online: https://zenodo.org/record/7582634 (accessed on 29 June 2023).
29. Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization

and Mapping. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020; pp. 1689–1696. [CrossRef]

30. Gálvez-López, D.; Tardós, J.D. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Trans. Robot. 2012,
28, 1188–1197. [CrossRef]

31. Dellaert, F. Factor Graphs: Exploiting Structure in Robotics. Annu. Rev. Control. Robot. Auton. Syst. 2021, 4, 141–166. [CrossRef]
32. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-

Posteriori Estimation. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015.
33. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE

International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [CrossRef]
34. Schneider, T.; Dymczyk, M.; Fehr, M.; Egger, K.; Lynen, S.; Gilitschenski, I.; Siegwart, R. Maplab: An Open Framework for

Research in Visual-Inertial Mapping and Localization. IEEE Robot. Autom. Lett. 2018, 3, 1418–1425. [CrossRef]
35. Keller, M.; Lefloch, D.; Lambers, M.; Izadi, S.; Weyrich, T.; Kolb, A. Real-Time 3D Reconstruction in Dynamic Scenes Using

Point-Based Fusion. In Proceedings of the 2013 International Conference on 3D Vision, Seattle, WA, USA, 29 June–1 July 2013;
pp. 1–8.

36. Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM and light source
estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [CrossRef]

37. Sucar, E.; Liu, S.; Ortiz, J.; Davison, A.J. iMAP: Implicit Mapping and Positioning in Real-Time. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 6209–6218.
[CrossRef]

38. Klein, G.S.W.; Murray, D.W. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the 2007 6th IEEE and
ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234.

39. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–12 November 2011; pp. 2564–2571.

40. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and mapping using the
Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [CrossRef]

41. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. arXiv 2020, arXiv:2003.08934.

http://dx.doi.org/10.1109/ACCESS.2023.3241800
http://dx.doi.org/10.1109/IROS.2015.7353389
http://dx.doi.org/10.1109/TRO.2022.3141876
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1109/LRA.2018.2793349
http://dx.doi.org/10.1109/IROS.2016.7759343
https://zenodo.org/record/7582634
http://dx.doi.org/10.1109/ICRA40945.2020.9196885
http://dx.doi.org/10.1109/TRO.2012.2197158
http://dx.doi.org/10.1146/annurev-control-061520-010504
http://dx.doi.org/10.1109/ICRA.2016.7487258
http://dx.doi.org/10.1109/LRA.2018.2800113
http://dx.doi.org/10.1177/0278364916669237
http://dx.doi.org/10.1109/ICCV48922.2021.00617
http://dx.doi.org/10.1177/0278364911430419

Electronics 2023, 12, 2925 21 of 22

42. Mazur, K.; Sucar, E.; Davison, A.J. Feature-Realistic Neural Fusion for Real-Time, Open Set Scene Understanding. arXiv 2022,
arXiv:2210.03043.

43. Kuipers, B. The Spatial Semantic Hierarchy. Artif. Intell. 2000, 119, 191–233. [CrossRef]
44. Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
45. Mccormac, J.; Clark, R.; Bloesch, M.; Davison, A.; Leutenegger, S. Fusion++: Volumetric Object-Level SLAM. In Proceedings of

the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 32–41.
46. Crespo, J.; Castillo, J.C.; Mozos, O.M.; Barber, R. Semantic Information for Robot Navigation: A Survey. Appl. Sci. 2020, 10, 497.

[CrossRef]
47. Han, X.; Li, S.; Wang, X.; Zhou, W. Semantic Mapping for Mobile Robots in Indoor Scenes: A Survey. Information 2021, 12, 92.

[CrossRef]
48. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2320–2327. [CrossRef]
49. Curless, B.; Levoy, M. A volumetric method for building complex models from range images. In Proceedings of the 23rd Annual

Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996.
50. Zeng, M.; Zhao, F.; Zheng, J.; Liu, X. Octree-based fusion for realtime 3D reconstruction. Graph. Model. 2013, 75, 126–136.

[CrossRef]
51. Siddiqui, Y.; Porzi, L.; Bul’o, S.R.; Muller, N.; Nießner, M.; Dai, A.; Kontschieder, P. Panoptic Lifting for 3D Scene Understanding

with Neural Fields. arXiv 2022, arXiv:2212.09802.
52. Shafiullah, N.M.M.; Paxton, C.; Pinto, L.; Chintala, S.; Szlam, A.D. CLIP-Fields: Weakly Supervised Semantic Fields for Robotic

Memory. arXiv 2022, arXiv:2210.05663.
53. Zender, H.; Mozos, Ó.M.; Jensfelt, P.; Kruijff, G.J.M.; Burgard, W. Conceptual spatial representations for indoor mobile robots.

Robot. Auton. Syst. 2008, 56, 493–502. [CrossRef]
54. Chang, D.S.; Cho, G.H.; Choi, Y.S. Ontology-based knowledge model for human–robot interactive services. In Proceedings of the

35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020.
55. Sun, X.; Zhang, Y.; Chen, J. High-Level Smart Decision Making of a Robot Based on Ontology in a Search and Rescue Scenario.

Future Internet 2019, 11, 230. [CrossRef]
56. Zhu, G.; Zhang, L.; Jiang, Y.; Dang, Y.; Hou, H.; Shen, P.; Feng, M.; Zhao, X.; Miao, Q.; Shah, S.A.A.; et al. Scene Graph Generation:

A Comprehensive Survey. arXiv 2022, arXiv:2201.00443.
57. Li, Q.; Nevalainen, P.; Peña Queralta, J.; Heikkonen, J.; Westerlund, T. Localization in Unstructured Environments: Towards

Autonomous Robots in Forests with Delaunay Triangulation. Remote Sens. 2020, 12, 1870. [CrossRef]
58. Nie, F.; Zhang, W.; Wang, Y.; Shi, Y.; Huang, Q. A Forest 3-D Lidar SLAM System for Rubber-Tapping Robot Based on Trunk

Center Atlas. IEEE/ASME Trans. Mechatronics 2022, 27, 2623–2633. [CrossRef]
59. Hughes, N.; Chang, Y.; Carlone, L. Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and

Optimization. In Proceedings of the Robotics: Science and Systems XVIII, New York, NY, USA, 27 June–1 July 2022.
60. Tateno, K.; Tombari, F.; Navab, N. Real-time and scalable incremental segmentation on dense SLAM. In Proceedings of the 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015;
pp. 4465–4472.

61. Qi, C.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85.

62. Galindo, C.; Saffiotti, A.; Coradeschi, S.; Buschka, P.; Fernandez-Madrigal, J.; Gonzalez, J. Multi-hierarchical semantic maps for
mobile robotics. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton,
AL, Canada, 2–6 August 2005; pp. 2278–2283. [CrossRef]

63. Salas-Moreno, R.F.; Newcombe, R.A.; Strasdat, H.; Kelly, P.H.; Davison, A.J. SLAM++: Simultaneous Localisation and Mapping at
the Level of Objects. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR,
USA, 23–28 June 2013; pp. 1352–1359. [CrossRef]

64. Dong, J.; Fei, X.; Soatto, S. Visual-Inertial-Semantic Scene Representation for 3D Object Detection. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, 21–26 July 2017; pp. 3567–3577.
[CrossRef]

65. McCormac, J.; Handa, A.; Davison, A.; Leutenegger, S. SemanticFusion: Dense 3D semantic mapping with convolutional
neural networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 4628–4635. [CrossRef]

66. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 779–788.

67. Kirillov, A.; He, K.; Girshick, R.B.; Rother, C.; Dollár, P. Panoptic Segmentation. In Proceedings of the 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June; pp. 9396–9405.

68. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 386–397. [CrossRef]
69. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers.

arXiv 2020, arXiv:2005.12872.

http://dx.doi.org/10.1016/S0004-3702(00)00017-5
http://dx.doi.org/10.3390/app10020497
http://dx.doi.org/10.3390/info12020092
http://dx.doi.org/10.1109/ICCV.2011.6126513
http://dx.doi.org/10.1016/j.gmod.2012.09.002
http://dx.doi.org/10.1016/j.robot.2008.03.007
http://dx.doi.org/10.3390/fi11110230
http://dx.doi.org/10.3390/rs12111870
http://dx.doi.org/10.1109/TMECH.2021.3120407
http://dx.doi.org/10.1109/IROS.2005.1545511
http://dx.doi.org/10.1109/CVPR.2013.178
http://dx.doi.org/10.1109/CVPR.2017.380
http://dx.doi.org/10.1109/ICRA.2017.7989538
http://dx.doi.org/10.1109/TPAMI.2018.2844175

Electronics 2023, 12, 2925 22 of 22

70. Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. SOLO: Segmenting Objects by Locations. arXiv 2019, arXiv:1912.04488.
71. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning

Transferable Visual Models From Natural Language Supervision. In Proceedings of the International Conference on Machine
Learning, Virtual, 18–24 July 2021.

72. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

73. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM sys-
tems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada,
24–28 September 2012; pp. 573–580.

74. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle
datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [CrossRef]

75. Schubert, D.; Goll, T.; Demmel, N.; Usenko, V.C.; Stückler, J.; Cremers, D. The TUM VI Benchmark for Evaluating Visual-Inertial
Odometry. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto,
Japan, 23–27 October 2018; pp. 1680–1687.

76. Guan, T.; Kothandaraman, D.; Chandra, R.; Manocha, D. GANav: Group-wise Attention Network for Classifying Navigable
Regions in Unstructured Outdoor Environments. arXiv 2021, arXiv:2103.04233.

77. Wigness, M.; Eum, S.; Rogers, J.G.; Han, D.; Kwon, H. A RUGD Dataset for Autonomous Navigation and Visual Perception in
Unstructured Outdoor Environments. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS),
The Venetian Macao, Macau, 3–8 November 2019.

78. Jiang, P.; Osteen, P.R.; Wigness, M.B.; Saripalli, S. RELLIS-3D Dataset: Data, Benchmarks and Analysis. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June; pp. 1110–1116.

79. Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.A.; Nießner, M. ScanNet: Richly-Annotated 3D Reconstructions of
Indoor Scenes. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 2432–2443.

80. Wald, J.; Dhamo, H.; Navab, N.; Tombari, F. Learning 3D Semantic Scene Graphs From 3D Indoor Reconstructions. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 3960–3969.

81. Cremona, J.; Comelli, R.; Pire, T. Experimental evaluation of Visual-Inertial Odometry systems for arable farming. J. Field Robot.
2022, 39, 1123–1137. [CrossRef]

82. Shin, Y.S.; Kim, A. Sparse Depth Enhanced Direct Thermal-Infrared SLAM Beyond the Visible Spectrum. IEEE Robot. Autom. Lett.
2019, 4, 2918–2925. [CrossRef]

83. Badue, C.S.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.F.R.; Berriel, R.; Paixão, T.M.; Mutz,
F.W.; et al. Self-Driving Cars: A Survey. arXiv 2019, arXiv:1901.04407.

84. Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.; David, B.; Finn, C.; Gopalakrishnan, K.; Hausman, K.; Herzog, A.; et al.
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances. In Proceedings of the Conference on Robot Learning,
Auckland, New Zealand, 14–18 December 2022.

85. Shah, D.; Osinski, B.; Ichter, B.; Levine, S. LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision, and
Action. In Proceedings of the Conference on Robot Learning, Auckland, New Zealand, 14–18 December 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/0278364915620033
http://dx.doi.org/10.1002/rob.22099
http://dx.doi.org/10.1109/LRA.2019.2923381

	Introduction
	Building Maps—Core Concepts in SLAM
	Problem Formulation, Concepts
	Full SLAM
	Filter SLAM
	Smoothing SLAM and Factor Graphs

	Representative Examples
	Summary

	Types of Maps—Metric, Topological, Semantic
	Spatial Map Representations
	Occupancy Grid Maps
	Surface Representations
	Implicit Scene Models

	Scene Graphs and Topologies
	Semantics
	Object Detection
	Image Segmentation—Semantic, Instance, Panoptic
	Open-Set Semantics
	Map Integration

	Summary

	Performance Evaluation
	Discussion
	Domain-Specific Challenges
	Robot Navigation without the Construction of Maps

	Conclusions
	References

